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Abstract

We prove that the static, spherically symmetric Einstein-Yang-Mills
equations do not have periodic solutions when r > 0.

Introduction

The static, spherically symmetric Einstein-Yang-Mills equations with
a cosmological constant a ∈ R are

ṙ = rN,

Ẇ = rU,

Ṅ = (k −N )N − 2U2,

k̇ = s(1− 2ar2) + 2U2 − k2,

U̇ = sWT + (N − k)U,

Ṫ = 2UW −NT,

(1)

where (r,W,N, k, U, T ) ∈ R
6, s ∈ {−1, 1} refers to regions where t is

a time-like respectively space-like, and the dot denotes a derivative with
respect to t. See for instanced [2] and the references quoted therein for
additional details on these equations.

Let f = 2kN −N2 − 2U2 − s(1− T 2 − ar2). Then it holds that

df (t)

dt
= −2N (t)f (t).

Hence f = 0 is an invariant hypersurface under the flow of system (1),
i.e. if a solution of system (1) has a point in f = 0, then the whole
solution is contained in f = 0.

We observe that system (1) correspond to the original symmetric re-
duced Einstein-Yang-Mills equations only if it is restricted to the hyper-
surfaces f = 0 and rT −W 2 = −1. It is easy to verify that rT −W 2

is a first integral of system (1). Moreover the physicists are mainly
interested in the solutions of the differential system (1) with r > 0, see
the middle of the page 573 of [2]. We shall prove that system (1) has
no periodic solutions when r > 0.

Due to its the physical origin we must study the orbits of system (1)
on the hypersurface f = 0. Defining the variables x1 = r, x2 = W ,
x3 = N , x4 = k, x5 = U , x6 = T , we obtain that system (1) on f = 0
is equivalent to the homogeneous polynomial differential system

ẋ1 = x1x3,
ẋ2 = x1x5,

ẋ3 = (x4 − x3)x3 − 2x25,

ẋ4 = −(x4 − x3)
2 + s(−ax21 + x26),

ẋ5 = sx2x6 + (x3 − x4)x5,
ẋ6 = 2x2x5 − x3x6,

(2)

of degree 2 in R
6.

There are several papers studying the dynamics of the static, spherically
symmetric EYM system, see for instance [1, 2, 3, 4, 5, 6, 7]. In the paper
[5] the authors prove that there are no periodic orbits for system (2) in
some invariant set of codimension one. Here in this work we prove the
following result.

Theorem 1. If the differential system (2) has a periodic solution

then the following statements hold.

(a)This solution must be contained in x1 = 0 and x2 = c 6= 0.

(b)The parameter s = 1.

(c)The first integral H = 2x3x4 − x23 + x26 − 2x25 of system (2)
restricted to x1 = 0, x2 = c and s = 1 is positive on the periodic

orbit taking the value h.

(d)Due to the symmetries of the problem, it must be a periodic

solution (x1(t) = 0, x2(t) = c, x3(t), x4(t), x5(t), x6(t)) satisfying

c > 0, x3(t) < 0, x4(t) − x3(t) < 0, x5(t)x6(t) < 0, x4(t) = (h −
x23(t) + 2x25(t)− x26(t))/4 and being (x3(t), x5(t), x6(t)) a periodic

solution of

ẋ3 =
1

2
(h− x23 − 2x25 − x26),

ẋ5 =
1

2x3
(−hx5 + 2cx3x6 + x23x5 − 2x35 + x5x

2
6),

ẋ6 = 2cx5 − x3x6.

(3)

Since x1 = r, a direct consequence of Theorem 1 is the following result.

Corollary 1. The static, spherically symmetric Einstein-Yang-

Mills equations (1) has no periodic solutions in the region r > 0.

It is an open problem to know if the differential system (2) has periodic
solutions. Note that due to statement (d) of Theorem 1 the study of
the existence of periodic solutions for system (2) has been reduced to
study the existence of periodic solutions for system (3) with c > 0, in
the region x3 < 0 and x5x6 < 0.

Proof of Theorem 1

We shall prove some auxiliary results.

Lemma 1. If Γ is a periodic orbit of system (2) then Γ does not

intersect the hyperplane {x ∈ R
6 : x3 = 0}.

Proof. Let Γ(t) = (x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)) be a periodic
solution of system (2). Assume that there exists t = t1 such that
x3(t1) = 0. We claim that there are only two possibilities: either (i)
ẋ3(t1) < 0 or (ii) ẋ3(t1) = 0, ẍ3(t1) = 0 and

...
x3(t1) < 0. Now we shall

prove the claim.

By the third equation of (2), we have that ẋ3(t1) = −2(x5(t1))
2 ≤ 0.

Consider the case x5(t1) = 0. Computing the second derivative of x3
with respect to t we get

ẍ3 = (ẋ4 − ẋ3)x3 + (x4 − x3)ẋ3 − 4x5ẋ5.

Evaluating in t = t1, and using that x3(t1) = x5(t1) = ẋ3(t1) = 0 we
get ẍ3(t1) = 0. Now, computing the third derivative of x3 with respect
to t we get

...
x3 = (ẍ4−ẍ3)x3+(ẋ4−ẋ3)ẋ3+(ẋ4−ẋ3)ẋ3+(x4−x3)ẍ3−4ẋ5ẋ5−4x5ẍ5.

Evaluating in t = t1, and using that x3(t1) = x5(t1) = ẋ3(t1) =
ẍ3(t1) = 0 we get

...
x3(t1) = −4s2(x2(t1))

2(x6(t1))
2. Now we shall

prove that x2(t1) 6= 0 and x6(t1) 6= 0.

Observe that the set {x ∈ R
6 : x2 = x3 = x5 = 0} is an invariant

manifold to system (2), i.e. if a solution of (2) has a point in {x ∈
R
6 : x2 = x3 = x5 = 0} then the whole solution is contained in

{x ∈ R
6 : x2 = x3 = x5 = 0}. So, if x2(t1) = 0 then x2(t) = x3(t) =

x5(t) = 0 for all t ∈ R. From the first and sixth equation of (2),
and using that x3(t) = x5(t) = 0, we get that there exist constants
b, c ∈ R such that x1(t) = b and x6(t) = c for all t ∈ R. The real
function x4(t) is a periodic function that is solution of the equation
ẋ4 = −x24 + s(−ab2 + c2). It is known that any periodic solution of
a differential equation in dimension one must be constant. So, there
exists d ∈ R such that x4(t) = d for all t ∈ R. In this case Γ is constant
and not a periodic solution. So we have proved that x2(t1) 6= 0.

Consider the case x6(t1) = 0. By using the fact that the set {x ∈ R
6 :

x3 = x5 = x6 = 0} is an invariant manifold to system (2) we get that
x3(t) = x5(t) = x6(t) = 0 for all t ∈ R. From the first and second
equation of (2) we get that x1(t) and x2(t) are constant. So, x4(t) also
is constant and Γ is constant. Hence we have proved that x6(t1) 6= 0.

In short, the claim that either (i) ẋ3(t1) < 0 or (ii) ẋ3(t1) = 0, ẍ3(t1) =
0 and

...
x3(t1) < 0 is proved. This implies that in all zeroes of x3(t),

this function is decreasing. But this is a contradiction because x3(t) is
a real periodic function.

Lemma 2. If there exists Γ a periodic orbit for system (2) then

there exists c ∈ R \ {0}, such that the periodic orbit is contained

in the set {x ∈ R
6 : x1 = 0 and x2 = c}.

Proof. Since the hyperplane {x ∈ R
6 : x1 = 0} is invariant for the sys-

tem (2), if Γ(t) = (x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)) is a periodic
solution of system (2) then x1(t) does not change sign. From Lemma 1
we have that x3(t) also does not change sign. By the first equation of
(2), using that x1(t) is a real periodic function and x1(t)x3(t) does not
change sign we get that x1(t) = 0 for all t ∈ R. Substituting x1(t) = 0
in the second equation of (2) we get that there exists c ∈ R such that
x2(t) = c for all t ∈ R.

Lemma 3. For s = −1 system (2) has no periodic orbits.

Proof. In [5] the authors prove that for s = −1 system (2) restricted to
the hyperplane {x ∈ R

6 : x1 = 0} has no periodic orbits. The proof
that for s = −1 system (2) has no periodic orbits follows from this fact
and from Lemma 2.

Lemma 4. If there exists a periodic orbit for system (2), with

s = 1, restricted to the hyperplane {x ∈ R
6 : x1 = 0}, then it is

contained in the set {x ∈ R
6 : x3(x4 − x3) > 0}.

Proof.Assume that Γ(t) = (0, x2(t), x3(t), x4(t), x5(t), x6(t)) is a pe-
riodic solution of (2), with s = 1, restricted to the hyperplane
{x ∈ R

6 : x1 = 0}. From Lemma 1 we know that x3(t) does not
change sign. So either x3(t) > 0 for all t ∈ R, or x3(t) < 0 for all
t ∈ R. It is easy to prove that either x3(t) − x4(t) > 0 for all t ∈ R,
or x3(t)− x4(t) < 0 for all t ∈ R.

Now we prove that Γ(t) cannot be in {x ∈ R
6 : x3(x4 − x3) < 0}. If

the orbit associated to Γ(t) is contained in {x ∈ R
6 : x3(x4−x3) ≤ 0},

then from the third equation of system (2) we have that ẋ3(t) ≤ 0 for
all t. It is impossible because x3(t) is a real periodic function.

Lemma 5.Let Γ(t) be a periodic solution of system (2). The func-
tion H = 2x3x4 − x23 + x26 − 2x25 is a first integral of system (2)
restricted to x1 = 0, x2 = c and s = 1, and there exists h ∈ R,

h > 0, such that H(Γ(t)) = h for all t.

Proof.Proof. System (2) restricted to x1 = 0, x2 = c and s = 1 is given by

ẋ3 = (x4 − x3)x3 − 2x25,

ẋ4 = −(x4 − x3)
2 + x26,

ẋ5 = cx6 + (x3 − x4)x5,
ẋ6 = 2cx5 − x3x6.

(4)

Clearly H is a first integral of (4), because it satisfies

Ḣ =

6∑

i=3

∂H

∂xi
ẋi = 0.

This means that H is constant along the solutions of (4). So, there
exists h ∈ R such that H(Γ(t)) = h for all t. It remains to show that
h > 0. From 2x3x4 − x23 + x26 − 2x25 = h we get

x4 =
1

2x3
(h− x23 + 2x25 − x26). (5)

Substituting this expression in the first equation of (4) we obtain ẋ3 =
(h−x23− 2x25−x26)/2. The fact that function x3(t) is periodic implies
that ẋ3 must be zero at some point. So h > 0 because x3(t) 6= 0 for
all t.

Lemma 6. Let Γ(t) = (0, c, x3(t), x4(t), x5(t), x6(t)) be a periodic

solution of system (2), and h = H(Γ(t)), where H is given in

Lemma 5. The cooordinates of Γ(t) satisfy c > 0, x3(t) < 0,
x4(t) − x3(t) < 0, x5(t)x6(t) < 0, x4(t) is given by (5), and

(x3(t), x5(t), x6(t)) is a periodic solution of

ẋ3 =
1

2
(h− x23 − 2x25 − x26),

ẋ5 =
1

2x3
(−hx5 + 2cx3x6 + x23x5 − 2x35 + x5x

2
6),

ẋ6 = 2cx5 − x3x6.

(6)

Proof. Since x2 = c, due to the fact that the symmetry

(x1, x2, x3, x4, x5, x6, t) 7→ (−x1,−x2,−x3,−x4,−x5,−x6,−t)

leaves the differential system (2) invariant, we can assume that c > 0.

From the proof of Lemma 5 it is clear that x4(t) is given by (5). Sub-
stituting (5) in system (4) and eliminating the second equation we get
system (6). So, it is clear that (x3(t), x5(t), x6(t)) is a periodic solution
of system (6).

We observe that system (6) is symmetric with respect to
(x3, x5, x6, t) 7→ (−x3, x5,−x6,−t), and from Lemma 1 we have that
x3(t) does not change sign. So, we can assume that the periodic orbit
lives in x3 < 0. By Lemma 4 we get x4(t) − x3(t) < 0 for all t. So,
x4(t) < 0 for all t.

From system (2) we get

d

dt
(x5x6) = c(x26 + 2x25)− x4x5x6. (7)

It means that in all points t = t0 where x5(t0)x6(t0) = 0 we have

that
d

dt
(x5x6)|t=t0 has the same sign of c, i.e., positive sign. But it is

impossible because x5(t)x6(t) is a periodic real function. This implies
that x5(t) and x6(t) never change sign. From (7), and since the function
x5(t)x6(t) is periodic and x4(t) < 0 for all t, we get x5(t)x6(t) < 0 for
all t.

Proof of Theorem 1. Statements (a), (b), (c) and (d) follow from lem-
mas 2, 3, 5 and 6 respectively.
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