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In this survey talk we study systems depending on two time scales
(slow-fast systems), using geometric techniques (by “geometric” we mean
coming from “ regular” dynamical systems theory). We limit to
two-dimensional systems, however depending on an arbitrary number of
parameters. Our attention primarily goes to periodic orbits, called
relaxation oscillations, and the bifurcations that they undergo.

The talk is based on joint work with Robert Roussarie, with Peter De
Maesschalck or with both.
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The results hold on any smooth orientable surface (without boundary) M .

Let Xε,λ be a smooth family of vector fields on M , defined for ε ∈ [0, ε1]
(for a given ε1 > 0) and for λ ∈ Λ, with Λ a subset of an euclidean space.

We assume that Xε,λ is of slow-fast type, with singular parameter ε:
-for ε = 0, X0,λ can locally be written as F (x, y, λ)∂/∂x
-there exists a smooth λ-family of 1-dimensional embedded manifolds Sλ
consisting entirely of singularities of X0,λ.

We do not require Sλ to be connected; in fact one could have several
connected components (curves).
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Definition 1 (Normally hyperbolic point and contact point)

A point p ∈ Sλ is called a normally hyperbolic (resp. normally attracting or
normally repelling) point of X0,λ if the linear part of X0,λ at p has a
nonzero (resp. negative or positive) eigenvalue.
It is called a contact point when the linear part has two zero eigenvalues.
In that case, we distinguish between a nilpotent and a degenerate contact
point, depending on whether the differential of Xε,λ at p is nilpotent or is
zero.

We will only treat slow-fast cycles with isolated nilpotent contact
points. We denote the set of contact points by Cλ.
Near nilpotent singularities, the set of singularities of X0,λ forms a regular
curve.
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Proposition 1

Consider a smooth slow-fast system Xε,λ on a smooth surface M . Let p
be a nilpotent contact point for a parameter value λ = λ0. There exist
smooth local coordinates (x, y) such that p = (0, 0), and in which, up to
multiplication by a smooth strictly positive function, the system Xε,λ, for
(ε, λ) ∼ (0, λ0), is written in the following normal form:{

ẋ = y − f(x, λ)

ẏ = ε
(
g(x, ε, λ) +

(
y − f(x, λ)

)
h(x, y, ε, λ)

)
,

(1)

for smooth functions f, g, h and f(0, λ0) = ∂f
∂x (0, λ0) = 0.

This means that Xε,λ is C∞-equivalent to the normal form (1).
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Remarks:

Near a normally hyperbolic point there exists following local normal
form for C∞-equivalence:{

ẋ = y − x
ẏ = ε

(
g(x, ε, λ) +

(
y − x

)
h(x, y, ε, λ)

)
,

(2)

We will not treat problems concerning the time function. We can
hence work with local normal forms for C∞-equivalence.
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Expression (1) is a specification of the usual local expression of a slow-fast
system in fast time. {

ẋ = F (x, y, ε, λ)
ẏ = εG(x, y, ε, λ).

(3)

For ε = 0 we have the layer equation{
ẋ = F (x, y, 0, λ)
ẏ = 0.

(4)
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Consider a system written in the normal form (1). Outside the set of
contact points Cλ = {(x, y) | ∂fλ∂x (x) = 0, y = fλ(x)} the slow dynamics is
defined on the slow curve Sλ by the equation

∂fλ
∂x

(x)ẋ = g(x, λ).

The zeros of gλ on Sλ \ Cλ are the zeros of the slow dynamics with as
order the order of the zero of gλ.
This order has an intrinsic meaning, independent of the choice of the
normal form. This also holds at contact points, allowing the following
definition of invariants for a contact point:
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Definition 2 (Order at contact point)

Consider any normal form (1) near a contact point p of a slow-fast system
Xε,λ for the value λ0. The order Ord|0(fλ0), (≥ 2), is called the contact
order. The order Ord|0(g0,λ0), (≥ 0), is called the singularity order. The
contact point p is said to be regular if the singularity order is zero (i.e. if
g0,λ0(0) 6= 0) and singular if not.

Remark: The singularity order represents the algebraic multiplicity of the
(isolated) singularities that we will encounter near (0, 0) for ε > 0.

Freddy Dumortier (Hasselt University) Relaxation oscillations in slow-fast systems Salou, 5.10.2012 9 / 58



Definition 2 (Order at contact point)

Consider any normal form (1) near a contact point p of a slow-fast system
Xε,λ for the value λ0. The order Ord|0(fλ0), (≥ 2), is called the contact
order. The order Ord|0(g0,λ0), (≥ 0), is called the singularity order. The
contact point p is said to be regular if the singularity order is zero (i.e. if
g0,λ0(0) 6= 0) and singular if not.

Remark: The singularity order represents the algebraic multiplicity of the
(isolated) singularities that we will encounter near (0, 0) for ε > 0.

Freddy Dumortier (Hasselt University) Relaxation oscillations in slow-fast systems Salou, 5.10.2012 9 / 58



Definition 3

Consider any normal form (1) near a singular contact point p of singularity
order 1. The point is said to be a singular contact point of index ±1 when

sign
∂g0,λ0

∂x
(0) = ∓1.

For such a singular contact point, the family of vector fields Xε,λ has, for
(ε, λ) close to (0, λ0), a singular point (x, y) = (x0(ε, λ)), y0(ε, λ))
tending to (0, 0) as (ε, λ)→ (0, λ0).
This singularity is non-degenerate for ε > 0 sufficiently small. It is of
saddle type when it is a singularity of index −1, and of center/focus type
when it is a singularity of index +1.
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Definition 4 (Specification on slow-fast cycles)

Given λ0 ∈ Λ. A subset Γ, diffeomorphic to a piecewise smooth circle
consisting of a finite number of fast orbits of X0,λ0 and a finite number of
slow arcs of X0,λ0 , is called a slow-fast cycle of X0,λ0 if it contains at least
one slow arc.
Moreover, it must be possible to orient the circle in a way that the
orientation is compatible to the orientation on the fast orbits and such
that on all slow arcs it agrees with the orientation of the slow dynamics.

A slow-fast cycle is said to be a regular slow-fast cycle if there are no
singularities for the slow dynamics on the slow arcs and if each contact
point is regular.
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Definition 5

A common slow-fast cycle is a slow-fast cycle for which the slow arcs are
either all attracting or all repelling. A canard cycle is a slow-fast cycle that
is not common.

A slow-fast cycle is called a strongly common slow-fast cycle if it is a
regular common slow-fast cycle that is not approached by nearby canard
(slow-fast) cycles.(All contact points are supposed to be nilpotent of finite
order.)
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Theorem 1 (on existence)

Let Γ be a strongly common slow-fast cycle of Xε,λ0 for a given λ0 ∈ Λ.
Then there exists an ε0 > 0, a neighborhood Λ0 ⊂ Λ of λ0 and a
neighborhood T of Γ such that for ε ∈ ]0, ε0] and λ ∈ Λ0, the vector field
Xε,λ has a limit cycle in T . This limit cycle is unique and hyperbolic, and
tends in Hausdorff sense towards Γ as (ε, λ)→ (0, λ0).

The statement is not true for arbitrary regular common slow-fast cycles:
the presence of nearby canard slow-fast cycles may create the possibility of
having no nearby limit cycles for certain parameter values.
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=⇒ for cycles that are close to canard cycles, one can in general not
guarantee the existence of nearby periodic orbits.
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regular fast regular slow hyperbolic fast-slow odd slow-slow

odd fast-slow
regular type

odd fast-slow
cuspidal type

slow-fast (jump) funnel fast-fast

canard fast-fastcanard fast-slow

Figure: Elementary attracting regular slow-fast segments.
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Proof of the (first part of the) Theorem: we make a covering with
“slow-fast flow boxes”

V 1 V 2 V 3 V 4 V 5 . . .

Figure: Chain of flow box neighborhoods near some segments.
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inset orbit

outset outset

orbitinset

Figure: Flow box neighborhood near a regular slow segment. To the left for
ε > 0; the limit as ε→ 0 to the right.
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inset

orbit

orbit

outset

Figure: Flow box neighborhood near a funnel fast–fast segment.
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outset

inset insetoutset

orbitorbit

Figure: Flow box neighborhood near a canard fast–slow segment (left) and a
canard fast–fast segment (right)

When we consider slow-fast cycles with singularities on the slow arcs, or
with singular nilpotent contact points, one cannot expect to have slow-fast
families of flow box neighborhoods. Instead, we will have to work with
other types of well-adapted neighborhoods.
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What about the stability of a relaxation oscillation near Γ? How many
periodic orbits are there near Γ?

Known property: given a planar vector field X and a closed orbit γ. Then
γ is an attracting cycle when∫

γ
divX dt < 0. (5)

In a slow-fast context: divergence integrals along slow arcs contribute
most. Associated to slow arcs, we define the notion slow divergence
integral:

I(p, q, λ) =

∫ q

p
divX0,λ ds, (6)

where we integrate along the slow arc of the slow curve from p to q
w.r.t. the so-called slow time s, i.e. the time induced by the slow dynamics.
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Near regular normally hyperbolic points and regular contact points, the
relation between the divergence integral and the slow divergence integral is
clear: {

ẋ = y − f(x, λ)

ẏ = ε
(
g(x, ε, λ) + (y − f(x, λ))h(x, y, ε, λ)

)
.

(7)

So

divXε,λ = −∂f
∂x

+O(ε) (8)

and

dt =
dy

ẏ
=

1

ε

dy

g(x, 0, λ) + o(1)
(9)

This implies ∫
divXε,λ dt =

1

ε

(∫
divX0,λds+ o(1)

)
(10)
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Theorem 2 (on unicity)

Let Γ be a slow-fast cycle of Xε,λ0 on M for given λ0 ∈ Λ. We suppose:

1 All the contact points are nilpotent and of finite order. They are
regular contact points, or of singularity index +1.

2 If Γ does not contain singularities of the slow dynamics, then∫
Γ

divX0,λ0 ds 6= 0.

3 If Γ contains singularities of the slow dynamics (outside contact
points), they are all located on hyperbolic arcs of the same type (all
attracting or all repelling).

Under assumptions (1)–(3) there exists a δ > 0, an ε0 > 0 and a
neighborhood Λ0 of λ0 such that for any (ε, λ) ∈ ]0, ε0]× Λ0, there is at
most one closed orbit of Xε,λ which is δ-Hausdorff close to Γ. If it
appears, this closed orbit is a hyperbolic limit cycle, attracting (resp.
repelling) if the slow divergence integral is negative (resp. positive).
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Xε,b :

{
ẋ = y − x2 − x3

ẏ = ε(b0 + b1x− x2 − 3x3)
(11)

p

r

q

p

r

q

sα

p

r

q

sα

p

r

q

sα

(a) (b) (c)

Proposition 2

The above slow-fast cycle Γ can, for (ε, b0, b1) close to (0, 0, 0), be
approached by generic saddle-node bifurcations of limit cycles.
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Hopf breaking mechanism
Example: Van der Pol’s equation with Hopf bifurcation:

{
ẋ = y − x2

2 − x3

3
ẏ = ε(a− x).

(12)

The critical curve {y = x2

2 + x3

3 } does not depend on a, but the slow
dynamics does: x(1 + x)x′ = a− x
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Jump breaking mechanism
Example: A Liénard equation with generic crossing of two maxima:

{
ẋ = y − 3 + (x2 − 1)2(x+ 3)− ax
ẏ = −εx. (13)

a < 0 a = 0 a > 0

Freddy Dumortier (Hasselt University) Relaxation oscillations in slow-fast systems Salou, 5.10.2012 26 / 58



Canard cycles

(1) (2) (3) (4)
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Canard cycles

(1) (2) (4)(3)
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(1)

(3)

(5)

O

O

O

(2)

(4)

(6)

(7)

O

O

O

O
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Generic canard cycles in generic breaking mechanism

Theorem 3

If I(Y, µ) has at Y = Y0 (corresponding to Γ0) and µ = µ0, a zero of
multiplicity n together with a full unfolding of it (i.e. a catastrophe of
codimension n− 1), then for ε > 0 sufficiently small, the (a, µ)-family
Xε,a,µ contains near Γ0, and for (a, µ) ∼ (0, µ0) a limit cycle of
multiplicity n+ 1 together with a full unfolding of it.
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On the proof of the theorems 2 and 3

How to study regular orbits near slow curves ?

A result of Fenichel [Fe] describes the dynamics near compact pieces of
normally hyperbolic slow curves. It is based on the center manifold
reduction and use of appropriate normal forms. However, instead of
presenting Fenichel’s result, we will rely on a theorem of Takens [Ta],
which permits a stronger result, for sure in this 2-dimensional context.
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Let Xε,λ be a C∞ family of vector fields on a 2-dimensional manifold M .
Locally we think about {

ẋ = f(x, y, ε, λ)
ẏ = εg(x, y, ε, λ).

(14)

It reveals to be interesting to see ε as a variable, rather than as a
parameter, i.e. we consider Xε,λ + 0 ∂

∂ε as a C∞-family of vector fields on
M × [0, ε0[, with ε0 > 0. For the equation (14) it means that we add
“ε̇ = 0”.

We also consider the critical curve, that we denote by γλ, for each λ, as a
curve in three dimensions: γλ ⊂M × {0} ⊂M × [0, ε0[.
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The Normal Linearization Theorem of Takens shows that X, near a
normally hyperbolic point p of Γ, is, for any k, Ck- equivalent to:{

v̇ = ±v
u̇ = εF (u, ε, λ).

(15)

where {v = 0} stands for an a priori chosen center manifold.
Let us continue with the case v̇ = −v.

If we suppose that the slow dynamics on Γ is non-zero at the point p for
λ = λ0; i.e. F (0, 0, λ0) 6= 0, then using the Flow Box Theorem, we can
change the coordinate u, with a coordinate change depending in a Ck way
on (ε, λ), such that expression (15) changes into:{

v̇ = −v
u̇ = ε.

(16)
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In these coordinates the solution with initial conditions (u0, v0) is given by:

v = v0 exp

(
−1

ε
(u− u0)

)
.

Seen in 3-space (u, v, ε), and for each λ separately, we get a behaviour of
the solutions as represented in the following figure. The shaded surface is
smooth, except at the corner point.
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Solutions near a normally hyperbolic slow curve.
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Study at contact points

To study the behaviour of regular Xε,λ-orbits, with ε > 0, near a contact
point we use blow up (geometric desingularization). We present it for a
single vector field in (x, y, ε)-space. Let us suppose that the contact point
is situated at (x, y, ε) = (0, 0, 0) for all λ ∈ Λ.

Blow up procedure
If we have a family of 3-dimensional vector fields Xε,λ + 0 ∂

∂ε , and we want
to blow up the origin (x, y, ε) = (0, 0, 0), then we use

x = upx
y = uqy
ε = umε,

(17)

with (x, y, ε) ∈ S2, and u ∈ [0,∞[; we choose a new time t = urt. The
coefficients (p, q, m, r) are natural numbers, to be well chosen.
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The chart {x = 1}
The chart {x = −1}

The chart {ε = 1}

x

y

ǫ

Blowing up a singular point.
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C

y

x

Blown up picture of a jump point.

Freddy Dumortier (Hasselt University) Relaxation oscillations in slow-fast systems Salou, 5.10.2012 38 / 58



Sections in the jump mechanism.
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Definition 6 (ε-regularly smoothness)

We say that a function f(z, ε), with z ∈ Rp, for some p, is ε-regularly
smooth in z (or ε-regularly C∞ in z) if f is continuous and all partial
derivatives of f with respect to z exist and are continuous in (z, ε),
including at ε = 0.
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Theorem 4

If we follow the X-orbits from R to T and denote this transition map as
P , then P can be expressed as

P (Y, ε, λ) = (α0(ε, λ) + exp(
1

ε
(α(Y, ε, λ))), ε), (18)

where both α0 and α are ε-regularly smooth in respectively λ and (Y, λ).
The graph of {U = α0(ε, λ)} represents WΣ0 ∩ T , and
α(Y, 0, λ) = I(Y, λ), the slow divergence integral.
The function exp (1

ε (α(Y, ε, λ)) is smooth in (Y, ε, λ).
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T2

T1

(2)

We choose transverse sections T1 and T2 and C∞ coordinates (Y, ε) and
(U, ε) on respectively T1 and T2.
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We denote the transition from T1 to T2 in forward time by ∆1 and the
transition in backward time by ∆2.
The limit cycles, for ε > 0, ε ∼ 0, and λ ∼ λ0, correspond to solutions of

∆1(Y, ε, λ) = ∆2(Y, ε, λ).

We know that ∆i(Y, ε, λ) = (Di(Y, ε, λ), ε) with

Di(Y, ε, λ) = fi(ε, λ) + exp(
1

ε
(Ai(Y, ε, λ))), (19)

where the functions fi and Ai are ε-regularly smooth in respectively λ and
(Y, λ).
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The limit cycles of Xε, for ε > 0, correspond to solutions of

f1(ε, λ)− f2(ε, λ) + exp(
1

ε
(A1(Y, ε, λ)))− exp(1

ε
(A2(Y, ε, λ))) = 0. (20)

Freddy Dumortier (Hasselt University) Relaxation oscillations in slow-fast systems Salou, 5.10.2012 44 / 58



Hopf breaking mechanism

By a smooth equivalence the family of equations can locally be written as{
ẋ = y −

(
x2 +

∑n
i=3 ai(λ)xi + xn+1k(x, λ)

)
ẏ = −ε(b(λ) + x+ yc(x, y, ε, λ)).

(21)

It is part of the universal unfolding{
ẋ = y −

(
x2 +

∑n
i=3 aix

i + xn+1k(x, λ)
)

ẏ = −ε(b+ x+ yc(x, y, ε, λ)).
(22)

The interesting parameter region is given by

(ε, b) = (τ2, τB),

with τ ≥ 0.
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D

B = 0

D

B < 0

D

B > 0

Blown-up pictures in Hopf breaking mechanism.
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F

T

s2

s3

y

R

B

Three-dimensional picture of mappings F and B.
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Transitory canard in Hopf breaking mechanism

p

q

x

y

y

x1 x2 x3

JI

K
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sss

J0(λ) > I0(λ) J0(λ) < I0(λ)J0(λ) = I0(λ)
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C

y

x

Blown up picture of a jump point.
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Transitory canard in jump breaking mechanism

−1 0 1 scanards without head canards with head

Γ0
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y

x1 x2

I

K

p1

q
x

y

p3

p2

J (1) J (2)
x3

J = J (1) + J (2)
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sss

J0(λ) > I0(λ) J0(λ) < I0(λ)J0(λ) = I0(λ)
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Birth of canard cycles in Hopf breaking mechanism

(B = 0)

Cs- s+

g

Xn

D

(G = g È C)

Freddy Dumortier (Hasselt University) Relaxation oscillations in slow-fast systems Salou, 5.10.2012 54 / 58



Along the blow-up locus limit cycles are only possible for B = 0, hence
near {

˙̄x = ȳ − x̄2

˙̄y = −x̄,
(23)

This vector field represents a time-reversible center, having

H(x̄, ȳ) = e−2ȳ(ȳ − x̄2 +
1

2
)

as first integral and −2e−2ȳ as integrating factor. The only singularity of
(23) is situated at (0, 0) with H(0, 0) = 1

2 . The system has an invariant
parabola given by

γ = {ȳ = x̄2 − 1

2
},

where H ≡ 0; there is a unique nest of invariant ovals γh with h ∈]0, 1
2 [.
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The limit cycles will be found near (x̄, ȳ) = (0, 0), near some γh with
h ∈]0, 1

2 [, or they will come close to γ.

The study near the Hopf point situated at (x̄, ȳ) = (0, 0) is easy.

Finding precise upper bounds on the number of limit cycles near ovals γh,
with h restricted to a compact interval in ]0, 1

2 [, relies on the study of the
integrals

J2j+1(h) = 2

∫
γh

e−2ȳx̄2j+1dȳ, j = 0, 1, 2, . . . ,

with γh oriented counter-clockwise.
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To get precise upper bounds on the number of limit cycles near a slow-fast
Hopf point it is better not to work with {J2j+1(h)} itself, but with the
derivatives

d

dh
(J2j+1)(h) = (2j + 1)J̄2j+1 where J̄2j+1 =

∫
γh

x̄2j−1dȳ. (24)

SCS-Conjecture For each q ≥ 0, the functions J̄2j+1 j = 0, 1, 2, . . . , q
form a strict Chebyshev system on intervals [h0,

1
2 ] for each

h0, 0 < h0 <
1
2 .
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Theorem 5

Jaume Llibre did a great job till now.

Proof:
See MathSciNet (among other things).

Conjecture:
He will continue doing so.

Thankyou!
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