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Notations

Consider my,...,m, > 0in S* c R* for positive Gaussian
curvature and H? ¢ M>! (Minkowski space) for negative
Gaussian curvature, where

S? = {(w,:z:,y,z)|w2 +22+y?+ 22 = 1},

H? = {(w, 2,9y, 2)|[w? + 2* + y* — 2> = -1, 2 > 0},
with positions given by q, = (w;, zs, yi, 2:), i = 1, n.
q=(q,...,q,) configuration of the system
Va; = (0w, 0z;,0y:,00,),V := (Vq,, ..., Vq,) the gradient

+1 in §° ) .
o= . the signum function
—1 in H?
a = (CLw, Qg y Oy CLZ), b := (bw; bzy byv bz)a
a-b = (ayby, + azb, + a,b, + oa.b,) the inner product
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Equations of motion

In general:

n

3 m;lq; — o(q; - q;)qi]

[0 —o(q; - q;)%]3/? —o(q; - ai)ai,

q; =
=l

q-qi=0, q;-q; =0, izla_n

S-S mldy — (G )G g,

[ T
e = (e )

q-q=1 9 -94=0 i=1n

. " miq + (qi-q o
W as 3 BT - a.
j=1,#i i 9
q-gq=-1 q-q=0 i=1n
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Hamiltonian form and energy integral

p:=(P1,..-,Pn), Pi:=m;q;, i=1,n, momenta

T(q,p) = 5 > iy m; " (pi - pi)(0q; - q;) kinetic energy

H(q,p) =T(q,p) — U(q) Hamiltonian function

q; = szH(q7 ) = m_lpia
—Vq.H(q,p) = Vg, U(q) — om;(pi - pi)a,
q9i'q9i=0, qi'p;i=0, i=1,n
H(q,p) = h energy integral

— there are no first integrals of the centre of mass and the linear
momentum
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Integrals of the total angular momentum

n
Z miq; A\ q; = ¢,
i=1
C = Cyr€w/\€zt+Cuy€yNey+Cy €y A€y +CryerNey+Cr€xNe+Cy ey Ny,
e, = (1,0,0,0), e, = (0,1,0,0), e, = (0,0,1,0), e, = (0,0,0,1),
Cwz, Cwy7 Cuwzs Cmy; Caz, Cyz € ]R

On components, there are 6 integrals:
n n
Z mi (Wi — Wik;) = Cus,s Z mi(Wi%i — Wilhi) = Cuy,
i=1 i=1
n n
Z mi(Wizi — Wizi) = Cusz, Z mi(Tii — TiYi) = Cay,
i=1 i=1
n n
Z mi(TiZi — £i2i) = Ca,s Z’mi(yié’i — Ui%i) = ¢y
i=1

=1
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Isometries in S*

The isometries of S* are given by the Lie group SO(4):

cos) —sinf 0 0
sinf  cos6 0 0
e 0 0 cos¢p —sing 0, ¢ € [0, 2m).
0 0 sing coso
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Isometries in H?

The isometries of H? are given by the Lorentz group of M?:!:

cosf —sind 0 0
sinf cosd 0 0
b= 0 0  cosh¢ sinh¢ ,0 €[0,27),¢ € R,
0 0 sinh ¢ cosh ¢
0 0 0
1 —£ ¢

e 1-g2 gp |tER

§ —&/2 1+8)2

o O O
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Positive elliptic RP orbits

A solution of the equations of motion in S* is called a positive
elliptic rotopulsating orbit if it is of the form

q-= ((ha(l% cee >qn)7 q; = (wiaxiayiazi)a 1= L_n7
w; = 13(t) cos[a(t) + a3, z; = ri(t) sin[a(t) + a3, y; = yi(t), 2z = z(¢),

where a;, i = 1, n, are constants, « is not a constant function,
i, Yi, and z; satisfy the conditions

0<r,<1; —=1<y,zn<1; rf+y’+z=1 i=1n,

and ¢,, = 0. If » is constant and «(t) = at, with @ a nonzero
constant, then the solution is called a positive elliptic relative
equilibrium.
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Criterion for positive elliptic RP orbits

A solution candidate of the above form is a positive elliptic RP
orbitif and only if ¢,. = 0,& = (1 where cis a

J i, ity y )
constant, and the variables y;, z;, i = 1,n, satlsfy the system of
2n second-order differential equations

my; (Y5 —qijys)
Z] IM_GZ,:%

2 (1—a})3/?
Z;#; % Giz,
where
G . Ui + & — (it — 2i)? i Al —yi — 2]
1 L-yp =2 [z;ﬂmju—y?—zm”

=1,n,and, forany i, j € {1,2,...,n}, g; is given by

Gij = Qi @ = (1= 97 — 2))2(1—y] — 27)? cos(a; — a;) + iy + 7.
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Examples

Positive elliptic Lagrangian RP orbits
mp =mo =mgz =:m > 0, r2+p2:1
q-= (Q1aQ2,QB)7 q; = (wiaxiayiazi)v 1= 172733

wy = r(t)cosa(t), r1 = r(t)sina(t), y1 = y(t), 21 = 2(t),

wy = r(t) cos {a(t) + 2”} xo = r(t)sin {a(t) + Qﬂ Jy2 = y(t), 22 = 2(t),

ws = r(t) cos [a@) + 4”}, 3 = r(t) sin [a(t) + Aﬂ Ly = y(t), 23 = 2(t).

The study of these orbits reduces to the system

z=0
{ 2m(5—95%2%) _ ﬁ}z
V3(1-622)3 (143622)3  3m]7

where § > 1 is a constant and h is the energy constant. So for admissible
initial conditions, existence and uniqueness of analytic solutions is assured.
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Positive elliptic-elliptic RP orbits

A solution of the equations of motion in S? is called a positive
elliptic-elliptic rotopulsating orbit if it is of the form

q-= (q17 qQ2; - - - aqn)’ q; = (wia xi, Yi, Zi)v 1= L_na

w; = 13(t) cos[a(t) + a;], x; = ri(t) sin[a(t) + a4,

yi = pi(t) cos[B(t) + bs], 2 = ps(t) sin[B(t) + by,
where a;, b;, i = 1,n, are constants, « and 3 are not constant
functions, and r; and p; satisfy the conditions

0<r,p;<1and r’+pi=1,i=1n.

When r and p are constant and a(t) = at, 3(t) = t, with @, 3
nonzero constants, then the solution is called a positive
elliptic-elliptic relative equilibrium.
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Criterion for positive elliptic-elliptic RP orbits

If M =37, m;, asolution candidate of the above form is a
rotopulsating positive elliptic-elliptic orbit if and only if

3 C1 5 C2
. > i mar}’ = M =37 mard

3

with ¢1, c; constants, and the variables r1,rs, ..., r, satisfy the n
second-order differential equations

2 2 2
Tz = 7’1(1 - ,’,.22) mn a ) - Cn2 2 - ik 2
Qi mard)? (M =0 mur?)? I
n 1 1
N Z m;[r;(1 —r?) cos(a; — a;) — ry(1 —77)2(1 — 75)2 cos(b; — b))
3 )
=i (1 - 612]')2

i

JF
where, forany i, j € {1,2,...,n} with i # j, we denoted

€ij '= Qi - q; = r;1; cos(a; — a;) + (1 — 7‘?)%(1 — 7“]2-)% cos(b; — b;).
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Examples

Positive elliptic-elliptic Lagrangian RP orbits

mi1 = Mmo = M3 =M,
q= (qlaq2aq3)7 qQ; = (wiaxiayiazi)a 1=1,2,3,
wy =r(t)cosa(t), z1(t) = r(t)sina(t), y1 = p(t) cos B(t), 21(t) = p(t) sin B(t),

= r(t) cos[a(t) + 2m/3], m2(t) = r(t)sinfa(t) + 27/3],

= p(t) cos[B(t) + 27/3], 22(t) = p(t) sin[B(t) + 2m/3],

= r(t) cosla(t) + 4m /3], x5(t) = r(t) sin[a(t) + 47/3],

ys = p(t) cos[B(t) + 47 /3], z3(t) = p(t) sin[B(t) + 47/3],

with o and 3 nonconstant functions and 2 4 p? = 1.
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It follows that

with ¢; = ¢, @nd ¢, = ¢, both nonzero, and the equations of
motion reduce to the system

P = U
U= c2(1-r?) _ r(9m2u+c3)
T 9m?r3 9m2(1—r2) °

For each admissible initial conditions, this system yields a
unique analytic solution.

Remarkable fact: These orbits maintain the same size, but they
cannot be generated by the action of any single element of the
Lie group SO(4).
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Negative elliptic RP orbits

A solution of the equations of motion in H? is called a negative
elliptic rotopulsating orbit if it is of the form

q-= (q17q27 cee >qn)7 q; = (wivxiayiazi)a 1= L_n7
w; = 13(t) cos[a(t) + a3, z; = ri(t) sin[a(t) + a3, y; = yi(t), 2z = z(¢),

where a;, i = 1, n, are constants, « is not a constant function,
i, Yi, and z; satisfy the conditions

z>1 and ri+yl—22=-1, i=1n,

and ¢,, = 0. If » is constant and «(t) = at, with @ a nonzero
constant, then the solution is called a negative elliptic relative
equilibrium.
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Criterion for negative elliptic RP orbits

A solution candidate as above is a positive elliptic rotopulsating orbit for the

equations of motion if and only if
b

d = ) )
Z?:l mj(zjz‘ - ?JJQ —-1)

where b is a constant, and the variables y;, z;, i = 1, n, satisfy the system of
2n second-order differential equations

Lo my (Yt yi)

Yi = Z.{;{ (JM2{_1)3]/2 + Fyy;
g#L i

. n mj(zj+pijzi)

= 21:1 W + F;z;,
5

where
7o (Wi = 2090)” + 2 — 4] b2(2f —y? — 1)
2Z—y2-1 > my(27 —y3 —1)]%

i=1,n,and, foranyi,j € {1,2,...,n}, u;; is given by

1 1
pij = - g5 = (27 — 47 = 1)% (27 — 47 — 1)% cos(a; — ;) + yiy; — 22
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Examples

Negative elliptic Lagrangian RP orbits

my =mog =msz=:m >0, r2+y2—22:—1
qa=(q1,92,93), 9 = (i, Ti, yi, z:), 1 =1,2,3,
wy = r(t)cosa(t), v1 =r(t)sinalt), y1 = y(t), z1 = 2(t),
wy = r(t) cos [oc(t)—l—%r} , g = r(t)sin [a(t)—l—zg} Yo = Y(t), 20 = 2(t)
w3 = r(t) cos [a(t)—l—%r} , 3 = r(t) sin [a(t)—i—l%q Y3 = y(t), 23 = 2(t)
The equations of motion reduce to the system
z=u

. [on 2m(5—9¢22%)
U= 3, — 1 s )
V3(e22—1)2 (3e22+1) 2

with 0 < € < 1 constant, so existence and uniqueness follows.
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Negative hyperbolic RP orbits

A solution of the equations of motion in H? is called a negative
hyperbolic rotopulsating orbit if it is of the form

q= (Q1,Q2, e >Qn)7 q; = (wiaxiayhzi)a 1= 1,_7%
w; = wy(t), = = (1),

y; = ni(t) sinh[B(t) + b5], 2 = n:(t) cosh[B(t) + by,

where b;, i = 1,n, are constants, /3 is not a constant function,
wy, T;, 2, and n; satisfy the conditions

z>1 and w?>+zl—n'=-1, i=1n,

and c,,, = 0. If 5 is constant and 3(t) = St, with & a nonzero
constant, then the solution is called a negative hyperbolic
relative equilibrium.
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Criterion for negative hyperbolic RP orbits

A solution candidate as above is a negative hyperbolic rotopulsating orbit for
the equations of motion if and only if

8=

a

Z;‘lzl mJ(U)JQ + x? SR

where « is a constant, and the variables w;, z;, i = 1, n, satisfy the system of
2n second-order differential equations
i Z%é m%ﬁ?i?!—/?) + Hiw;

. n mv(ac.,-+1/- i)
&y =Y 5o e + Hiwi,
ij

J#i
where
H = (wit; — ?wz)z +? + 22 naQ(wi2 +22+1)
wi + a7+ 1 [Zj:l mj(w?—'_x? + 1)’

i=1,n,and, foranyi,j € {1,2,...,n}, v; is given by
vij = q; D gy = wyw; + ziz; — (Wi + 2?7 + 1)%(10]2- + z? + 1)% cosh(b; — b;).
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Examples

Negative hyperbolic Eulerian RP orbits

m=mg=mg=m>0, w+2>—n*=-1

q=(a1,92,93), 9= (0,75, 2), i=1,2,3,
w; =0, x; =0, y; =sinh3(¢), z; = cosh((t),
wy = w(t), x; ==x(t), y1 =mn(t)sinhF(t), 2z =n(t)coshp(t),
wy = —w(t), x1=—x(t), y1 =n(t)sinhB(t), z =n(t)cosh[(t),
The equations of motion reduce to the system

T=r
Do B _miCe o2 mce?)F(e?=3) a’ T
T= 1 7 e lace-ni (ca?-1)% 2m? (22 +3)? |

with ¢ > 1 constant, so existence and uniqueness follows.
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Negative elliptic-hyperbolic RP orbits

A solution of the equations of motion in H? is called a negative
elliptic-hyperbolic rotopulsating orbit if it is of the form

a=(qu, 92, ..., qy), &= (Wi, i, y;, 2), i=1n,
w; = 14(t) cos[a(t) + a;], x; = ri(t) sin[a(t) + a4,
y; = n;(t) sinh[B(t) + b;], 2; = m:(t) cosh[B(t) + by,

where a;,b;, i = 1,n, are constants, « and ( are not constant
functions, whereas r;, n;, and z; satisfy the conditions

z>1 and r2—n?=-1, i=1n.

When r and 7, are constant and «(t) = at, 3(t) = §t, with &, 3
nonzero constants, then the solution is called a negative
elliptic-hyperbolic relative equilibrium.
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Criterion for negative elliptic-hyperbolic RP orbits

A solution candidate as above is a negative elliptic-hyperbolic
rotopulsating orbit for the equations of motion if and only if

: dy E do
o= ———— =
D iy Ty M+ 37 mrg

with d;, d, constants, and the variables r;, i = 1, n, satisfy the n
second-order differential equations

i = ri(1+ 1) % — & + ik
UL mard)? (M 30 mard)? 1+r7
N Xn: m;[r;(1 + r2) cos(a; — a;) — ry(1+r2)2(1 + TJZ-)% cosh(b; — b;)]
j=1 (612] - 1>% ’
i

where, forany i, j € {1,2,...,n} with i # j, we denoted
dij == q; 0 q; = mrjcos(a; —aj) — (1+ 7"12)%(1 + 7’]2.)% cosh(b; — b;).
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Examples

Negative elliptic-hyperbolic Eulerian RP orbits

my=my=mgz:=m>0, r*—n’=-1,
a=(q1,92,93), 9= (wi,Zi,¥s,2), i=1,2,3,
w1 =0, 1 =0, y; =sinh (), z1(t) = cosh B(t),
wg = 1(t) cos a(t), xo = r(t)sina(t), y2 = n(t)sinh 5(t), z2(t) = n(t) cosh B(t),
wg = —r(t) cosa(t), g = —r(t)sina(t), y3 = n(t) sinh 5(¢), z3 = n(t) cosh 5(¢),

The equations of motion reduce to the system

p = 7’(1 +T2) [4m2r4 - m2(3+2r2)2] + 1+7r2 4r2(14r2)1/2>

r=p
d% dg rp2 m(5+4r2)

which leads to the desired existence and uniqueness results for admissible
initial conditions.
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Moltes gracies!
Muchas gracias!
Merci beaucoup!

Thank you very much!
Vielen Dank!
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