Semiconjugacy to a map of a constant slope - new results

J.B.

Czech Technical University in Prague

NTDS, 1-5 October, 2012 SALOU (Tarragona), Spain

References

- LI. Alsedá, J. Llibre, M. Misiurewicz, *Combinatorial dynamics and the entropy in dimension one*, Adv. Ser. in Nonlinear Dynamics **5**, 2nd Edition, World Scientific, Singapore, 2000.
- J. B., Semiconjugacy to a map of a constant slope, Studia Mathematica **208**(2012), 213–228.
- J. B., H. Bruin, Semiconjugacy to a map of a constant slope II, in preparation.
- J. B., M. Soukenka, *On piecewise affine interval maps with countably many laps*, Discrete and Continuous Dynamical Systems **31.3**(2011), 753–762.
- J. Milnor, W. Thurtston, *On iterated maps of the interval*, Dynamical Systems, 465-563, Lecture Notes in Math. **1342**, Springer, Berlin, 1988.
- W. Parry, *Symbolic dynamics and transformations of the unit interval*, Trans. Amer. Math. Soc. **122**(1966), 368–378.
- D. Vere-Jones, *Ergodic properties of non-negative matrices-I*, Pacific J. of Math. **22**(2)(1967), 361–385.

Topological entropy

X... c.m.sp., $f: X \to X$ continuous

- $E \subset X$ is (n, ε) -separated (with respect to f) if

$$\forall x, y \in E, x \neq y: \max_{0 \leq i \leq n-1} d(f^i(x), f^i(y)) > \varepsilon$$

- $s(n,\varepsilon)$ is the largest cardinality of any (n,ε) -separated subset of X (it is finite)

The topological entropy $h_{top}(f)$ of a map f is the quantity

$$\lim_{\varepsilon \to 0_+} \limsup_{n \to \infty} \frac{1}{n} \log s(n, \varepsilon)$$

Let us consider continuous maps $f\colon X\to X$ and $g\colon Y\to Y$, where X,Y are compact Hausdorff spaces and $\varphi\colon X\to Y$ is continuous such that the diagram

$$\begin{array}{ccc} X & \xrightarrow{f} & X \\ \downarrow \varphi & & \downarrow \varphi \\ Y & \xrightarrow{g} & Y \end{array}$$

commutes, i.e., $\varphi \circ f = g \circ \varphi$. When φ is surjective, we say that f is semiconjugated to g via a map φ and in that case the topological entropy $h_{top}(\cdot)$ satisfies $h_{top}(f) \geq h_{top}(g)$.

M. Misiurewicz, W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67(1) (1980), 45-63.

A continuous map $f \colon [0,1] \to [0,1]$ is said to be piecewise monotone if there are $k \in \mathbb{N}$ and points $0 = c_0 < c_1 < \cdots < c_{k-1} < c_k = 1$ such that f is monotone on each $[c_i, c_{i+1}]$, $i = 0, \ldots, k-1$. We shall say that a piecewise monotone map g has a constant slope s if on each of its pieces of monotonicity it is affine with the slope of absolute value s.

Theorem

- If h(f) > 0 then $h(f) = \lim_n \frac{1}{n} \log \ell(f^n)$, $\ell(f^n)$ denotes the number of pieces of monotonicity of f^n .
- It is known that if g has a constant slope s then $h_{top}(g) = \max(0, \log s)$.

- W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc. 122 (1966), 368–378.
- J. Milnor, W. Thurston, *On iterated maps of the interval*, Dynamical Systems, 465-563, LNM 1342, Springer, Berlin, 1988.

Theorem

(Parry 66; Milnor, Thurston 88) If f is piecewise monotone and $h_{top}(f) > 0$ then f is semiconjugated via a continuous non-decreasing map to some map g of constant slope $e^{h_{top}(f)}$ (conjugated when f is transitive).

The conjugacy is not absolutely continuous.

We focus on the class of Markov *countably* piecewise monotone continuous interval maps and try to find large subclass(es) of it in which the conclusion of Theorem remains true.

an admissible set P . . . finite or countably infinite closed subset of [0,1] containing the points 0,1

an interval
$$[a,b]\subset [0,1]$$
 is $P ext{-basic}$. . . $a,b\in P$ and $(a,b)\cap P=\emptyset$

B(P) . . . the set of all P-basic intervals

a continuous $f \colon [0,1] \to [0,1]$ is in the class \mathcal{CPM} if and only if it corresponds to some admissible set P such that

- $f: P \rightarrow P$
- f is monotone (perhaps constant) on each P-basic interval

A map $f \in \mathcal{CPM}$ which is not piecewise monotone will be called a *countably piecewise monotone map*.

For P admissible we denote

 \mathcal{M}_P . . . the set of all (possibly generalized, multi-infinite) matrices indexed by P-basic intervals and with entries from $[0,\infty]$

 ℓ_P^1 . . . the Banach space of all real absolutely convergent (again possibly multi-infinite) sequences indexed by P-basic intervals

 \mathcal{K}_{P}^{+} . . . the cone of all nonnegative sequences from ℓ_{P}^{1}

Remark

For an admissible set P, a matrix $M \in \mathcal{M}_P$ can be modeled as a table $(P \times [0,1]) \cup ([0,1] \times (1-P))$; an entry of M is a number from $[0,\infty]$ in one window indexed IJ, where $I \in B(1-P)$ and $J \in B(P)$. Let us denote P' the set of all limit points of P. In accordance with the above model, a matrix $M \in \mathcal{M}_P$ will be infinite in the usual sense if $P' = \{1\}$. We call it multi-infinite when card P' > 1. For example, for the choice $P = \{0\} \cup \{\frac{1}{2^m} + \frac{1}{2^n}\}_{m,n \geq 1}$ we get $Card P' = \infty$.

Definition

For an $f \in \mathcal{CPM}$ we define its matrix $M(f) \in \mathcal{M}_P$: the m_{II} entry of M(f) is 1 if $f(I) \supset J$, and 0 otherwise.

In general, for f from \mathcal{CPM} its matrix M(f) does not represent a bounded operator on ℓ_P^1 .

Proposition

Let $M = (m_U) \in \mathcal{M}_P$. Then

(i) M represents a bounded linear operator \mathbb{M} on the ℓ_{P}^{1} defined as

$$(\mathbb{M}u)_I := \sum_{J \in B(P)} m_{IJ} u_J, \ u \in \ell_P^1, \tag{1}$$

if and only if $(||\mathbb{M}|| =) \sup_{J \in B(P)} \sum_{I \in B(P)} |m_{IJ}| < \infty$. In that case the operator \mathbb{M} is \mathcal{K}_{p}^{+} -positive.

The operator \mathbb{M} is compact if and only if its representing matrix M satisfies (ii)

> $\forall \varepsilon > 0 \ \exists \delta \ \forall J \in B(P): \ \sum |m_{U}| < \varepsilon.$ Semiconjugacy to a map of a constant slope

J. B. (CTU in Prague)

General observation - J. B., Semicojugacy to a map of a constant slope, Studia Mathematica 208 (2012), 213-228.

 \mathcal{CPM}_{λ} . . . the class of all maps from \mathcal{CPM} of a constant slope λ , i.e., $f \in \mathcal{CPM}_{\lambda}$ if $|f'(x)| = \lambda$ for all $x \in [0,1]$, possibly except at the points of P

Theorem - Key Equation

Let $f \in \mathcal{CPM}$ with $M(f) = (m_{IJ}) \in \mathcal{M}_P$. Then f is semiconjugated via a continuous non-decreasing map ψ to some map $g \in \mathcal{CPM}_\lambda$, $\lambda > 1$, if and only if there is a nonzero vector $v = (v_I)_{I \in B(P)}$ from \mathcal{K}_P^+ such that

$$\forall I \in B(P): \sum_{J \in B(P)} m_{IJ} v_J = \lambda \ v_I. \tag{2}$$

We will need a genealogic tree $(P_n)_{n=0}^{\infty}$ of P with respect to f. We set $P_0 = P$. By the previous, f is not constant on any P_0 -basic interval.

Suppose that P_n is already defined and f is not constant on any P_n -basic intervals. Since f is countably piecewise monotone, $f^{-1}(P_n) \cap [0,1]$ is a union of a (at most) countably many closed intervals (perhaps degenerate). Since f was not constant on any P_n -basic interval, no component of $f^{-1}(P_n) \cap [0,1]$ contains more than one element of P_n . From each of these components we choose one point; if possible the element of P_n , and we define P_{n+1} to be the set of these chosen points. Thus $P_n \subset P_{n+1}$ and P_{n+1} is invariant since $f(P_{n+1}) \subset P_n$. By the construction, P_{n+1} is a countable set and f is not constant on any P_{n+1} -basic interval. Denote \mathcal{J}_n the set of all P_n -basic intervals. In particular, $\mathcal{J}_0 = B(P)$. Let $v = (v_I)_{I \in B(P)} \in \mathcal{K}_P^+$ be a normalized vector satisfying (2). In order to define the map ψ : $Q = \bigcup_{n=0}^{\infty} P_n \to [0,1]$ we put $\psi(0) = 0$

and for
$$x \in P_n \cap (0,1]$$

$$\psi(x) = \lambda^{-n} \quad \sum \quad v_{f^n(J)}. \tag{3}$$

 $I \in \mathcal{T}_n$ I < x

Example

In order to illustrate the Key Equation let $P=\{1\}\cup\{x_n=1-\frac{1}{n}\}_{n\geq 1}\}$ with P-basic intervals $I(n)=[x_n,x_{n+1}]$ and consider a map f from \mathcal{CPM} such that $f(x_2)=x_1=0$ and

$$f(x_n) = \begin{cases} 1, & n \ge 1 \text{ odd,} \\ x_{n-2}, & n \ge 4 \text{ even.} \end{cases}$$

The Key Equation has a solution $v=(v_{I(n)})_{I(n)\in B(P)}$ with $v_{I(2k+1)}=v_{I(2k+2)}=\frac{k+1}{\lambda}(\frac{\lambda-1}{2\lambda})^k,\ k\geq 0$ for any $\lambda\geq 3+\sqrt{8}$. In particular, the map f is semiconjugated via a non-decreasing map ψ to some map $g\in \mathcal{CPM}_{3+\sqrt{8}}$ (in fact one can show that $h_{top}(f)=\log(3+\sqrt{8})$).

The matrix M(f) of f does not represent a bounded linear operator on the space ℓ_P^1 .

The Key Equation has a solution for each $\lambda \geq 3 + \sqrt{8}$.

J. B., M. Soukenka, *On* piecewise affine interval maps with countably many laps, Discrete and Continuous Dynamical Systems-A 31(3) (2011), 753-762.

Example

$$V = \{v_i\}_{i \ge -1}, X = \{x_i\}_{i \ge 1} \ V, X \text{ converge to } 1/2 \text{ and } 0 = v_{-1} = x_0 = v_0 < x_1 < v_1 < x_2 < v_2 < x_3 < v_3 < \cdots$$

$$f = f(V, X) : [0, 1] \to [0, 1]$$

- (a) $f(v_{2i-1}) = 1 v_{2i-1}, i \ge 1, f(v_{2i}) = v_{2i}, i \ge 0,$
- (b) $f(x_{2i-1}) = 1 v_{2i-3}, i \ge 1, f(x_{2i}) = v_{2i-2}, i \ge 1,$
- (c) $f_{u,v} = \left| \frac{f(u) f(v)}{u v} \right| > 1$ for each interval $[u, v] \subset [x_i, x_{i+1}]$,
- (d) f(1/2) = 1/2 and f(t) = f(1-t) for each $t \in [1/2, 1]$.

(the property (c) can be satisfied since for our V,X by (a),(b), $f_{x_i,x_{i+1}} > 2$ for each i > 0)

We denote by $\mathcal{F}(V,X)$ the set of all continuous interval maps fulfilling (a)-(d) for a fixed pair V,X and $\mathcal{F}:=\bigcup_{V,X}\mathcal{F}(V,X)$.

The Key Equation is solvable for each $\lambda \geq 9$.

(a) The map f_9 ; (b) the map f_{20} .

Example

In the Key Equation we do not assume that the entropy of f is positive, but $\lambda>1$ only. For example, all three maps have the same matrix $M\in\mathcal{M}_P$; the corresponding Key Equation is solvable for any $\lambda>1$ with the formula $v_j=\left(1-\frac{1}{\lambda}\right)^j$, $j\geq0$.

(a) The maps from one conjugacy class. The Key Equation is solvable for any $\lambda > 1$.

M =

Two cases

For $f \in \mathcal{CPM}$,

- 1. either M(f) represents a bounded linear operator on ℓ_P^1 and we need to use extensions of Perron-Frobenius theorem for positive operators leaving invariant a cone in a real Banach space;
- **2.** or M(f) does not represent a bounded linear operator on ℓ_P^1 and we need to use the Vere-Jones classification of infinite positive matrices.

Case of bounded operators

In order to use our theorem effectively we restrict our attention to a (still sufficiently rich) subclass of maps from \mathcal{CPM} .

To this end let us denote \mathcal{P} the set of all pairs (P,φ) such that

- (A1) P is admissible,
- (A2) $\varphi \colon P \to P$ is continuous,
- (A3) continuous 'connect-the-dots' map $\varphi_P\colon [0,1] \to [0,1]$ defined by $\varphi_P|_P = \varphi, \ \varphi_P|_J$ affine for any interval $J \subset \operatorname{conv}(P)$ such that $J \cap P = \emptyset$, satisfies

$$\exists L = L(P, \varphi) > 0 \ \forall I \in B(P) \ \forall y \in I^{\circ} \colon \operatorname{card} \varphi_{P}^{-1}(y) < L.$$

In this part we will deal with restrictively countably piecewise monotone continuous maps from the class \mathcal{RCPM} , where $f \in \mathcal{RCPM}$ if and only if it corresponds to some pair $(P,\varphi) \in \mathcal{P}$, i.e., $f|P=\varphi$ and f is monotone on each P-basic interval.

Proposition

Let $M(f) \in \mathcal{M}_P$ be the matrix of $f \in \mathcal{RCPM}$. Then M(f) represents a bounded \mathcal{K}_P^+ -positive linear operator on ℓ_P^1 .

Up to now we do not have any information on the relationship of the entropy of $f \in \mathcal{RCPM}$ and its spectral radius $r(\mathbb{M})$. This gap will be partially filled in by the following theorem.

Theorem

Let $M(f) \in \mathcal{M}_P$ be the matrix of $f \in \mathcal{RCPM}$, denote \mathbb{M} the operator on ℓ_P^1 represented by M(f) and assume that $h_{top}(f) > 0$. Then $r(\mathbb{M}) \geq e^{h_{top}(f)}$.

S. Karlin, Positive operators, J. Math. Mech. 8 (1959), 907–937.

 \mathcal{K}_{P}^{+} is reproducing: $\mathcal{K}_{P}^{+} - \mathcal{K}_{P}^{+} = \ell_{P}^{1}$ \mathcal{K}_{P}^{+} defines a partial ordering on ℓ_{P}^{1} : $x \leq y$ if $y - x \in \mathcal{K}_{P}^{+}$ \mathcal{K}_{P}^{+} is normal: $\exists b > 0 \ \forall x, y \in \mathcal{I}_{P}^{1}$: $\theta \leq x \leq y \implies ||x|| \leq b||y||$ (even acute, b = 1)

For a bounded linear operator $\mathbb A$ on a Banach space $\mathcal E$ we will consider its spectrum $\sigma(\mathbb A)=P_\sigma(\mathbb A)\cup R_\sigma(\mathbb A)\cup C_\sigma(\mathbb A)$ partitioned to the point, residual and continuous part respectively.

Theorem

(Krejn-Bonsall-Karlin) Let $\mathcal K$ be a normal reproducing cone in a (real) Banach space $\mathcal E$. Then, for every bounded positive operator $\mathbb A$ ($\mathbb A\mathcal K\subset\mathcal K$), the spectral radius $r(\mathbb A)$ of $\mathbb A$ belongs to the spectrum.

I. Marek, On some spectral properties of Radon-Nicolski operations and their generalizations, Comm. Math. Univ. Carolinae 3 (1962), 20–30.

Definition

A bounded linear operator $\mathbb A$ defined on a (complex) Banach space $\mathcal F$ will be called Radon-Nicolski if $\mathbb A$ may be represented as $\mathbb A=\mathbb C+\mathbb B$, where

- (i) C is compact,
- (ii) $r(\mathbb{A}) > r(\mathbb{B})$.

Theorem

Let τ be a function holomorphic in the neighborhood of the spectrum $\sigma(\mathbb{A})$ of the operator \mathbb{A} . Let \mathbb{A} be \mathcal{K} -positive and assume that $\tau(\mathbb{A})$ is a Radon-Nicolski operator on a real Banach space \mathcal{E} . Then $r(\mathbb{A}) \in P_{\sigma}(\mathbb{A})$ with corresponding eigenvector in \mathcal{K} .

The previous results lead us to the following results:

Theorem

Let $M(f) \in \mathcal{M}_P$ be the matrix of $f \in \mathcal{RCPM}$, denote \mathbb{M} the operator on ℓ_P^1 represented by M(f) and assume that $h_{top}(f) > 0$. If $\tau(\mathbb{M})$ is a Radon-Nicolski operator on ℓ_P^1 for a suitable τ holomorphic in the neighborhood of the spectrum $\sigma(\mathbb{M})$, then

- $-r(\mathbb{M})=e^{h_{top}(f)}=\beta$
- f is semiconjugated via a non-decreasing map ψ to some map $g \in \mathcal{RCPM}_{\beta}$; in particular it is true when $\mathbb M$ itself is a Radon-Nicolski operator

Definition

A function $f: [a, b] \to [a, b]$ is said to have a *d-horseshoe* if there exist *d* subintervals I_1, I_2, \ldots, I_d of [a, b] with disjoint interiors such that $f(I_i) \supset I_j$ for all $1 \le i, j \le d$.

Definition

For an integer m > 1, we say that a pair $(P, \varphi) \in \mathcal{P}$ is m-ruled, if there are P-basic intervals I_1, \ldots, I_m such that

- $\varphi_P \colon [0,1] \to [0,1]$ has an *m*-horseshoe created by the intervals I_1, \ldots, I_m
- $\forall I \in B(P) \ \forall y \in I^{\circ} \colon \operatorname{card}[\varphi_{P}^{-1}(y) \cap ([0,1] \setminus \bigcup_{i=1}^{m} I_{i})] < m.$

Theorem

Let $f \in \mathcal{RCPM}$ correspond to an m-ruled pair $(P, \varphi) \in \mathcal{P}$. Then f is semiconjugated via a non-decreasing map ψ to some map $g \in \mathcal{RCPM}_{\beta}$ with $\beta = e^{h_{top}(f)}$.

Example

Sketch of a map corresponding to a 10-ruled pair from \mathcal{P} .

$$f \in \mathcal{RCPM}$$
 transitive (left), $g \in \mathcal{RCPM}_{r(\mathbb{M})}$, $r(\mathbb{M}) = e^{h_{top}(f)} \sim 6.5616$.

Example

Let $P=\{a_n\colon n=0,1,\ldots,\infty\}$ be an admissible set with the only limit point equal to 1. Assume that $0=a_0< a_1<\cdots< a_\infty=1$ and define the map $\varphi\colon P\to P$ by $\varphi(a_0)=\varphi(a_2)=\varphi(a_4)=a_\infty$, $\varphi(a_1)=\varphi(a_3)=\varphi(a_5)=a_0$, $\varphi(a_6)=a_6$ and for each $k\geq 0$, $\varphi(a_{3k+7})=a_{3k+9}$, $\varphi(a_{3k+8})=a_{3k+5}$, $\varphi(a_{3k+9})=a_{3k+9}$. Then $(P,\varphi)\in \mathcal{P}$ and it is 6-ruled, where φ_P has a 6-horseshoe created by the P-basic intervals $[a_0,a_1],\ldots,[a_5,a_6]$. Let us consider a map $f\in\mathcal{RCPM}$ that corresponds to (P,φ) . By our theorem the map f is semiconjugated via a non-decreasing map ψ to some map $g\in\mathcal{RCPM}_\beta$ with $\beta=e^{h_{top}(f)}$. In particular, the maps f,g are conjugated when f is transitive.

The matrices M(f), C, B from Example:

	/ 1	1	1	1	1	1	1	1	1	1	1	1	1	1		. \	
M(f) =	1	1	1	1	1	1	1	1	1	1	1	1	1	1			1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1			1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
	1	1	1	1	1	1	0	0	0	0	0	0	0	0			
	0	0	0	0	0	0	1	1	1	0	0	0	0	0			
	0	0	0	0	0	1	1	1	1	0	0	0	0	0			İ
	0	0	0	0	0	1	1	1	1	0	0	0	0	0			İ
	0	0	0	0	0	0	0	0	0	1	1	1	0	0			l
	Ō	Õ	Ō	Ō	Ō	Ō	ō	Ō	1	1	1	1	Õ	ō			İ
	0	0	0	0	0	0	0	0	1	1	1	1	0	0			1
	Ō	Õ	Ō	Ō	Ō	Ō	ō	Ō	0	0	0	0	1	1			=
	0	0	0	0	0	0	0	0	0	0	0	1	1	1			l
	0	0	0	0	0	0	0	0	0	0	0	1	1	1			
	lo	Õ	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	0	0	0			
	0	0	0	0	0	0	0	0	0	0	Ō	0	ō	0			
	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	.												·				ł
	١.																1
	١.																1
	١.																1
	١.																1
	١.																/

Case of unbounded operators

Theorem

Let $T=(t_{ij})$ be an infinite nonnegative irreducible aperiodic matrix. There exists a common value $\lambda_M=\frac{1}{R}$ such that for each i,j

$$\lim_{n}(t_{ij}^{(n)})^{\frac{1}{n}}=\lambda_{M}.$$

Theorem

For any value r > 0 and all i, j

- (i) the series $\sum_{n} t_{ij}^{(n)} r^{n}$ are either all convergent or all divergent;
- (ii) as $n \to \infty$, either all or none of the sequences $\{t_{ij}^{(n)}r^n\}_n$ tend to zero.

D. Vere-Jones, *Ergodic properties of non-negative matrices-I*, Pacific J. of Math. **22**(2)(1967), 361–385.

Definition

- (i) The matrix $T = (t_{ij})$ is R-transient or R-recurrent according as the series $\sum_{n} t_{ij}^{(n)} R^{n}$ are convergent or divergent;
- (ii) an R-recurrent matrix is R-null or R-positive according as all or none of the sequences $\{t_{ii}^{(n)}R^n\}_n$ tend to zero.

J. B., H. Bruin, *Semiconjugacy to a map of a constant slope II*, in preparation.

Theorem

Let $M(f) \in \mathcal{M}_P$ be the matrix of $f \in \mathcal{CPM}$ which is R-transient. Then the Key Equation does not have any solution.

Theorem

There exists a map $f \in \mathcal{CPM}$ such that $M(f) \in \mathcal{M}_P$ is R-null with $R \in (0,1)$ and the Key Equation does not have any solution.

Theorem

For $f \in \mathcal{CPM}$ with $h_{top}(f) > 0$, assume that f^n has a full lap for some n. If $M(f) \in \mathcal{M}_P$ is R-positive, then $R \in (0,1)$ and f is semiconjugated via a non-decreasing map ψ to some map $g \in \mathcal{CPM}_\beta$, where $\frac{1}{R} = \beta \geq e^{h_{top}(f)}$.

CONJECTURE:

Assume that for some $f \in \mathcal{CPM}$ the Key Equation is solvable for some $\lambda_0 > 1$. Then it is also solvable for each $\lambda > \lambda_0!$