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Introduction

Systems in nature, which are modeled by ordinary differential equations
(ODE), often involve two or more different time scales. For instance,
in biological literature we can find many examples of models which
present such features.

Example 1. The classical Rosenzweig–MacArthur predator–prey mo-
del, that is in a rescaled form given by

ẋ = x
(
1− x− ay

x + d

)
, ẏ = εy

( ax

x + d
− 1
)

is an example of a problem involving two different time–scales. In the
above system x and y represent the number of prey and predators,
respectively, the parameter ε > 0 is the ratio between the linear death
rate of the predator and the linear growth rate of the prey. The positive
parameters a and d determine the impact of predation on the prey.

Example 2. Examples of models involving three time–scales are for
instance found in food chain models with a third class of so–called
super or top-predators. The Rosenzweig–MacArthur model ([4]) for
tritrophic food chains (as proposed by [1], see also [3])
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, (1)

is an example of a problem involving three different time–scales. It
is composed of a logistic prey x, a Holling type II predator y and a
Holling type II top–predator z.

When systems present a clear separation in time scales, methods of
approximations of slow–fast systems can be applied. Around 1980,
geometric singular perturbation theory was introduced. The founda-
tion of this theory was laid by Fenichel [2] (see also [5]) and it es-
sentially uses geometric methods from dynamical systems theory for
studying the properties of solutions of the system. We note that for the
singular perturbation problems studied by Fenichel only two different
time–scales can be derived: a slow and a fast ones.

In this poster we study systems of ODE with three time–scales. These
systems are in general written in the form

εx′ = f (x, ε, δ), y′ = g(x, ε, δ), z′ = δh(x, ε, δ), (2)

where x = (x, y, z) ∈ Rn × Rm × Rp, ε and δ are two independent
small parameter (0 < ε, 0 < δ ≪ 1), and f , g, h are Cr functions,
where r is big enough for our purposes. Now, in system (2) three diffe-
rent time–scales can be derived: a slow time–scale t, an intermediate
time–scale τ1 :=

t
δ and a fast time–scale τ2 :=

τ1
ε .

Note that the model (1) is a system of the form (2).

In this poster we develop a mathematical theory in order to study
systems (2). Our goal is to build a theory, inspired by the one given
by Fenichel in [2], for systems involving three different time–scales.

Preliminary theory

The system (2) is written with respect to the time–scale τ1 so it is
called intermediate system. By transforming (2) to the slow and fast
variables t and τ2 we obtain, respectively, the slow system

εδẋ = f (x, ε, δ), δẏ = g(x, ε, δ), ż = h(x, ε, δ), (3)

and the fast system

x̄ = f (x, ε, δ), ȳ = εg(x, ε, δ), z̄ = εδh(x, ε, δ), (4)

where the dot and the bar denote the derivatives with respect to t and
τ2, respectively.
Note that, for ε, δ ̸= 0, systems (2), (3) and (4) are equivalent. By
setting ε = δ = 0 in (2), (3) and in (4) we obtain three systems with
dynamics essentially different: the intermediate problem

0 = f (x, 0, 0), y′ = g(x, 0, 0), z′ = 0, (5)

the reduced problem

0 = f (x, 0, 0), 0 = g(x, 0, 0), ż = h(x, 0, 0), (6)

the layer problem

x̄ = f (x, 0, 0), ȳ = 0, z̄ = 0. (7)

For each ε and δ, consider the following sets

Sδ
1 = {x ∈ Rn+m+p : f (x, 0, δ) = 0}

Sε
2 = {x ∈ Rn+m+p : f (x, ε, 0) = g(x, ε, 0) = 0}.

Note that:

• the intermediate problem (5) is a dynamical system defined on S0
1 ;

• the reduced problem (6) is a dynamical system defined on S0
2 ;

• S0
1 is a manifold of singular points for (7).

We refer to S0
1 and S0

2 as the intermediate and slow manifolds, res-

pectively. The reason for these names is that on S0
1 the intermediate

time–scale is dominating and on S0
2 the slow time–scale predominates.

Following the ideas of the geometric singular perturbation theory [2],
our goal will be to prove that one can obtain information on the dy-
namics of the system (2), for small values of ε and δ, by suitably
combining the dynamics of the three limit problems (5), (6) and (7).

Four other systems will also play an important role in our analysis of
system (2). By setting ε = 0 in (2) (or in (3)) and in (4) while keeping
δ fixed but nonzero, we obtain the δ–intermediate problem

0 = f (x, 0, δ), y′ = g(x, 0, δ), z′ = δh(x, 0, δ), (8)

and the δ–layer problem

x̄ = f (x, 0, δ), ȳ = 0, z̄ = 0. (9)

By setting δ = 0 in (2) (or in (4)) and in (3) while keeping ε fixed
but nonzero, we obtain the ε–intermediate problem

εx′ = f (x, ε, 0), y′ = g(x, ε, 0), z′ = 0, (10)

and the ε–reduced problem

0 = f (x, ε, 0), 0 = g(x, ε, 0), ż = h(x, ε, 0). (11)

Note that:

• when both ε, δ → 0, the two δ, ε–intermediate problems (8) and
(10) become the same limit problem (5);

• the problem (8) is a dynamical system defined on Sδ
1 ;

• the problem (11) is a dynamical system defined on Sε
2 ;

• Sδ
1 is a set of singular points for the problem (9);

• Sε
2 is a set of singular points for the problem (10).

Definition 0.1.We say that system (2) is normally hyperbolic at
x0 ∈ S0

2 if the real parts of the eigenvalues of the Jacobian matrix(
D1,2 f (x0, 0, 0)
D1,2 g(x0, 0, 0)

)
are nonzero. System (2) is δ–normally hyperbolic at x0 ∈ Sδ

1 if the
real parts of the eigenvalues of the JacobianD1f (x0, 0, δ) are nonzero.

Statement of the main results

We state below the main results involving systems (2).

Theorem A. Consider the Cr family (2). Let N ⊆ S0
2 be a j-

dimensional compact normally hyperbolic invariant manifold of the
reduced problem (6) Then there are ε1 > 0 and δ1 > 0 and a Cr−1

family of manifolds {N ε
δ : δ ∈ (0, δ1), ε ∈ (0, ε1)} such thatN 0

0 = N
and N ε

δ is a hyperbolic invariant manifold of (2).

Let G(x, δ) := (g(x, 0, δ), δh(x, 0, δ), 0) be the vector field defined
by (8) supplemented by the trivial equation δ′ = 0. Assume that
the linearization of G at points (x, 0), such that x ∈ S0

2 , has ks

eigenvalues with negative real part and ku eigenvalues with positive
real part. The corresponding stable and unstable eigenspaces have
dimensions ks and ku, respectively.

Similarly, let H(x, ε, δ) := (f (x, ε, δ), εg(x, ε, δ), εδh(x, ε, δ), 0) be
the vector field defined by (4) supplemented by the equation ε̄ =
0. Assume that the linearization of H at points (x, 0, δ), such that
x ∈ Sδ

1 , has ls and lu eigenvalues with negative and positive real
parts, so that the corresponding stable and unstable eigenspaces have
dimensions ls and lu, respectively.

Theorem B. Under the hypotheses of Theorem A, suppose that N
has a (j + js)–dimensional local stable manifold W s and a (j + ju)–
dimensional local unstable manifold Wu. Then there are ε1 > 0 and
δ1 > 0 and Cr−1 families of (j + js + ks + ls)–dimensional and
(j + ju + ku + lu)–dimensional manifolds {Ws

δ,ε : δ ∈ (0, δ1), ε ∈
(0, ε1)} and {Wu

δ,ε : δ ∈ (0, δ1), ε ∈ (0, ε1)} such that the manifolds

{Ws
δ,ε} and {Wu

δ,ε} are local stable and unstable manifolds of N ε
δ ,

respectively.

Examples

Example 3. Consider the following 3–dimensional system

εx′ = x− ε + δ, y′ = −y + ε + δ, z′ = δz. (12)

The intermediate and slow manifolds S0
1 and S

0
2 are given, respectively,

by S0
1 = {(x, y, z) ∈ R3 : x = 0} and S0

2 = {(x, y, z) ∈ R3 : x =

y = 0}. On S0
1 we have defined the intermediate problem

0 = x, y′ = −y, z′ = 0, (13)

and on S0
2 we have defined the reduced problem

0 = x, 0 = y, ż = z. (14)

Moreover, the layer problem is given by

x̄ = x, ȳ = 0, z̄ = 0. (15)

Figures below illustrate the phase portraits of the intermediate, redu-
ced and layer problems, respectively.
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We can apply Theorems A and B at the normally hyperbolic singular
point N = (0, 0, 0) of (14). Applying Theorem A, we obtain for small
nonzero δ, ε, a family N ε

δ of hyperbolic singular points of (12). In
fact, the family N ε

δ of singular points is given by (ε − δ, ε + δ, 0).
Applying Theorem B, we can conclude that each singular point N ε

δ
has a 1–dimensional local stable manifold Ws

δ,ε and a 2–dimensional

local unstable manifold Wu
δ,ε.

Example 4. Consider the following 4–dimensional system

εx′ = x− z1 + δ + ε = f (x, z1, δ, ε),

y′ = −y − z2 + δ − ε = g(y, z2, δ, ε),

z′1 = δh1(x, z1, z2),

z′2 = δh2(y, z1, z2),

(16)

where h1(x, z1, z2) = −z2 − z1(−1 + z21 + z22) + (x − z1)
2 and

h2(y, z1, z2) = z1 − z2(−1 + z21 + z22) − (y + z2)
2. The interme-

diate and slow manifolds S0
1 and S0

2 are given, respectively, by S0
1 =

{(z1, y, z1, z2) ∈ R4 : y, z1, z2 ∈ R} and S0
2 = {(z1,−z2, z1, z2) ∈

R4 : z1, z2 ∈ R}. Note that S0
1 and S0

2 are manifolds of dimension 3
and 2, respectively.
On S0

1 we have defined the intermediate problem

x = z1, y′ = −y − z2, z′1 = 0, z′2 = 0, (17)

and on S0
2 we have defined the reduced problem

ż1 = −z2− z1(−1 + z21 + z22), ż2 = z1− z2(−1 + z21 + z22). (18)

Moreover, the layer problem is given by

x̄ = x− z1, ȳ = 0, z̄1 = 0, z̄2 = 0. (19)

Using polar coordinates z1 = r cos θ and z2 = r sin θ it is easy to see
that the system (18) presents a singular point P at the origin and a
stable limit cycle Γ, as shown Figure below.

x =
z

y =
- z
1

2

0
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{

According with the Definition 0.1, all points of the slow manifold are
normally hyperbolic. Applying Theorem A, we obtain for small nonzero
δ, ε, families Pε

δ and Γεδ of hyperbolic singular points and limit cycles

of (16), respectively, such that P0
0 = P and Γ00 = Γ. In agreement

with Theorem B, each singular point Pε
δ has an 1–dimensional local

stable manifold Ps
δ,ε and a 3–dimensional local unstable manifold P

u
δ,ε.

Each limit cycle Γεδ has a 3–dimensional local stable manifold Γsδ,ε and

an 1–dimensional local unstable manifold Γuδ,ε.
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