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I-Analytic extensions of perturbative series

I-1-The example of moment series and 1-dim non autonomous differential
equations of Abel type.

Algebraic (trigonometric) moments appeared in the context of a pertur-
bative analysis of Abel equations :

dy

dx
= p(x)y3 + q(x)y2, (1)

We say that the Abel equation displays a center between point a and b if
the solution y(x, y0) satisfies y(a, y0) = y(b, y0) for all y0. The problem was
to characterize the centers.
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We considered from the begining the parametric (or persistent center)
problem. Find the Abel equation so that for all ε small,

dy

dx
= p(x)y3 + εq(x)y2, (2)

displays a center. We derived easily a necessary condition :

∫ b

a

P (x)jdQ(x) = 0 (3)
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Polynomial moment problem : For P (z) ∈ C[z] and a, b ∈ C, a 6= b describe
Q(z) ∈ C[z] such that :

∫ b

a

P i(z)dQ(z) = 0,

for all i ≥ 0.

Example 1. P (z) = z, [a, b].
There exists no non-constant solutions by the Weierstrass theorem.

Example 2. P (z) = z2, [−1,+1].
There exist non-constant solutions e.g. Q(z) = R(z2), R(z) ∈ C[z].
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Example 3. P (z) satisfies P (a) = P (b)).
There exist non-zero solutions e.g.

Q(z) = R(P (z)), R(z) ∈ C[z].

Proof : ∫ b

a

P i(z)dQ(z) =

∫ P (b)

P (a)

yidR(y) = 0

since P (a) = P (b) and R(y) is holomorphic in C.
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If there exist P̃ (z),W (z) ∈ C[z] such that

P (z) = P̃ (W (z)),W (a) = W (b)

then for any Q̃(z) ∈ C[z] the polynomial

Q(z) = Q̃(W (z)),

is a solution. Such a solution is called composed.
Proof : ∫ b

a

P i(z)dQ(z) =

∫ W (b)

W (a)

P̃ i(y)dQ̃(y) = 0.
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Question : Is it true that any solution is composed ?

Theorem. (C. Christopher, 2000) If P (′a) 6= 0, P ′(b) 6= 0 then any
non-constant solution is composed.

Pakovich, 2001 Let Tn(z) be the nth Chebyshev polynomial, Tn(cosz) =
cos(nz), then

Tn(Tm(z)) = Tmn(z) = Tm(Tn(z)).

Take

P (z) = T6(z), a = −
√

3/2, b =
√

3/2, Q(z) = T3(z) + T2(z).

C. Christopher Abel equations : composition conjectures and the model
problem. Bull. London Math. Soc. 32 (2000), no. 3, 332-338.
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Assume ∫ b

a

P i(z)dQ(z) = 0,

for all i ≥ 0 and P ′(a) 6= 0, P ′(b) 6= 0.

Without loss of generality, take P monic, a = 0, b = 1, P (0) = 0. If

|c| > K := supx∈[0,1]|P (x)|,

(P (x)− c)−1 has a well-defined expansion :

I(c) =

∫ 1

0

q(x)

P (x)− c
dx = Σi=0

1

ci+1

∫ 1

0

P (x)iq(x)dx.

Hypothesis is equivalent to I(c) = 0.
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Let S = {c0, c1, ..., cn} the critical values of P to which we add c0 =
P (0) = 0, c1 = P (1). As c ∈ C − S, P (x) − c has distinct roots, none of
which is 0 or 1.

Let αi(c) be the roots of P (x)− c = 0,

q(x)

P (x)− c
= r(x, c) +

∑
i

m(αi(c))

x− αi(c)
,

where r is a polynomial in x and c and m(x) = q(x)
p(x).

I(c) = R(c) +
∑
i

m(αi(c))lni(1−
1

αi
).
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As seen above, I(c) is multi-valued in general. The main idea is that if
I(c) ≡ 0 then its “periods” (differences between two branches) are zero.
With little further classical tools (Lüroth theorem), this allows to conclude
in this case.
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General Case

In 2009 Pakovich and Muzychuk proved the general final result :

Theorem

Two polynomials P (x), Q(x) ∈ R[x] and a, b ∈ R, a 6= b, satisfies :∫ b

a

P i(x)dQ(x) = 0,

for all i ≥ 0 if and only if there are finitely many polynomials W1,W2, ...,Ws,
P̃1, ...P̃s, Q̃1, ..., Q̃s such that :

P (x) = P̃i(Wi(x)), i = 1, ..., s
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Q(x) = ΣiQ̃i(Wi(x)),

Wi(a) = Wi(b).

The method used in the proof consists in analyzing the rational com-
binaison of the values of m = q

p on the different branches of the algebraic

function Q−1.
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Return to the initial center focus problem and the trigonometric moment
problems

J. Giné, M. Grau, J. Llibre ”Universal centers and composition condi-
tions” J. of the London Mathematical Society, advanced access 09/11/12,

Universal center (all iterated integrals vanish) is equivalent to composi-
tion

A. Cima, A. Gasull, F. Mañosas ”A simple solution of some composition
conjectures for Abel equations” J. Math. Ann. and Appl. (2012).

The approach is completely novel and yields for both polynomial and
trigonometric to the equivalence between :
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Composition

strong persistence

Double moments vanishing (with precise bound on the sufficient number
of double moments to vanish).

Some open questions :

For polynomial Abel equations, no example is known yet of a center
which is not persistent (and hence composed). Such an example was given
in the trigonometric case by Cima, Gasull and Mañosas.
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I-2 ”Global” Birkhoff normal forms

G. D. Birkhoff studied the local expression of a Hamiltonian system
near a critical point of Morse type up to symplectic changes of coordinates.
Under some generic conditions, this local normal form exists as a formal
series in any dimension. It is convergent in one degree of freedom and it
is generically divergent in (m > 1) degrees of freedom [(Siegel, 54)(Moser,
76)]
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Hamiltonian systems integrable in Liouville sense

A Hamiltonian system (H,ω) is said to be (completely) integrable if
there exist m generically independent integrals H = (H1, ...,Hm) such that
{Hi, Hj} = 0, H = H1. If the fibers H−1(c) are compact and connected,
they are torii and the flows of all the Hi are linear on these torii. Action-
angles coordinates allow to compute the frequencies of the Hamiltonian
flow of H on these invariant torii.

17



Analytic Hamiltonian systems which are Liouville integrable display a
convergent Birkhoff normal form

Theorem (J. Vey, 76)

Assume H are analytic near 0 ∈ Rn, {Hi, Hj} = 0, H = H1 displays
a Morse critical point, assume that the HessHi(0) generate a Cartan sub-
algebra of Sp(2m,R), then the Birkhoff normal form of H is a convergent
series.

For instance, pi = x2i + y2i or pi = xiyi generate a Cartan sub-algebra
of Sp(2m,R) (Precise definition : commutative and selfnormalizing).
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Birkhoff normal form of an integrable Hamiltonian system is in general
a convergent series but a priori only defined in the neighborhood of
the critical point. What can be said of its analytic prolongation if the
Hamiltonian system is itself globally defined (for instance is a polynomial,
rational function) ?

In such case, if the HS displays different critical points, is it possible to
compare the analytic prolongation of the Birkhoff form in one critical point
to the Birkhoff form in the other critical point ?

Begin with one degree of freedom !
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The pendulum has been studied recently (P.L.Garrido, G. Gallavotti, JPF,
Journal Maths Physics 10).

Reading Jacobi in the text and Gradshtein-Ryzhik tables of formula for
elliptic functions.

Jacobi found a coordinate system in which the motion is linear but he
did not computed the symplectic form in these coordinates.

Although his computation could be used to obtain a piece of information
on the symplectic form (its relative cohomology class associated with H).
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Singularity theory of functions

Consider an analytic function H : (x, y) 7→ 1
2(x2 + y2) + .... and a

symplectic (volume) form ω = dx∧dy. Morse lemma allows to find anew
(analytic) coordinate system (X,Y ) such that H = 1

2(X2 + Y 2) but with
no control of ω : ω = [1 + F (X,Y )]dX∧dY .

Definition Two volume forms ω and ω′ have the same relative cohomo-
logy class if ω − ω′ = dH∧dξ.

Moser isotopy method for volume form applies and shows : Given a
function H and two volume forms which are relatively cohomologous, there
is an isotopy φ so that φ ∗ (H) = H and φ ∗ (ω) = ω′.

Any polynomial form ω decomposes into ω = ψ(H)dx∧dy + dH∧dξ.
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After these changes of coordinates we find H = 1
2(x2 + y2), ω =

ψ(H)dx∧dy, there is and easy change into,

H = φ(
1

2
(x2 + y2)), ω = dx∧dy

and this is the Birkhoff normal form !
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Free rigid body motion and the geodesic motion on a revolution ellipsoid
have been also studied (P.L. Garrido, G. Gallavotti, JPF, F18 in Ipparco
Roma I, 2012.)

Normal forms are derived via the analysis of relative cohomology.
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The Hamiltonian of the free rigid body in the coordinates B, β depending
of the parameters I and of the ”parameter” A(in fact constant of motion) :

H ′ =
1

2

B2

I3
+

1

2
(
cos2β

I1
+

sin2β

I2
)((A2 −B2), (4)

We consider instead :

H =
2H ′ −A2I−11

I−13 − I−11

= B2 − r2sin2βA2 + r2sin2βB2, (5)

with

r2 =
I−11 − I−12

I−13 − I−12

. (6)
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Consider the Hamiltonian :

H = B2 + r2β2A2 + r2(sin2β − β2)A2 − r2sin2βB2. (7)

Change (B, β) into (X = B, Y = rAβ), this multiplies the symplectic form
by 1/rA and this yields to consider in the following the couple :

H = X2 + Y 2 + ...., ω = dX∧dY (8)
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We have here an explicit version of the Morse lemma :

(X,Y ) 7→ (X ′, Y ′)

X ′ = X
√

1− r2sin2( YrA) = X + ...h.o.t.

Y ′ = rAsin( YrA) = Y + ...h.o.t.

(9)

In these coordinates :

H = X ′2 + Y ′2,
ω = dX∧dY = 1√

(1−Y ′2
A2 )(1− Y ′2

r2A2)

dX ′∧dY ′. (10)
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We compute the cohomology class of the volume form ω by introducing
the coefficients ak defined as follows :

1√
1− u2

= Σkaku
2k, (11)

and the binomial coefficients Ckn. One can check that

ω = g(ξ)dX ′∧dY ′ + dξ∧du, (12)

where

g(ξ) = Σh(Σk,l;k+l=hakalr
2h)

Ch2h
4h

ξh

r2h
. (13)
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It remains to perform a final change of coordinates of type :

x = X”u(ξ), y = Y ”u(ξ),

so that U(ξ) = u2(ξ) satisfies :

U(ξ) + ξU ′(ξ) = g(ξ).

Note that this last equation is easily solved in terms of formal series, if
g(ξ) = Σngnξ

n, then U(ξ) = Σn
gn
n+1.Inverting the series : ξ = HU(H) :

U(H) = Σh(Σk+l=hakalr
2l)

Ch2h
4h(h+ 1)

Hh

r2h

into H = ξV (ξ) yields the Birkhoff normal form.

28



The coefficients of the Birkhoff normal form are polynomials in a variable r
depending on the inertia moments. We checked numerically that their roots
are on the unit circle. We proved that this is true for the series issued from
the cohomology class and discuss the link with D. Ruelle’s articles on the
extensions of the Lee-Yang theorem.
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II-The Jacobian conjecture

II-1. Short history of the Jacobian conjecture and of the Markus-
Yamabe conjecture

Arno van den Essen ”Polynomial automorphisms and the Jacobian
conjecture” vol 190, Pr. in Maths, Birkhauser (2000).

de Bondt-van den Essen ”Nilpotent symmetric Jacobian Matrices and
the Jacobian conjecture” J. Pure and Appl. Alg. 193 (2004) and 196 (2005).
Independently by Meng (2006)

Wenhua Zhao ”Hessian nilpotent polynomials and the jacobian conjec-
ture” Transactions of the AMS, 359, (2007), 249-274 : Vanishing conjecture
is equivalent to Jacobian conjecture.
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Olivier Mathieu ” Some conjectures about invariant theory and their
applications”, Algèbre non commutative, groupes quantiques et invariants
(Reims, 1995), Sémin. Congr., vol. 2, Soc. Math. France, Paris, 1997,
263–279.

Wenhua Zhao ”Generalizations of the image conjecture and the Mathieu
conjecture”, J. Pure Appl. Algebra 214 (2010), 1200–1216.
”Images of commuting differential operators of order one with constant
leading coefficients”, Journal of Algebra 324 (2010), 231–247.

Arno van den Essen, The amazing Image Conjecture,
http ://arxiv.org/abs/1006.5801, 2010.

van den Essen, Arno ; Wright, David ; and Zhao, Wenhua, ”On the
Image Conjecture” (2012)
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The Markus-Yamabe conjecture and a problem of Lasalle

MYC : Let F : Rn → Rn be a C1 vector field with F (0) = 0 satisfying
the MYA : for all x ∈ Rn, the real parts of all eigenvalues of JF (x) are
negative, then 0 is a global attractor. WMYC : same hypothesis then F is
injective.

Lasalle problem : Let F : Rn → Rn be a C1 map satisfying the DMYA :
for all x,all eigenvalues of JF (x) are of absoulte value less than 1. Does
F (0) = 0 implies that 0 is a global attractor of F ?

Fixed point conjecture : For all n, every polynomial map of Rn to itself
satisfying DMYA has a unique fixed point.

A. Gasull, J. Llibre and J. Sotomayor ”Global Asymptotic stability of
Differential Equations in the plane, JDE, 1991.
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Pinchuk ”A counterexample to the strong real Jacobian” Math. Z. (An
example of polynomial mapping with a non-vanishing Jacobian which is not
a global diffeomorphism), 1994.

J. Bernat and J. Llibre ”Counterexample to Kalman and Markus-Yamabe
conjectures in dim larger than 4” Dyn. Cont. Disc. and Impulsive Systems
2(1996) 337-379.

Cima, van den Essen, Gasull, Hubbers and Mañosas ”A polynomial
counterexample to the Markus-Yamabe conjecture” Advances in Maths,
131 (1997), 453-457.

Cima, Gasull, Mañosas ”The discrete Markus-Yamabe problem” Non-
linear Analysis (1999) : The fixed point conjecture is equivalent to the
Jacobian conjecture.
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II-2 Vanishing conjecture, Mathieu’s conjectures and Image conjec-
tures

After the reduction proposed by de Bondt and van den Essen (2004-
2005), the Jacobian conjecture can be reduced to considering

F : z 7→ w,wi = zi −
∂P

∂zi
, (14)

Zhao proposed to characterize these inverses as follows.
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Theorem 1. Let t be a parameter, consider the deformation Ft(z) =
z − t∇P . The inverse map of z 7→ Ft(z) can be written :

Gt(z) = z + t∇Qt(z), (15)

where Qt(z) is the unique solution of the Cauchy problem for the Hamilton-
Jacobi equation :

∂Qt(z)
∂t = 1

2 < ∇Qt,∇Qt >,
Qt=0(z) = P (z)

(16)

Note that with Ut = ∇Qt, the equation can we alternatively written :

∂Ut(z)

∂t
= J(Ut(z))Ut(z), (17)
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which is the inviscid n-dimensional Burgers equation.

Proof. More generally, the formal inverse of Ft(z) = z−tH(z) is the formal
series Gt(z) = z + tNt(z) if and only if :

Nt(Ft(z)) = H(z),
H(Gt(z)) = Nt(z).

(18)

This yields the equations :

0 =
∂

∂t
[Nt(Ft(z))], (19)

0 =
∂Nt
∂t

(Ft(z)) + J(Nt(z))
∂Ft
∂t

, (20)
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0 =
∂Nt
∂t

(Ft(z))− J(Nt(z))H. (21)

After composing with Gt(z) from the right, this displays :

∂Nt
∂t

= J(Nt)H(Gt) = J(Nt)Nt. (22)

The theorem is proved in particular in the gradient case where ∇Qt(Ft) =
∇P and ∇P (Gt) = ∇Qt as a consequence of :

∂

∂zi
(
∂Qt
∂t

) = Σj
∂2Qt
∂zi∂zj

∂Qt
∂zj

=
∂

∂zi
< ∇Qt,∇Qt > . (23)

2
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We say that P is HN (Hessian nilpotent) if its Hessian matrix is Nilpotent.
Recall the notation :

Ft(z) = z − t∇P,Gt(z) = z + t∇Qt(z). (24)

We can prove successively :

∆Qt(Ft) = Σ∞k=1t
k−1Tr[Hessk(P )] (25)

P is HN if and only if Qt is Harmonic.
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Let a = {aI, I ∈ Nn, | I |≥ 2 be a set of commuting va-
riables and let P = ΣaIz

I be the universal power series in z. For
any k define the ideal Uk generated in C[a] by all coefficients of
{um(P ) = TrHessm(P )},m = 1, ..., k and Vk the ideal generated by
the coefficients of {vm(P ) = δmPm},m = 1, ..., k. then for all k,
Uk = Vk. So we deduce that P is HN iff and only if ∆mPm = 0.

Then Qt(z) = Σ∞m=1
tm−1

2m−1m!(m−1)!∆
m−1(Pm) From these lemmas, follows

the

Theorem 2. The Jacobian conjecture is equivalent to the vanishing conjec-
ture : for all polynomial P homogeneous of degree 4, if ∆m(Pm) = 0 for
all m then ∆m−1Pm = 0 for all m >> 0.
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Olivier Mathieu proposed a general conjecture which is equivalent to the
Jacobian conjecture :

Let K be a compact connected Lie group and let f be a complex-valued
K-finite function on K such that

∫
K
fn(k)dk = 0 for any n > 0. Then for

any K-finite function g, we have
∫
K
fn(k)g(k)dk = 0 for n large enough.

Take for instance the circle. In that case Mathieu’s conjecture means :

For any Laurent polynomial f such that c(fn) = 0 (constant term of)
then for all Laurent polynomial g, c(fng) = 0 for all n >> 0.

Idea of the proof (Van der Kallen-Duistermaat)
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Take the generating function :

Σnc
n−1

∫
γ

f(z)ndz

z
(26)

and its analytic extension :

F (c) =
1

2π

∫
γ

f(z)

1− cf(z)

dz

z
(27)

Because f(0) = ∞, res(0) = −1
c. As long as 1

c is not a critical value of
f(z), other residues are − 1

c2f ′(ξ)ξ where ξ = ξj(c) ranges over the solutions

of f(ξ) = 1
c. Assume that f(0) = f(∞) = ∞ then the complex analytic

extension of ξj(c) can neither run to 0 or to ∞ when c remains bounded. If
a is a critical point of f with critical value ν then f(z) ν+c(z−a)m,m ≥ 2,

f ′(z) cm(z − a)m−1, for ν 6= 0 residue is of the order of (τ − ν)−1+
1
m. For
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ν = 0, res is of the order of τ1+
1
m which cannot cancel residue −τ at z = 0.

Conclusion F cannt be identically zero.

Then either f is a polynomial in z or a polynomial in 1/z. For such and
f it is obvious that for all g, c(fng) = 0 for n >> 0.
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Under the influence of Mathieu’s conjecture Zhao developped a series of
conjectures among which his ”image conjecture”.

Let A be the ring of polynomials and ai a regular sequence. Let
δi = d

dzi
−ai : A→ A and δ = (δ1, ...δn) : An → A defined by (φ1, ...φn) 7→

Σδiφi. Then for f, g ∈ A, if fk ∈ Im(δ) for all k, then fkg ∈ Im(δ) for
k >> 0. The image conjecture implies the vanishing conjecture which is
equivalent to the Jacobian conjecture.
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III- The factorial conjecture

Van den essen, Wright and Zhao pointed out finally this year the
following factorial conjecture as being fundamental in relation with the
jacobian conjecture :

Let Dn = {(x1, ..., xn), xi ≥ 0} a (complex) polynomial f so that∫
Dn

f(x)kexp(−x1 − ...− xn)dx = 0 (28)

for all k is necessarily f = 0. Hence moments are back but this time in any
dimension.

This is a strong motivation to study moment problem in any dimensions
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(cf. JPF, F. Pakovich, Y. Yomdin and W. Zhao, Moment vanishing problem
and positivity : some examples, Bull. Sci. Math. 135 (2011) 1, 10–32).
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Thank you for your attention

Joyeux Anniversaire, Jaume !
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