Nonsmooth Vector Fields on \mathbb{R}^3 The Cusp-Fold Singularity

Authors: *Tiago de Carvalho*[†] Marco Antonio Teixeira[‡].

This project is partially supported by a FAPESP-BRAZIL grants 2010/18190-2 and 2012/00481-6. [†]FC - UNESP, Bauru, Brasil. tcarvalho@fc.unesp.br [‡]IMECC - UNICAMP, Campinas, Brasil. teixeira@ime.unicamp.br

Introduction

The specific topic addressed in this poster is the characterization of the Cusp-Fold bifurcation diagram for a specific 1-parameter family Z_{β} of NSDS on \mathbb{R}^3 such that Z_0 presents a standard normal form of a Fold-Cusp singularity. In our main results the structural stability and the asymptotic stability of this singularity are discussed.

Let $K = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 < \delta\}$, where $\delta > 0$ is arbitrarily small. Consider $\Sigma = \{(x, y, z) \in K | z = 0\}$. Clearly

The following 1-parameter family of piecewise smooth vector fields presents a cusp-fold singularity when $\beta = 0$:

$$Z_{\beta}(x, y, z) = \begin{cases} X_{\beta}^{b, \alpha} = \begin{pmatrix} b \\ \beta + \alpha x \\ y \end{pmatrix} & \text{if } z \ge 0, \\ Y^{a, c} = \begin{pmatrix} a \\ c \\ x \end{pmatrix} & \text{if } z \le 0, \end{cases}$$
(2)

where $a b c \alpha (b + c) \neq 0$ and $\beta \in \mathbb{R}$ is an arbitrarily small parameter. Note the occurrence of all kinds of two-fold singularities when $\beta \neq 0$. Important notions of stability in dynamical systems include that of Lyapunov (L-stability) or asymptotic stability (A-stability) at a singularity $p \in \Sigma$. Now we formalize these concepts.

Definition 2. Given $p_0 \in \Sigma$ a pseudo-equilibrium of $Z \in \Omega^r$ we say that Z is L-stable at p_0 if for all neighborhood $N_{\epsilon}(p_0)$ of p_0 in K there exists a neighborhood $N_{\delta}(p_0)$ of p_0 in K such that for all $p \in N_{\delta}(p_0)$ the future orbit of Z by p remains in $N_{\epsilon}(p_0)$.

Definition 3. Given $p_0 \in \Sigma$ a pseudo-equilibrium of $Z \in \Omega^r$ we say that Z is A-stable at p_0 if it is L-stable and p_0 is the ω -limit set of all $p \in N_{\delta}(p_0)$.

the switching manifold Σ is the separating boundary of the regions $\Sigma_+ = \{(x, y, z) \in K \mid z \ge 0\}$ and $\Sigma_- = \{(x, y, z) \in K \mid z \le 0\}.$ Designate by χ^r the space of C^r -vector fields on K. Call $\Omega^r = \Omega^r(K, f)$ the space of vector fields $Z : K \to \mathbb{R}^3$ such that

$$Z(x,y,z) = \begin{cases} X(x,y,z), & \text{for} \quad (x,y,z) \in \Sigma_+, \\ Y(x,y,z), & \text{for} \quad (x,y,z) \in \Sigma_-, \end{cases}$$
(1)

where $X = (X_1, X_2, X_3)$ and $Y = (Y_1, Y_2, Y_3)$ are in χ^r . We denote any element in Ω^r by Z = (X, Y). Consider the Lie derivative $X.f(p) = \langle \nabla f(p), X(p) \rangle$ and $X^i.f(p) = \langle \nabla f(p), X(p) \rangle$

 $\langle X^{i-1}.f(p), X(p) \rangle$, $i \geq 2$ where $\langle ., . \rangle$ is the usual inner product in \mathbb{R}^3 . We distinguish the following regions of Σ :

• Crossing Region: $\Sigma^c = \{p \in \Sigma | X.f)(p).(Y.f)(p) > 0\}.$ • Sliding Region: $\Sigma^s = \{p \in \Sigma | (X.f)(p) < 0, (Y.f)(p) > 0\}.$ • Escaping Region: $\Sigma^e = \{p \in \Sigma | (X.f)(p) > 0, (Y.f)(p) < 0\}.$

The **sliding vector field** associated to $Z \in \Omega^r$ is the vector field Z^s tangent to Σ^s and defined at $q \in \Sigma^s$ by $Z^s(q) = m - q$ with m being the point of the segment joining q + X(q) and q + Y(q) such that m - q is tangent to Σ^s (see [5]).

We say that $q \in \Sigma$ is a Σ -regular point of $Z = (X, Y) \in \Omega^r$ if either (X.f)(q).(Y.f)(q) > 0 or (X.f)(q).(Y.f)(q) < 0 and $\widehat{Z}^s(q) \neq 0$ (i.e., $q \in \Sigma^s \cup \Sigma^e$ and $X(q) \not\models Y(q)$). The points of Σ which are not Σ -regular are called Σ -singular. We distinguish two subsets in the set of Σ -singular points: Σ^p and Σ^t , where $\Sigma^p = \{q \in \Sigma^e \cup \Sigma^s | \widehat{Z}^{\Sigma}(q) = 0\}$ is the set of pseudo equilibria of Z and $\Sigma^t = \{w \in \Sigma | (X.f(w))(Y.f(w)) = 0\}$ is the set of tangential singularities of Z (i.e., the trajectory through w is tangent to Σ).

In recent years much effort has been made (see e.g. [1,4]) in order to describe the dynamics of a piecewise smooth vector field defined in a neighborhood of a two-fold singularity. This singularity is particularly relevant because in its neighborhood some of the key features of a piecewise smooth system are present: orbits that cross Σ , those that slide along it according to Filippov's convention, among others.

Let $\Gamma_+ = \{X|_{\Sigma_+} \text{ with } X \in \chi^r\}$ (respectively, $\Gamma_- = \{X|_{\Sigma_-} \text{ with } X \in \chi^r\}$). This means that Γ_+ (respectively, Γ_-) is identified with χ^r . Let $\Gamma_{\Sigma_+}^C \subset \Gamma_+$ be the set of all elements $X \in \Gamma_+$ having a cusp point. $\Gamma_{\Sigma_+}^C$ is an open set in Γ_+ (see [6]). Analogously, let $\Gamma_{\Sigma_-}^F \subset \Gamma_-$ be the set of all elements $Y \in \Gamma_-$ having a fold point. $\Gamma_{\Sigma_-}^F$ is an open set in Γ_+ (see [6,8]). We denote the set of all Z = (X, Y) such that $X \in \Gamma_{\Sigma^+}^C$ and $Y \in \Gamma_{\Sigma^-}^F$ by Γ^{C-F} . Let $\Upsilon^r = \{Z^s : \Sigma^s \to T_p \Sigma | Z \in \Omega^r \text{ and } p \in \Sigma\}$. It is known that there exists a codimension zero submanifold Λ_0^p of Υ^r (see [7]). Moreover, $\Lambda_1^p = \{\hat{Z}^s \in \Omega^r \in \Sigma^r\}$.

Main results

The main results of the paper are now stated. Theorem A establishes the local structure around $\widehat{\Omega}_1$ and Theorems B and C deal with the cumbersome task of finding conditions for A-stability of a piecewise smooth vector field presenting a cusp-fold singularity or nearby it.

Theorem A. It holds:

(i) $\widehat{\Omega}_1$ is a codimension one submanifold of Ω^r ; (ii) If $Z \in \widehat{\Omega}_1$ then Z is mild structurally stable relative to Ω_1 and (iii) $\widehat{\Omega}_1$ is open in Ω_1 , endowed with the topology induced from Ω^r .

Denote by ∂A the boundary of an arbitrary the set A.

Theorem B. Let $Z_0 = (X_0, Y_0) \in \widehat{\Omega}_1$ presenting a Q3-singularity c_0 and such that $[\varphi_{Y_0}^+((\partial \Sigma^e \cap \partial \Sigma^{c-}) \setminus \{c_0\}) \cap \Sigma] \subset \Sigma^s$ when $(X_0)_1.(Y_0)_1 < 0$. Then Z_0 (a) is mild structurally stable relative to $\widehat{\Omega}_1$ and (b) is almost everywhere not A-stable in K.

Theorem C. Under the hypothesis of Theorem B consider $Z_{\beta} \in \Omega^r$ an unfolding of Z_0 , where $\beta \in (-\epsilon_0, \epsilon_0)$ with $\epsilon_0 > 0$ sufficiently small. Then Z_{β}

(a) is mild structurally stable in Ω^r when $\beta \neq 0$ and (b) is almost everywhere not A-stable in K.

Setting the problem

The main tool treated here concerns the contact between a general smooth vector field and the boundary Σ of a manifold (see [2,3] for a planar analysis). In the 3-dimensional case, there are two important distinguished generic singularities: the points where this contact is either quadratic or cubic, which are called **fold points** and **cusp points** respectively. As we know by the singularity mapping theory, generically, a cusp point is an isolated point of Σ and there are two branches of fold points emanating from it. Moreover, it is possible for a point $p \in \Sigma$ be a tangency point for both X and Y. When p is a fold point of both X and Y we say that p is a **two-fold singularity** and when p is a cusp point for X and a fold point for Y we say that p is a **cusp-fold singularity** (see figure below).

 $\Upsilon^r \setminus \Lambda_0^p$ such that p is a codimension one singularity of \widehat{Z}^s and the other singularities of \widehat{Z}^s has codimension zero} is a codimension one submanifold of Υ^r and Λ_1^p is an open set in $\Upsilon^r \setminus \Lambda_0^p$.

Since in Γ^{C-F} may exists vector fields whose behavior is very complicated or even chaotic, in order to restrict our analysis to a manageable set, we will deal with elements into the set $\hat{\Omega}_1 \subset \Omega^r$ where $Z = (X, Y) \in \hat{\Omega}_1$ if the following conditions are satisfied: (a) $Z \in \Gamma^{C-F}$; (b) $Z^s \in \Lambda_1^p$; (c) the cusp-fold singularity of Z is a Q3-singularity; where (see [7]) a singularity $q \in \Sigma$ of the planar vector field Z^s is a Q3-singularity if it satisfies: (a) q is a cusp point of X and a fold point of Y; (b) $X.(Y.f)(q) \neq 0$, $Y.(X.f)(q) \neq 0$ and $X.(Y.f)(q) + Y.(X.f)(q) \neq 0$; (c) $S_X \pitchfork S_Y = \{q\}$, where $S_X = \{(x, y, z) \in \Sigma | X.f(x, y, z) = X_3 = 0\}$ (respectively, $S_Y = \{(x, y, z) \in \Sigma | Y.f(x, y, z) = Y_3 = 0\}$) is the set of tangential singularities of X (respectively, Y).

The topological type of Z at $p \in \Sigma$ is characterized by all oriented orbits passing through or tending to p (in positive or negative time). Definition 1. We say that Z = (X, Y), $\widetilde{Z} = (\widetilde{X}, \widetilde{Y}) \in \Omega^r(K, f)$ presenting switching manifolds Σ and $\widetilde{\Sigma}$, respectively, are mild equivalent if the following conditions are satisfied: (i) $X \mid_{\Sigma_+}$ is topologically equivalent to $\widetilde{X} \mid_{\widetilde{\Sigma}_+}$; (ii) $Y \mid_{\Sigma_-}$ is topologically equivalent to $\widetilde{Y} \mid_{\widetilde{\Sigma}_-}$; and (iii) there is a homeomorphism $h : \Sigma \to \widetilde{\Sigma}$ such that the topological types of Z at $p \in \Sigma$ and of \widetilde{Z} at $\widetilde{p} = h(p) \in \widetilde{\Sigma}$ are equivalent (coincide). From this definition the concept of mild structural stability in Ω^r is naturally obtained. When $(X_0)_1 \cdot (Y_0)_1 > 0$ we obtain the same result easier because the trajectories of Z do not collide to Σ twice.

References

- [1] M. DI BERNARDO, A. COLOMBO, E. FOSSAS AND M.R. JEFFREY, *Teixeira singularities in 3D switched feedback control systems*, Systems and Control Letters **59** (2010), 615–622.
- [2] C.A. BUZZI, T. DE CARVALHO AND M.A. TEIXEIRA, On three-parameter families of Filippov systems – The Fold-Saddle singularity, Internat. J. Bifur. Chaos Appli. Sci. Engrg., to appear.
- [3] C.A. BUZZI, T. DE CARVALHO AND M.A. TEIXEIRA, On 3-parameter families of piecewise smooth vector fields in the plane, SIAM J. Applied Dymanical Systems, to appear.
- [4] A. COLOMBO AND M.R. JEFFREY, Non-deterministic chaos, and the two fold singularity in piecewise smooth flows, SIAM J. Appl. Dyn. Syst. 10 (2011), 423–451.
- [5] A.F. FILIPPOV, *Differential Equations with Discontinuous Righthand Sides*, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers-Dordrecht, 1988.
- [6] M.A. TEIXEIRA, *Generic Bifurcation in Manifolds with Boundary*, Journal of Differential Equations **25** (1977), 65–88.
- [7] M.A. TEIXEIRA, *Generic bifurcation of sliding vector fields*, Journal of Mathematical Analysis and Aplications **176** (1993), 436– 457.
- [8] S.M. VISHIK, Vector fields near the boundary of a manifold, Vestinik Moskovskogo Universiteta. Matematika **27** (1972), 21–28.