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2Departament de Matemátiques, Universitat Autónoma de Barcelona, Barcelona, Catalonia, Spain.

Introduction

This poster correspond to the paper [2], where you can find the details.
In 1975 May and Leonard [1] studied the 3–dimensional Lotka–Volterra
differential system

ẋ = x(1− x− ay − bz),
ẏ = y(1− bx− y − az),
ż = z(1− ax− by − z),

(1)

in x ≥ 0, y ≥ 0, and z ≥ 0, describing the competition between three
species and depending on two parameters a > 0 and b > 0.
Let R+ = [0,∞). Assume that a + b > 2 and either a < 1 or b < 1.
The carrying simplex S is the boundary in R3

+ of the basin of repulsion

of the origin of the differential system (1). S is also the boundary in R3
+

of the basin of repulsion of the infinity. It is an invariant 2–dimensional
surface, homeomorphic to the standard unit simplex, whose boundary
contained in {x = 0} ∪ {y = 0} ∪ {z = 0} attracts all positive orbits
except the positive equilibrium point; this boundary was called by May
and Leonard a special class of attracting periodic limit cycle solution.
In fact it it an attractor heteroclinic cycle in modern language of the
qualitative theory of differential equations, detected for the first time
in a Lotka–Volterra system and becoming the May–Leonard model so
celebrated.

Our objective is to study the completely integrable systems inside the
May–Leonard model (1), and to describe its global dynamics in the
compactification of R3

+ in function of the parameters a and b.
If a + b = 2 and a 6= 1 (otherwise the dynamics is very easy) the
global dynamics was partially known, and roughly speaking there are
invariant topological half–cones by the flow of the system. These
half–cones have a vertex at the origin of coordinates and surround the
bisectrix x = y = z, and foliate the positive octant. The orbits of
each half–cone are attracted to a unique periodic orbit of the half–
cone, which lives on the plane x + y + z = 1.
If b = a 6= 1 then we consider two cases. First 0 < a < 1 then the
unique positive equilibrium point attracts all the orbits of the interior
of the positive octant. If a > 1 then there are three equilibria in
the boundary of positive octant, which attract almost all the orbits
of the interior of the octant, we describe completely their bassins of
attractions.

1. Main Results

The region of biological interest in the May–Leonard model is the first
octant of R3 which its closure in the Poincaré ball is identified with

R = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1, x ≥ 0, y ≥ 0 z ≥ 0}, (2)

and we shall describe the dynamics of the May–Leonard model in R.

Theorem 1. The May–Leonard differential system (1) in R is com-
pletely integrable if either a + b = 2, or b = a.

Theorem 2. The following statements hold for the May–Leonard
differential system restricted to R when a+ b = 2 and (a, b) 6= (1, 1).
All the figures quoted in this theorem correspond to the case 0 < a <
1, for the case 1 < a < 2 we must reverse the orientation of all the
orbits contained at infinity and at the invariant 2-dimensional simplex
p({x + y + z = 1}) ∩R.

(a) The phase portrait of the Poincaré compactification of system (1)
on the boundaries p(x = 0), p(y = 0) and p(z = 0) of R is
topologically equivalent to the one described in Fig. 1(a).

(b) The phase portrait of the Poincaré compactification of system (1)
on R∞ = ∂R∩{x2+y2+z2 = 1}, is topologically equivalent to the
one described in Fig. 1(b). More precisely, the boundary of R∞

is a heteroclinic cycle formed by three equilibrium points coming
from the ones located at the end of the three positive half–axes of
coordinates, and three orbits connecting these equilibria each one
coming from the orbit at the end of every plane of coordinates; in
the interior of R∞ we have a center (coming from the end of the
invariant bisectrix x = y = z), its periodic orbits filled completely
the interior of R∞.

(c) The plain x+ y+ z = 1 is invariant by the flow of system (1). The
phase portrait on the 2–dimensional simplex R ∩ p({x + y + z =
1}) is topologically equivalent to the one described in Fig. 1(c).
The boundary of this simplex is a heteroclinic cycle formed by the
equilibrium points p((1, 0, 0)), p((0, 1, 0)) and p((0, 0, 1)) located
at the vertices of the simplex, and three orbits connecting these
equilibria each one on every side of the simplex; in the interior of
the simplex we have a center at the equilibrium p((1/3, 1/3, 1/3)),
its periodic orbits filled completely the interior of the simplex.

(d) The algebraic surfaces xyx = h(x+ y + z)3 with h ∈ (0, 1/27] are
invariant by the flow of system (1), and R∩p(xyz = h(x+y+z)3)
homeomorphic to the half–cone Ch with vertex at the origin of
coordinates and ending at infinity in one of the periodic orbits of
the center at infinity drawn in Fig. 1(b) if h ∈ (0, 1/27), and if
h = 1/27 then it coincides with p(x = y = z). Every half–cone Ch
intersect the simplex R∩ p({x+ y+ z = 1}) in one of the periodic
orbits contained in the simplex. Moreover the orbits on Ch below
the simplex have their α–limit at the equilibrium point p((0, 0, 0))
and their ω–limit at the periodic orbit p({x+y+z = 1})∩Ch. The
orbits on Ch upper the simplex have their α–limit in the periodic
orbit at the infinity R∞ located at the end of the cone Ch and their
ω–limit in the periodic orbit p({x + y + z = 1}) ∩ Ch.

See Fig. 1(d). On the invariant line R ∩ p({x + y + z = 1}) the
equilibrium p(1/3, 1/3, 1/3) attracts the two orbits which has at
both sides.
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Fig. 1. The global dynamics on the octant R for a + b = 2 and
0 < a < 1.

Proposition 1. The following statements hold for the May–Leonard
differential system (1) when a = b = 1.

(a) All the straight lines through the origin are invariant.

(b) Let γ be an straight line through the origin of R3. Then the flow
on p(γ) ∩ R has three equilibria, two at its endpoints. The third
equilibrium is on the simplex R ∩ p({x + y + z = 1}). This last
equilibrium attracts the two orbits which has at both sides.

(c) The infinity R∞ of R and the simplex R∩ p({x+ y + z = 1}) are
filled of equilibria.

Theorem 3. The following statements hold for (1) when b = a 6= 1.

(a) The phase portrait of the Poincaré compactification p(X ) of system
(1) on the boundaries p(x = 0)∩R, p(y = 0)∩R and p(z = 0)∩R
of R is topologically equivalent to the one described in Fig. 2(a) if
0 < a < 1 and Fig. 3(a) if a > 1.

(b) The plains x = y, y = z and z = x are invariant by the flow
of system (1), and the phase portrait of p(X) on p(x = y) ∩ R,
p(y = z)∩R and p(z = x)∩R are topologically equivalent to the
ones described in (b.1), (b.2) and (b.3) of Fig. 2 if 0 < a < 1 and
Fig. 3 if a > 1.

(c) The phase portrait of p(X) on R∞, is topologically equivalent to
the one described in Fig. 2(c) if 0 < a < 1 and Fig. 3(c) if a > 1.

(d) The algebraic surfaces y(x − z) = hx(y − z) with h ∈ R are
invariant by the flow of system (1) and they are elliptic cones for
h 6= 0, 1. There are three kinds of topological cones B ∩ p(y(x −
z) = hx(y − z)) in the Poincaré ball. First the ones that are
restricted to R∩p(y(x− z) = hx(y− z)) contain the image in the
Poincaré ball of the half–axes y and z, the negative half–axis x, and
the positive part of the bisectrix x = y = z. The other two kinds
are obtained from the first kind permuting cyclically the letters x,
y and z.

The first kind of topological cones B ∩ p(y(x − z) = hx(y −
z)) restricted to R are topological sectors Sh with vertex at the
origin p(0, 0, 0), its two sides are the image in the R of the positive
half–axes y and z, all the sectors contain the image in R of the
positive part of the bisectrix x = y = z, and their boundary at
infinity. The other two kinds of topological cones also intersect to
R in topological sectors which can be described as in the first kind
permuting cyclically the letters x, y and z.

The flow on one of these sectors of the first kind Sh is topologically
equivalent to the one described in Fig. 2(d) if 0 < a < 1 and Fig.
3(d) if a > 1. Similar figures can be drawn for the sectors of the
other two kinds.

(e) If 0 < a < 1 then all orbits contained in the interior of R have their
ω–limit at P = p(1/(1 + 2a), 1/(1 + 2a), 1/(1 + 2a)).

Assume a > 1. If

C =
(
R ∩ p({x = y ≥ z})

)
∪(

R ∩ p({y = z ≥ x})
)
∪
(
R ∩ p({z = x ≥ y})

)
,

then all the orbits contained in the interior of R \ C have their
ω–limit in one of the following three attractor equilibria p(1, 0, 0),
p(0, 1, 0) and p(0, 0, 1). The three bassins of attraction of these
equilibria are separated by the set C.

(f) For 0 < a < 1 there exists an invariant topological hexagon S of
consecutive vertices the equilibria p(1, 0, 0), p(1/(1 + a), 0, 1/(1 +
a)), p(0, 0, 1), p(0, 1/(1 + a), 1/(1 + a)), p(0, 1, 0) and p(1/(1 +
a), 1/(1 + a), 0), and sides on p(x = 0) ∩ R, p(y = 0) ∩ R and
p(z = 0) ∩ R. The vertices alternate saddles with repeller nodes
being p(1, 0, 0) a repelling node. In the interior of this topological
hexagon there is the equilibrium P which is an attracting node. The
flow on S is topologically equivalent to the one described in Fig.
2(e).

For a > 1 there exists an invariant topological hexagon S with the
same vertices and sides on the planes of coordinates. The vertices
alternate saddles with attracting nodes being (1, 0, 0) an attracting
node. In the interior of this topological hexagon there is the equi-
librium p which is a repeller node. The flow on S is topologically
equivalent to the one described in Fig. 3(e).
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Fig. 2. The global dynamics on the octant R for b = a < 1.
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Fig. 3. The global dynamics on the octant R for b = a > 1.
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