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Notations
Consider m1, . . . ,mn > 0 in S3 ⊂ R4 for positive Gaussian
curvature and H3 ⊂M3,1 (Minkowski space) for negative
Gaussian curvature, where

S3 = {(w, x, y, z)|w2 + x2 + y2 + z2 = 1},

H3 = {(w, x, y, z)|w2 + x2 + y2 − z2 = −1, z > 0},

with positions given by qi = (wi, xi, yi, zi), i = 1, n.

q = (q1, . . . ,qn) configuration of the system
∇qi

:= (∂wi
, ∂xi

, ∂yi
, σ∂zi

),∇ := (∇q1 , . . . ,∇qn) the gradient

σ =

{
+1 in S3

−1 in H3
the signum function

a := (aw, ax, ay, az),b := (bw, bx, by, bz),

a · b := (awbw + axbx + ayby + σazbz) the inner product
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Equations of motion
In general:

q̈i =
n∑

j=1,j 6=i

mj[qj − σ(qi · qj)qi]
[σ − σ(qi · qj)2]3/2

− σ(q̇i · q̇i)qi,

qi · qi = σ, qi · q̇i = 0, i = 1, n

S3 : q̈i =
n∑

j=1,j 6=i

mj[qj − (qi · qj)qi]
[1− (qi · qj)2]3/2

− (q̇i · q̇i)qi,

qi · qi = 1, qi · q̇i = 0, i = 1, n

H3 : q̈i =
n∑

j=1,j 6=i

mj[qj + (qi · qj)qi]
[(qi · qj)2 − 1]3/2

+ (q̇i · q̇i)qi,

qi · qi = −1, qi · q̇i = 0, i = 1, n
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Hamiltonian form and energy integral

p := (p1, . . . ,pn), pi := miq̇i, i = 1, n, momenta

T (q,p) = 1
2

∑n
i=1m

−1
i (pi · pi)(σqi · qi) kinetic energy

H(q,p) = T (q,p)− U(q) Hamiltonian function
q̇i = ∇pi

H(q,p) = m−1
i pi,

ṗi = −∇qi
H(q,p) = ∇qi

U(q)− σm−1
i (pi · pi)qi,

qi · qi = σ, qi · pi = 0, i = 1, n

H(q,p) = h energy integral

– there are no first integrals of the centre of mass and the linear
momentum
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Integrals of the total angular momentum

n∑
i=1

miqi ∧ q̇i = c,

c = cwxew∧ex+cwyew∧ey+cwzew∧ez+cxyex∧ey+cxzex∧ez+cyzey∧ez,

ew = (1, 0, 0, 0), ex = (0, 1, 0, 0), ey = (0, 0, 1, 0), ez = (0, 0, 0, 1),

cwx, cwy, cwz, cxy, cxz, cyz ∈ R.
On components, there are 6 integrals:

n∑
i=1

mi(wiẋi − ẇixi) = cwx,
n∑
i=1

mi(wiẏi − ẇiyi) = cwy,

n∑
i=1

mi(wiżi − ẇizi) = cwz,
n∑
i=1

mi(xiẏi − ẋiyi) = cxy,

n∑
i=1

mi(xiżi − ẋizi) = cxz,
n∑
i=1

mi(yiżi − ẏizi) = cyz
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Isometries in S3

The isometries of S3 are given by the Lie group SO(4):

A =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cosφ − sinφ
0 0 sinφ cosφ

 , θ, φ ∈ [0, 2π).
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Isometries in H3

The isometries of H3 are given by the Lorentz group of M3,1:

B =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 coshφ sinhφ
0 0 sinhφ coshφ

 , θ ∈ [0, 2π), φ ∈ R,

C =


1 0 0 0
0 1 −ξ ξ
0 ξ 1− ξ2/2 ξ2/2
0 ξ −ξ2/2 1 + ξ2/2

 , ξ ∈ R.
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Positive elliptic RP orbits

A solution of the equations of motion in S3 is called a positive
elliptic rotopulsating orbit if it is of the form

q = (q1,q2, . . . ,qn), qi = (wi, xi, yi, zi), i = 1, n,

wi = ri(t) cos[α(t) + ai], xi = ri(t) sin[α(t) + ai], yi = yi(t), zi = zi(t),

where ai, i = 1, n, are constants, α is not a constant function,
ri, yi, and zi satisfy the conditions

0 ≤ ri ≤ 1; −1 ≤ yi, zi ≤ 1; r2
i + y2

i + z2
i = 1, i = 1, n,

and cyz = 0. If r is constant and α(t) = ᾱt, with ᾱ a nonzero
constant, then the solution is called a positive elliptic relative
equilibrium.
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Criterion for positive elliptic RP orbits
A solution candidate of the above form is a positive elliptic RP
orbit if and only if cyz = 0, α̇ = cPn

j=1mj(1−y2j−z2j )
, where c is a

constant, and the variables yi, zi, i = 1, n, satisfy the system of
2n second-order differential equationsÿi =

∑n
j=1

j 6=i

mj(yj−qijyi)

(1−q2ij)3/2 −Giyi

z̈i =
∑n

j=1

j 6=i

mj(zj−qijzi)

(1−q2ij)3/2 −Gizi,

where

Gi :=
ẏ2
i + ż2

i − (yiżi − ziẏi)2

1− y2
i − z2

i

+
c2(1− y2

i − z2
i )[∑n

j=1mj(1− y2
j − z2

j )
]2 ,

i = 1, n, and, for any i, j ∈ {1, 2, . . . , n}, qij is given by

qij := qi ·qj = (1− y2
i − z2

i )
1
2 (1− y2

j − z2
j )

1
2 cos(ai−aj) + yiyj + zizj.
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Examples
Positive elliptic Lagrangian RP orbits

m1 = m2 = m3 =: m > 0, r2 + ρ2 = 1

q = (q1,q2,q3), qi = (wi, xi, yi, zi), i = 1, 2, 3,

w1 = r(t) cosα(t), x1 = r(t) sinα(t), y1 = y(t), z1 = z(t),

w2 = r(t) cos
[
α(t) +

2π
3

]
, x2 = r(t) sin

[
α(t) +

2π
3

]
, y2 = y(t), z2 = z(t),

w3 = r(t) cos
[
α(t) +

4π
3

]
, x3 = r(t) sin

[
α(t) +

4π
3

]
, y3 = y(t), z3 = z(t).

The study of these orbits reduces to the systemż = v

v̇ =
[

2m(5−9δ2z4)
√

3(1−δz2)
1
2 (1+3δz2)

3
2
− 2h

3m

]
z,

where δ ≥ 1 is a constant and h is the energy constant. So for admissible
initial conditions, existence and uniqueness of analytic solutions is assured.
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Positive elliptic-elliptic RP orbits

A solution of the equations of motion in S3 is called a positive
elliptic-elliptic rotopulsating orbit if it is of the form

q = (q1,q2, . . . ,qn), qi = (wi, xi, yi, zi), i = 1, n,

wi = ri(t) cos[α(t) + ai], xi = ri(t) sin[α(t) + ai],

yi = ρi(t) cos[β(t) + bi], zi = ρi(t) sin[β(t) + bi],

where ai, bi, i = 1, n, are constants, α and β are not constant
functions, and ri and ρi satisfy the conditions

0 ≤ ri, ρi ≤ 1 and r2
i + ρ2

i = 1, i = 1, n.

When r and ρ are constant and α(t) = ᾱt, β(t) = β̄t, with ᾱ, β̄
nonzero constants, then the solution is called a positive
elliptic-elliptic relative equilibrium.
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Criterion for positive elliptic-elliptic RP orbits
If M =

∑n
i=1mi, asolution candidate of the above form is a

rotopulsating positive elliptic-elliptic orbit if and only if

α̇ =
c1∑n

i=1mir2
i

, β̇ =
c2

M −
∑n

i=1mir2
i

,

with c1, c2 constants, and the variables r1, r2, . . . , rn satisfy the n
second-order differential equations

r̈i = ri(1− r2
i )

[
c21

(
∑n

i=1mir2
i )

2
− c22

(M −
∑n

i=1mir2
i )

2

]
− riṙ

2
i

1− r2
i

+
n∑

j=1

j 6=i

mj[rj(1− r2
i ) cos(ai − aj)− ri(1− r2

i )
1
2 (1− r2

j )
1
2 cos(bi − bj)]

(1− ε2ij)
3
2

,

where, for any i, j ∈ {1, 2, . . . , n} with i 6= j, we denoted

εij := qi · qj = rirj cos(ai − aj) + (1− r2
i )

1
2 (1− r2

j )
1
2 cos(bi − bj).
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Examples

Positive elliptic-elliptic Lagrangian RP orbits

m1 = m2 = m3 =: m,

q = (q1,q2,q3), qi = (wi, xi, yi, zi), i = 1, 2, 3,

w1 = r(t) cosα(t), x1(t) = r(t) sinα(t), y1 = ρ(t) cosβ(t), z1(t) = ρ(t) sinβ(t),

w2 = r(t) cos[α(t) + 2π/3], x2(t) = r(t) sin[α(t) + 2π/3],

y2 = ρ(t) cos[β(t) + 2π/3], z2(t) = ρ(t) sin[β(t) + 2π/3],

w3 = r(t) cos[α(t) + 4π/3], x3(t) = r(t) sin[α(t) + 4π/3],

y3 = ρ(t) cos[β(t) + 4π/3], z3(t) = ρ(t) sin[β(t) + 4π/3],

with α and β nonconstant functions and r2 + ρ2 = 1.
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It follows that
α̇ =

c1
3mr2

, β̇ =
c2

3m(1− r2)
,

with c1 = cwx and c2 = cyz, both nonzero, and the equations of
motion reduce to the system{

ṙ = u,

u̇ =
c21(1−r2)

9m2r3
− r(9m2u2+c22)

9m2(1−r2)
.

For each admissible initial conditions, this system yields a
unique analytic solution.

Remarkable fact: These orbits maintain the same size, but they
cannot be generated by the action of any single element of the
Lie group SO(4).
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Negative elliptic RP orbits

A solution of the equations of motion in H3 is called a negative
elliptic rotopulsating orbit if it is of the form

q = (q1,q2, . . . ,qn), qi = (wi, xi, yi, zi), i = 1, n,

wi = ri(t) cos[α(t) + ai], xi = ri(t) sin[α(t) + ai], yi = yi(t), zi = zi(t),

where ai, i = 1, n, are constants, α is not a constant function,
ri, yi, and zi satisfy the conditions

zi ≥ 1 and r2
i + y2

i − z2
i = −1, i = 1, n,

and cyz = 0. If r is constant and α(t) = ᾱt, with ᾱ a nonzero
constant, then the solution is called a negative elliptic relative
equilibrium.
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Criterion for negative elliptic RP orbits
A solution candidate as above is a positive elliptic rotopulsating orbit for the
equations of motion if and only if

α̇ =
b∑n

j=1mj(z2
j − y2

j − 1)
,

where b is a constant, and the variables yi, zi, i = 1, n, satisfy the system of
2n second-order differential equationsÿi =

∑n
j=1
j 6=i

mj(yj+µijyi)

(µ2
ij−1)3/2 + Fiyi

z̈i =
∑n

j=1
j 6=i

mj(zj+µijzi)

(µ2
ij−1)3/2 + Fizi,

where

Fi :=
[(yiżi − ziẏi)2 + ż2

i − ẏ2
i ]

z2
i − y2

i − 1
+

b2(z2
i − y2

i − 1)
[
∑n
j=1mj(z2

j − y2
j − 1)]2

,

i = 1, n, and, for any i, j ∈ {1, 2, . . . , n}, µij is given by

µij := qi · qj = (z2
i − y2

i − 1)
1
2 (z2

j − y2
j − 1)

1
2 cos(ai − aj) + yiyj − zizj .
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Examples
Negative elliptic Lagrangian RP orbits

m1 = m2 = m3 =: m > 0, r2 + y2 − z2 = −1

q = (q1,q2,q3), qi = (wi, xi, yi, zi), i = 1, 2, 3,

w1 = r(t) cosα(t), x1 = r(t) sinα(t), y1 = y(t), z1 = z(t),

w2 = r(t) cos
[
α(t)+

2π

3

]
, x2 = r(t) sin

[
α(t)+

2π

3

]
, y2 = y(t), z2 = z(t),

w3 = r(t) cos
[
α(t)+

4π

3

]
, x3 = r(t) sin

[
α(t)+

4π

3

]
, y3 = y(t), z3 = z(t).

The equations of motion reduce to the systemż = u

u̇ =
[

2h
3m
− 2m(5−9ε2z4)
√

3(εz2−1)
1
2 (3εz2+1)

3
2

]
z,

with 0 < ε ≤ 1 constant, so existence and uniqueness follows.
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Negative hyperbolic RP orbits

A solution of the equations of motion in H3 is called a negative
hyperbolic rotopulsating orbit if it is of the form

q = (q1,q2, . . . ,qn), qi = (wi, xi, yi, zi), i = 1, n,

wi = wi(t), xi = xi(t),

yi = ηi(t) sinh[β(t) + bi], zi = ηi(t) cosh[β(t) + bi],

where bi, i = 1, n, are constants, β is not a constant function,
wi, xi, zi, and ηi satisfy the conditions

zi ≥ 1 and w2
i + x2

i − η2
i = −1, i = 1, n,

and cwx = 0. If η is constant and β(t) = β̄t, with ᾱ a nonzero
constant, then the solution is called a negative hyperbolic
relative equilibrium.
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Criterion for negative hyperbolic RP orbits
A solution candidate as above is a negative hyperbolic rotopulsating orbit for
the equations of motion if and only if

β̇ =
a∑n

j=1mj(w2
j + x2

j + 1)
,

where a is a constant, and the variables wi, xi, i = 1, n, satisfy the system of
2n second-order differential equationsẅi =

∑n
j=1
j 6=i

mj(wj+νijwi)

(ν2
ij−1)3/2 +Hiwi

ẍi =
∑n

j=1
j 6=i

mj(xj+νijxi)

(ν2
ij−1)3/2 +Hixi,

where

Hi :=
(wiẋi − xiẇi)2 + ẇ2

i + ẋ2
i

w2
i + x2

i + 1
+

a2(w2
i + x2

i + 1)
[
∑n
j=1mj(w2

j + x2
j + 1)]2

,

i = 1, n, and, for any i, j ∈ {1, 2, . . . , n}, νij is given by

νij := qi � qj = wiwj + xixj − (w2
i + x2

i + 1)
1
2 (w2

j + x2
j + 1)

1
2 cosh(bi − bj).
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Examples
Negative hyperbolic Eulerian RP orbits

m1 = m2 = m3 =: m > 0, w2 + x2 − η2 = −1

q = (q1,q2,q3), qi = (wi, xi, yi, zi), i = 1, 2, 3,

w1 = 0, x1 = 0, y1 = sinh β(t), z1 = cosh β(t),

w1 = w(t), x1 = x(t), y1 = η(t) sinh β(t), z1 = η(t) cosh β(t),

w1 = −w(t), x1 = −x(t), y1 = η(t) sinh β(t), z1 = η(t) cosh β(t),

The equations of motion reduce to the systemẋ = η

η̇ =

[
h
m

+ m[4ζ2x4−2ζx2+1]

(2ζx2+1)
1
2 (2ζx2−1)

3
2
− m(ζx2)

1
2 (2ζx2−3)

(ζx2−1)
3
2

− a2

2m2(2ζx2+3)2

]
x,

with ζ ≥ 1 constant, so existence and uniqueness follows.
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Negative elliptic-hyperbolic RP orbits

A solution of the equations of motion in H3 is called a negative
elliptic-hyperbolic rotopulsating orbit if it is of the form

q = (q1,q2, . . . ,qN), qi = (wi, xi, yi, zi), i = 1, n,

wi = ri(t) cos[α(t) + ai], xi = ri(t) sin[α(t) + ai],

yi = ηi(t) sinh[β(t) + bi], zi = ηi(t) cosh[β(t) + bi],

where ai, bi, i = 1, n, are constants, α and β are not constant
functions, whereas ri, ηi, and zi satisfy the conditions

zi ≥ 1 and r2
i − η2

i = −1, i = 1, n.

When r and η are constant and α(t) = ᾱt, β(t) = β̄t, with ᾱ, β̄
nonzero constants, then the solution is called a negative
elliptic-hyperbolic relative equilibrium.
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Criterion for negative elliptic-hyperbolic RP orbits

A solution candidate as above is a negative elliptic-hyperbolic
rotopulsating orbit for the equations of motion if and only if

α̇ =
d1∑n

i=1mir2
i

, β̇ =
d2

M +
∑n

i=1mir2
i

,

with d1, d2 constants, and the variables ri, i = 1, n, satisfy the n
second-order differential equations

r̈i = ri(1 + r2
i )

[
d2

1

(
∑n

i=1mir2
i )

2
− d2

2

(M +
∑n

i=1mir2
i )

2

]
+

riṙ
2
i

1 + r2
i

+
n∑

j=1

j 6=i

mj[rj(1 + r2
i ) cos(ai − aj)− ri(1 + r2

i )
1
2 (1 + r2

j )
1
2 cosh(bi − bj)]

(δ2
ij − 1)

3
2

,

where, for any i, j ∈ {1, 2, . . . , n} with i 6= j, we denoted

δij := qi � qj = rirj cos(ai − aj)− (1 + r2
i )

1
2 (1 + r2

j )
1
2 cosh(bi − bj).
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Examples

Negative elliptic-hyperbolic Eulerian RP orbits

m1 = m2 = m3 := m > 0, r2 − η2 = −1,

q = (q1,q2,q3), qi = (wi, xi, yi, zi), i = 1, 2, 3,

w1 = 0, x1 = 0, y1 = sinhβ(t), z1(t) = coshβ(t),

w2 = r(t) cosα(t), x2 = r(t) sinα(t), y2 = η(t) sinhβ(t), z2(t) = η(t) coshβ(t),

w3 = −r(t) cosα(t), x3 = −r(t) sinα(t), y3 = η(t) sinhβ(t), z3 = η(t) coshβ(t),

The equations of motion reduce to the system{
ṙ = ρ

ρ̇ = r(1 + r2)
[

d21
4m2r4 −

d22
m2(3+2r2)2

]
+ rρ2

1+r2 −
m(5+4r2)

4r2(1+r2)1/2 ,

which leads to the desired existence and uniqueness results for admissible
initial conditions.
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