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Introduction

In this work we study the global dynamics of the first order planar poly-
nomial differential system of degree 2, called Lev Ginzburg differential
system,

x′ =
dx

dt
= y,

y′ =
dy

dt
= (1− β1y)(γ − αx + βy),

(1)

depending on four parameters: α > 0, β1 > 0, γ > 0 and β ∈ R.
System (1) can be obtained from the following family of second order
differential equations
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)(
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)

, (2)

introduced by Ginzburg [1] in his studies on population dynamics.

Bellamy and Mickens [5] claimed that the Lev Ginzburg differential
equation (2) can exhibit a limit cycle coming from a Hopf bifurcation.
In [2] the authors shown that this differential equation has neither a
Hopf bifurcation, nor limit cycles.

Denote by X : R2 → R2 the quadratic vector field associated with
the differential system (1), that is

X (x, y) = (y, (1− β1y)(γ − αx + βy)) . (3)

Differential system (1) presents only one equilibrium point p =
(γ/α, 0) for all values of the parameters. The linearization DX (p)
of X at p when β = 0 has eigenvalues λ1,2 = ±i

√
α. Then the

equilibrium point p is either a center or a weak focus (see [3] for more
details), and the standard Hopf bifurcation analysis can only be ap-
plied when the equilibrium is a weak focus, but the equilibrium point
p when β = 0 is a center, see either [2] or item 1 of Theorem 1 below.
The main result of this paper is the following.

Theorem 1. Consider the Lev Ginzburg differential system (1). The
following statements hold.

1. If β = 0 then the only equilibrium point is a center.

2. If β &= 0 then system (1) has no limit cycles.

In order to prove Theorem 1 we give full descriptions of the global
behavior of system (1) for all values of the parameters.

Proof of Theorem 1, item 1

The following result is well known for the quadratic systems.

Proposition 2. Let X be a quadratic vector field and let γ be a
periodic orbit of X . Then there is exactly one equilibrium point in the
interior of γ. This equilibrium point is a center if γ is not a limit cycle,
or it is a focus with complex conjugate eigenvalues when γ is a limit
cycle.

It is easy to check that the eigenvalues of DX (p) are given by (β ±
√

β2 − 4α)/2. Since we are interested in the limit cycles of the Lev
Ginzburg differential system, by Proposition 2 we only need to consider
such a differential system when the equilibrium point p can be a focus,
that is when β2 < 4α, see [3] for more details. So, when β &= 0 the
equilibrium p is hyperbolic and its stability is directly determined by
the sign of β, that is if β > 0 then p is an unstable focus, and if β < 0
then p is a stable focus. Now consider β = 0. By a translation, a
linear change of variables and a rescaling of the independent variable
t, system (1) can be written as

u̇ = −v + β1uv, v̇ = u. (4)

The linearization of (4) at the equilibrium localized at the origin has
eigenvalues ±i. In order to prove Proposition 4 we need the following
result.

Theorem 3 (Bautin’s Theorem [3). ] Any quadratic system candidate
to have a center at the origin of coordinates can be written in the
normal form

ẋ = −y − λ3x
2 + (2λ2 + λ5)xy + λ6y

2,

ẏ = x + λ2x
2 + (2λ3 + λ4)xy − λ2y

2.
(5)

This equilibrium point localized at the origin is a center if and only if
one of the following four conditions holds:

1. λ3 = λ6,

2. λ2 = λ5 = 0,

3. λ4 = λ5 = 0,

4. λ5 = λ4 + 5(λ3 − λ6) = λ3λ6 − λ22 − 2λ26 = 0.

Proposition 4. The quadratic system (4) has a center at the origin.

Demonstração. It is immediate that system (4) is in the form (5) and
that λ3 = λ6 = 0. So, singularity point (0, 0) is a center.

The proof of item 1 of Theorem 1 follows from Proposition 4.

Some classical results

Theorem 5. If a quadratic polynomial differential system in the plane
has an invariant straight line, then it has at most one limit cycle.
Moreover, if this limit cycle exists then it is hyperbolic.

Note that the Lev Ginzburg system (1) has the invariant straight line
y = 1/β1. So, by Theorem 5 system (1) has at most one limit cycle,
and if it exists then it is hyperbolic.
The second result which also plays a main role for proving item 2
of Theorem 1 is the Poincaré compactification. In order to study the
complete behavior of the trajectories of a planar polynomial differential
system, we must study their behavior near infinity. Since we need this
compactification for proving Theorem 1 in what follows we introduce
it briefly. Let X be any planar vector field of degree n. The Poincaré
compactified vector field p(X ) corresponding to X is an analytic vector
field induced on S2 as follows. Let S2 = {y = (y1, y2, y3) ∈ R3 :
y21+y22+y23 = 1} (the Poincaré sphere) and TyS2 be the tangent space
to S2 at point y. Consider the central projection f : T(0,0,1)S

2 → S2.
This map defines two copies of X , one in the northern hemisphere and
the other in the southern hemisphere. Denote by X ′ the vector field
Df ◦X defined on S2 except on its equator S1 = {y ∈ S2 : y3 = 0}.
Clearly S1 is identified to the infinity of R2. In order to extend X ′

to a vector field on S2 (including S1) it is necessary that X satisfies
suitable conditions. In the case that X is polynomial p(X ) is the
only analytic extension of yn−1

3 X ′ to S2. On S2\S1 there are two
symmetric copies of X , and knowing the behavior of p(X ) around S1,
we know the behavior of X at infinity. The projection of the closed
northern hemisphere of S2 on y3 = 0 under (y1, y2, y3) (−→ (y1, y2)
is called the Poincaré disc, and it is denoted by D2. The Poincaré
compactification has the property that S1 is invariant under the flow
of p(X ).

As S2 is a differentiable manifold, then for computing the expression for
p(X ), we can consider the six local charts Ui = {y ∈ S2 : yi > 0},
and Vi = {y ∈ S2 : yi < 0} where i = 1, 2, 3; and the diffeo-
morphisms Fi : Ui → R2 and Gi : Vi → R2 for i = 1, 2, 3 are the
inverses of the central projections from the planes tangent at the points
(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and (0, 0,−1) respec-
tively. If we denote by z = (z1, z2) the value of Fi(y) or Gi(y) for
any i = 1, 2, 3 (so z represents different things according to the local
charts under consideration), then some easy computations give the
following expressions for p(X ):
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∆(z) (P (z1, z2), Q(z1, z2)) in U3,

where ∆(z) = (z21 + z22 + 1)−
1

2
(n−1). The expression for Vi is the

same as that for Ui except for a multiplicative factor (−1)n−1. In
these coordinates for i = 1, 2, z2 = 0 always denotes the points of
S1. In what follows we omit the factor ∆(z) by rescaling the vector
field p(X ). Thus we obtain a polynomial vector field in each local
chart of degree at most n+ 1. Note that since the equilibrium points
at infinity are of the form (z1, 0), at infinity there are at most n + 1
pairs of equilibrium points, because if we have an equilibrium point
the symmetric point with respect to the center of the Poincaré sphere
is also another equilibrium point. With the local chart U1 and its
symmetric V1 we cover all the infinity except the origin of the local
charts U2 and V2. So, using the symmetry with respect to the origin
of the Poincaré sphere for studying the infinity we only need to study
the chart U1 and the origin of the chart U2. Moreover, since our
polynomial differential system is quadratic if, for instance, we have a
stable node in the chart U1 then its symmetric in the chart V1 is an
unstable node.

Proof of Theorem 1, item 2

We start by studying the infinity of the Lev Ginzburg differential system
(1). Doing a translation of the unique equilibrium point of system (1)
at the origin, and writing its linear part in its real Jordan normal form
the Lev Ginzburg system becomes

x′ = P (x, y) =
β

2
x−

√

4α− β2

2
y −

ββ1
2

xy −
β2β1

2
√

4α− β2
y2,

y′ = Q(x, y) =

√

4α− β2

2
x +

β

2
y −

√

4α− β2β1
2

xy −
ββ1
2

y2.

(8)

A

B

C

D

q

p0

q’

p0’

The phase portrait of system (8) with β = 0.

Now we write the polynomial differential system (8) in the local chart
U1 using (6) and we obtain

z′1 =

√

4α− β2

2

(

−β1z1 + z2 + z21z2
)

+
β2β1

2
√

4α− β2
z31,
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2
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2
√
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√

4α− β2

2
z1z

2
2.

Therefore the equilibrium points (z1, 0) at infinity in the local chart
U1 are

p0 = (0, 0), p± =

(

±
√

4α− β2

β
, 0

)

, when β &= 0,

and only the equilibrium point p0 when β = 0. The symmetric points
with respect to the origin of the Poincaré disc in the local chart V1 are
denoted by p′0 and p′±. Clearly if β &= 0, then all the infinite equili-
brium points are in the local charts U1 and V1 having the maximum of
possible equilibrium points at infinity, that is three pairs of diametrally
opposite equilibrium points in the Poincaré disc.
When β = 0 then in U1 we only have the equilibrium p0, and con-
sequently in V1 we only have the equilibrium p′0. In this case we will
see that the origins of the local charts U2 and V2 are also equilibrium
points at infinity. Writing the polynomial differential system (8) in the
local chart U2 using (7) we get

z′1 =
√
α(−z2 + β1z

2
1 − z21z2),

z′2 =
√
α(β1z1z2 − z1z

2
2).

Therefore the origin of the local chart U2 is a nilpotent equilibrium
point, by using Theorem 3.5, we obtain that it is formed by an elliptic
and a hyperbolic sectors with the elliptic sector contained in U2 and
the hyperbolic sector contained in V2. By Proposition 4 we know that
the origin is a center. So, the phase portrait for β = 0 is topologically
equivalent to the one of Figure 3.
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The phase portrait of system (8) with 4α− β2 > 0 and β > 0.

Now assume that β &= 0. Then using Theorem 2.15 (for the hyperbolic
equilibria) and Theorem 2.19 (for the semi–hyperbolic equilibria) of
[6] we obtain that p0 is a semi–hyperbolic saddle, p+ is a hyperbolic
unstable node, and p− is a semi–hyperbolic saddle–node which in U1
has the two hyperbolic sectors when β > 0 and the node sector when
β < 0. Note that looking at Figures 1 and 2 in the half–plane under
the invariant straight line y = 1/β1 the origin and the corresponding
node at infinity have converse kind of stability. Hence limit cycles
cannot surround the origin, because at most can have one hyperbolic
limit cycle, and consequently the origin and the node at infinity would
have the same kind of stability. In summary, when β &= 0 the phase
portraits of system (8) are topologically equivalent to the ones of
Figures 1 and 2 without limit cycles. This completes the proof of item
2 of Theorem 1.
The proof of item 1 of Theorem 1 follows from Proposition 4.
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