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The (planar) elliptic restricted three body problem (ER3BP).

We consider the motion of a particle q with zero mass under the attraction
of two particles qS and qJ, called primaries, which move in elliptic orbits
with eccentricity e0 around their center of mass.

Typical models:

• Sun–Jupiter–asteroid or comet: e0 = 0.048

• Sun–Earth–Moon systems: e0 = 0.016

We consider the motion of the particle q (comet) when it moves outside of
the orbit of the primaries along nearly parabolic orbits.
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The equations

The motion of the particle q (comet) is described by

d2q

dt2
= −(1− µ)

q − qS(t, e0)
|q − qS(t, e0)|3

− µ q − qJ(t, e0)
|q − qJ(t, e0)|3

.

This is a time-periodic Hamiltonian system (2 and 1/2 degrees of
freedom) with Hamiltonian

H(q, p, t; e0, µ) =
p2

2
− (1− µ)
|q − qS(t, e0)|

− µ

|q − qJ(t, e0)|
.

Parameters: 0 < µ, e0 < 1 small.
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The two body problem: Sun-comet

When µ = 0, there is no Jupiter in the equation of motion and the Sun is
fixed at the origin: qS(t, e0) = 0

The Sun qS and the comet q form the two-body problem with the

Hamiltonian H(q, p, t; e0, 0) = H0(q, p) =
p2

2
− 1
|q|
.

The two–body problem is integrable.
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The ER3BP as a perturbation of the 2BP

We shall study the case of e0 > 0 and small µ > 0.

Hamiltonian Hµ(q, p, t, e0) is a small time-periodic perturbation of the
integrable two body problem (Sun-comet).

The perturbation term is

∆Hµ(q, p, t; e0) = H(q, p, t; e0, µ)−H0(q, p)

= (1− µ)
(

1
|q − qS(t, e0)|

− 1
|q|

)
+ µ

(
1

|q − qJ(t, e0)|
− 1
|q|

)
.

Since Jupiter qJ(t, e0) moves along an ellipse with semi-major axis
1− µ, in the case q being uniformly away from the unit ball both terms
are of order of µ and tend to zero as q →∞.
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Expression of the primaries in polar coordinates (r, α)

Sun
qS = qS(t, e0) = µ(r0 cos f, r0 sin f)

Jupiter:
qJ = qJ(t, e0) = −(1− µ)(r0 cos f, r0 sin f)

with

r0 = r0(t; e0) =
1− e20

1 + e0 cos f
,

df

dt
=

(1 + e0 cos f)2

(1− e20)3/2
,

where f = f(t; e0) is the true anomaly. Also

r0 = r0(t; e0) = 1− e0 cosE, t = E − e0 sinE,

where E is the eccentric anomaly.
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Hamiltonian equations in polar coordinates

Polar coordinates q = (x, y) = (r cosα, r sinα), α ∈ T, r ≥ 0.

Hamiltonian

H(r, α, Pr, Pα, t; e0, µ) =
P 2
r

2
+
P 2
α

2r2
− U(r, α, t; e0, µ)

where (r, Pr) and (α, Pα) are pairs of conjugate variables,

U(r, α, t; e0, µ) =
1− µ
|q − qS|

+
µ

|q − qJ|
,

|q − qJ|2 = r2 − 2(1− µ)r r0 cos(α− f) + (1− µ)2r20,

|q − qS|2 = r2 + 2µ r r0 cos(α− f) + µ2r20.

r0 = r0(t; e0) =
1− e20

1 + e0 cos f
,

df

dt
=

(1 + e0 cos f)2

(1− e20)3/2
.
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Hamiltonian equations in polar coordinates

Pα := G is the angular momentum.

H(r, α, Pr, G, t; e0, µ) =
P 2
r

2
+
G2

2r2
− U(r, α, t; e0, µ)
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The two body problem in polar coordinates

In the polar coordinates: q = (x, y) = (r cosα, r sinα), α ∈ T, r ≥ 0,
The Hamiltonian of the two body problem becomes

H0(r, Pr, α,G) =
P 2
r

2
+
G2

2r2
− 1
r
,

h = H0 is the energy.

G and H0 are both first integrals of motion.

If h < 0, motions are elliptic:

Semi-major axis: a = 1/(−2h), eccentricity e =
√

1 + 2hG2.

If h = 0 (which corresponds to e = 1) the motion is parabolic.
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Diffusion of the angular momentum

In general, Diffusion ≡ Gaining lots of energy by applying small forces.

In the elliptic restricted three body (ERTBP) problem we want to see that
the angular momentum of the comet G(t) can have large changes when
the eccentricity e0 > 0 and µ > 0 are small enough:

Given any G1, G2 � 1, there exist trajectories of the ERTBP whose
angular momentum satisfies, for some T > 0:

G(0) < G1 G(T ) > G2

Proven for 0 < µ� e0 � 1 and any 1� G1, G2 ≤ 1/e0.

Likely (need still some work) for any 0 < e0 < 1 and 0 < µ� 1.
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Previous results

For oscillatory motions or diffusion close to parabolic orbits:

Llibre-Simó 1980 (oscillatory motions in the CRTBP for 0 < µ� 1)

Guàrdia-Martı́n-Seara 2012 (idem for 0 < µ < 1)

Xia 1993 (local diffusion in the ERTBP)

Martı́nez-Pinyol 1994 (Massive computations in the ERTBP)

Other types of oscillatory motions or diffusion:

Llibre-Martı́nez-Simó 1985 (oscillatory motions close to L2 in the
CRTBP)

Bolotin 2006 (close to collision in the ERTBP)

Capiñski-Zgliczyñski 2011 (close to L2 in the ERTBP)

Féjoz-Guàrdia-Kaloshin-Roldán 2012 (close to resonances in the ERTBP)
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One limit: the two body problem: µ = 0

A priori unstable structure

Introducing x2 := 1/r, y := Pr, we get new Hamiltonian equations:

ẋ = −x
3

2
∂H0

∂y
α̇ =

∂H0

∂G

ẏ =
x3

2
∂H0

∂x
Ġ = −∂H0

∂α
= 0 ṡ = 1

with HamiltonianH0(x, y,G) =
y2

2
+
G2x4

8
− x2

2
, and Poisson bracket

{f, g} = −x
3

2

(
∂f

∂x

∂g

∂y
− ∂g

∂x

∂f

∂y

)
+
∂f

∂α

∂g

∂G
− ∂g

∂α

∂f

∂G

which has the separatrix loop γG = {H0(x, y,G) = 0} to the origin.
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One limit: the two body problem: µ = 0

A priori unstable structure: An invariant “normally parabolic” cylinder.

Main features we will use:

• The 3 dimensional manifold:

Λ̃∞ = {x = y = 0, (α,G, s) ∈ T× R+ × T}

is invariant.

• Λ̃∞ =
⋃
α,G Λ̃α,G

• The inner dynamics on Λ̃∞ is trivial:

(α,G, s)→ (α,G, s+ t)

• Λ̃∞ has stable and unstable manifolds.
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One limit: the two body problem: µ = 0

A priori unstable structure: An invariant homoclinic manifold to Λ̃∞.

γ̃ = W s
0 (Λ̃∞) = Wu

0 (Λ̃∞)

= {H0(x, y,G) = 0, (α,G, s) ∈ T× R+ × T}

that can be seen as a union of homoclinic orbits to Λ̃∞ (homoclinic
manifold).

γ̃ =
⋃

(α,G)

γ̃α,G

We can parameterize the 4-dimensional homoclinic manifold as:

γ̃ = {z̃0 := (xG(τ), yG(τ), αG(τ)+α,G, s), τ ∈ R, G ∈ R+, (α, s) ∈ T2}
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One limit: the two body problem: µ = 0

Outer dynamics: the scattering map (D-Llave-Seara 2000) in Λ̃∞. We can
define a map in Λ̃∞ associated to the homoclinic manifold γ̃

S0 : Λ̃∞ → Λ̃∞

by z̃+ = S0(z̃−) iff ∃z̃ ∈ γ̃ such that

d(ϕ(t; z̃), ϕ(t; z̃±))→ 0 as t→ ±∞.

The orbit through z̃ is a heteroclinic connection between the orbits
through z̃±.

Using the point of z̃ = z̃0 = (xG(τ), yG(τ), αG(τ) + α,G, s), one can
compute S0 in coordinates:

S0(α,G, s) = (α,G, s)
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One limit: the two body problem: µ = 0

Outer dynamics: the scattering map in Λ̃∞.

As S0 = Id,

The unperturbed periodic orbits Λ̃α,G only have homoclinic connections.

Main goal:

For µ > 0 we want to see that we can define a scattering map such that
the image of one periodic orbit intersects other periodic orbits with larger
angular momentum G. Then we will have heteroclinic orbits between
periodic orbits
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Arnold diffusion: e0 > 0, µ > 0

In variables (x, y), the Hamiltonian is:

H(x, y, α,G, s; e0, µ) =
y2

2
+
G2x4

2
− U(x, α,G, s; e0, µ)

with U(x, α,G, s; e0) = x2Ũ(x, α,G, s; e0, µ)

Implications:

• Λ̃∞ = {x = y = 0, (α,G, s) ∈ T× R+ × T} is still invariant.

• The periodic orbits Λ̃α,G persist.

• The inner dynamics on Λ̃∞ is trivial:

(α,G, s)→ (α,G, s+ t)
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Arnold diffusion: e0 > 0, µ > 0

For µ > 0, e0 > 0, the manifolds W s
µ(Λ̃∞) and Wu

µ (Λ̃∞) intersect
transversally along TWO homoclinic manifolds.

This result is based on a Melnikov type computation.

Melnikov potential:

L(α,G, s; e0) =
∫

R
∆U(xG(t), αG(t) + α, s+ t; e0) dt.

where U(x, α, s; e0, µ) = x2 + µ∆U(x, α, s; e0) +O(µ2)

Intersection property: If the function

τ 7→ L(α,G, s− τ ; e0)

has a non-degenerate critical point τ∗(α,G, s; e0), then there is a
transversal intersection between Wu(Λ̃∞) and W s(Λ̃∞) close to
z̃0 = (xG(τ), yG(τ), αG(τ) + α,G, s).
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Arnold diffusion: e0 > 0, µ > 0

For any fixed (α,G, e0), we just need to find a critical point s∗(α,G; e0)
of s 7→ L(α,G, s; e0), that is, a solution s∗(α,G; e0) of the equation

∂L
∂s

(α,G, s; e0) = 0

and we recover τ∗(α,G, s; e0) = s− s∗(α,G; e0)

Once we have τ∗(α,G, s; e0) we can consider the Poincaré reduced
function

L∗(α,G; e0) = L(α,G,−τ∗(α,G, 0; e0); e0) = L(α,G, s∗(α,G; e0); e0)

22



Arnold diffusion: e0 > 0, µ > 0

The scattering map S given by the homoclinic intersection associated to
the critical point s∗ is given as:

(α,G, s) 7→ (α− µ∂L
∗

∂G
+O(µ2), G+ µ

∂L∗

∂α
+O(µ2), s)

S is given, up to first order in µ, as the time −µ Hamiltonian flow of the
autonomous Hamiltonian L∗(α,G)!

Then, looking at the level curves of L∗(α,G) we get the images under the
scattering map.
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Arnold diffusion: e0 > 0, µ > 0

The inner dynamics in Λ̃∞ is trivial:

(α,G, s) 7→ (α,G, s+ t)

The classical geometric mechanism to obtain diffusion does not work:
there is no possibility of combining the inner and the outer dynamics to
obtain large changes of G.

The Poincaré map P (α,G, s) = (α,G, s), therefore S ◦ P = S

Only with one scattering map we cannot get large changes in G.

24



Arnold diffusion: e0 > 0, µ > 0

The function L(α,G, s; e0) has two non-degenerate critical points s∗+, s∗−
which give rise to two different perturbed scattering maps S+, S−.

The foliations of their level curves are transversal.

We can construct heteroclinic chains of periodic orbits with increasing
angular momentum choosing the right scattering map any time
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Computation of the Melnikov potential L for e0G� 1

Fourier expanding in the angle s (and α), we get

L(α,G, s; e0) = L0(α,G; e0) + L1(α,G, s; e0)

+ F (α,G; e0) + E(α,G, s; e0)

L0(α,G; e0) = − π

G3
− 15πe0

8G5
cosα,

L1(α,G, s; e0) =
√
π

8
e−G

3/3

G1/2
(cos(s− α) + p cos(s− 2α)) ,

where p = 10ee0G2, F is small: F = O
(
e20G

−7
)
, and E is exponentially

small: E = e−G
3/3O(G−3/2, e0G

1/2, e20G
5/2).

• L0 contains no harmonics in s and one first order harmonic in α.

• L0 contains two first order harmonics in s.

• e0G ≤ 1 needed for the convergence of the expansions.
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Computation of the term L1 for e0G� 1

s 7→ L1(α,G, s; e0) is indeed a cosine function:

L1(α,G, s; e0) =
√
π

8
e−G

3/3

G1/2

√
1 + 2p cosα+ p2 cos(s− α− α∗),

where α∗ = α ∗ (p, α) = 2 arctan p sinα
1+p cosα (p = 10ee0G2), with a

unique non-degenerate maximum (minimum) for s = α+ α∗

(s = α+ α∗ + π), where L1 takes the values

±L∗1(α,G; e0) = ±
√
π

8
e−G

3/3

G1/2

√
1 + 2p cosα+ p2.

Note that for e0 = 0, L∗1(α,G; 0) = ±
√

π
8
e−G3/3

G1/2 does not depend on α.

27



Computation of the reduced Poincaré functions L∗1

Since
∣∣∣∣∂E∂s

∣∣∣∣� ∣∣∣∣∂L1

∂s

∣∣∣∣, the function s 7→ L(α,G, s; e0) is a “cosine-like”

function, with unique non-degenerate maximum and minimum at s∗±. We
can define the Poincaré reduced functions

L∗±(α,G; e0) = L(α,G, s∗±; e0) = L0 ± L∗1 + F + E∗±

so that the associated scattering maps S± are given by

(α,G) 7→
(
α− µ

∂L∗±
∂G

+O(µ2), G+ µ
∂L∗±
∂α

+O(µ2)
)
.
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Functionally independent Scattering maps S±

The scattering maps S± are given by

(α,G) 7→
(
α− µ

∂L∗±
∂G

+O(µ2), G+ µ
∂L∗±
∂α

+O(µ2)
)
.

• S± are given, except for O(µ2), as the time µ Hamiltonian flow of
the autonomous Hamiltonians −L∗±(α,G).

• The iterates under S± follow the level curves of L∗±.

• Since {L∗+,L∗−} = −2{L0,L∗1}+ · · · only vanishes on α = 0, π, we
can choose alternatively S± to get diffusing pseudo-orbits and get
diffusion along 1� G ≤ 1/e0.
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Computation of the term L1 for general e0G

L1(α,G, s; e0) =
√
π

8
e−G

3/3

G1/2
×

×

(
cos(s− α) + 8eG

∞∑
m=1

amR
m cos (s− (m+ 1)α)

)

where am =
16
m!

(2m+ 3)!!
(2m+ 6)!!

, R = 2e0G, which can be also written as

L1(α,G, s; e0) =
√
π

8
e−G

3/3

G1/2
Re
{
ei(s−α)

(
1 + 8eGM

(
Re−iα

))}
where M(z) := M(5/2, 4, z) =

∑∞
m=1 amz

m = 1 + 5z/8 +O(z2) is
the confluent hypergeometric Kummer function, solution of the Kummer
equation zM ′′ + (4− z)M ′ − 5M/2 = 0.
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Computation of the Melnikov potential L for general e0G

L(α,G, s; e0) = L0(α,G; e0) + L1(α,G, s; e0)

+ F (α,G; e0) + E(α,G, s; e0)

L0(α,G; e0) = − π

G3
− 15πe0

8G5
cosα,

L1(α,G, s; e0) =
√
π

8
e−G

3/3

G1/2
Re
{
ei(s−α)

(
1 + 8eGM

(
Re−iα

))}
,

where F is small and E is exponentially small, which gives rise to two
different scattering maps:

• For e0G ≤ 1 coincides with the previous computations.

• For e0G� 1 can be computed as in Martı́nez-Pinyol 1994.

• For e0G 6≤ 1 and e0G 6� 1 requires a (numerical and validated)
computation.
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Arnold diffusion: e0 > 0, µ > 0

• For e0G ≤ 1 analytic proof.

• It remains to check the case e0G > 1 via analytical, numerical o
computer assisted methods.

• All the previous results need µ to be exponentially small with respect
to G� 1.

• A priori stable: Using the same techniques as in Guàrdia, Martı́n and
Seara 2012, prove diffusion for µ small, independent of G and
arbitrary 0 < e0 < 1.
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