

A class of cubic Rauzy Fractals

Jéfferson Bastos^{*}, Ali Messaoudi^{*} and Tatiana Rodrigues[§] Department of Mathematics, UNESP, S. J. Rio Preto^{*}/Bauru[§], Brazil — 2012

Introduction

The Rauzy fractal is a compact subset of the space \mathbb{R}^{d-1} , $d \geq 2$. It has a fractal boundary and it induces two kind of tilings of \mathbb{R}^{d-1} , one of them is periodic and the other is auto-similar. Rauzy fractals are connected to many areas as substitution dynamical system, Number Theory among others (see [1],[2]). There are many ways of constructing Rauzy fractals, one of them is by β -expansions. Let $\beta > 1$ be a real number and $x \in \mathbb{R}^+$. Using greedy algorithm , we can write x in base β as $x = \sum_{i=-\infty}^{k} a_i \beta^i$ where $k \in \mathbb{Z}$ and a_i belong to the set A where $A = \{0, \ldots, \beta - 1\}$ if $\beta \in \mathbb{N}$ or $A = \{0, \ldots, |\beta|\}$ otherwise, where $|\beta|$ is the integer part of β .

The sequence $(a_i)_{i \le k}$ is called β expansion of x and is also denoted by $a_k a_{k-1} \dots$ The greedy algorithm can be defined as follows (see [3],[4]): denote by $\{y\}$ the fractional party of a number y. There exists an integer $k \in \mathbb{Z}$ such $\beta^k \leq x < \beta^{k+1}$. Let $x_k = \lfloor x/\beta^k \rfloor$ and $r_k = \{x/\beta^k\}$. Then for i < k, put $x_i = |\beta r_{i+1}|$ e $r_i = \{\beta r_{i+1}\}$.

1. Results

Here we present the results about the sets defined earlier.

Theorem 1 The set \mathcal{G} induces a periodic tiling of the complex plane, that is,

a) $\mathbb{C} = \bigcup_{u \in \mathbb{Z} + \mathbb{Z}\alpha} (\mathcal{G} + u);$ b) $int(\mathcal{G}+u) \cap (\mathcal{G}+v) \neq \emptyset, u, v \in \mathbb{Z} + \mathbb{Z}\alpha$ implies que u = v. **Theorem 2** For all $a \ge 2$ we have

$$\partial \mathcal{G}_a = \bigcup_{u \in B} \mathcal{G}_a \cap (\mathcal{G}_a + u)$$

where
$$B = \{\pm 1, \pm \alpha, \pm (\alpha - 1)\}$$

2. The case a = 2

Using the automata we can prove that each of the six regions $\mathcal{G} \cap$ $(\mathcal{G}+u)$ which forms the boundary \mathcal{G}_a is the image of one of them by affine functions. We can also show that there exists 3 affine functions $g_0, \ g_1, \ g_2$ such that

$$\mathcal{G}_{\alpha-1} = \bigcup_{i=0,1,2} g_i(\mathcal{G}_{\alpha-1}).$$

As consequence we can explicitly calculate the Hausdorff's dimension of $\partial \mathcal{G}$.

Theorem 5 - $\mathcal{G}_{\alpha-1}$ satisfies the following properties: 1. $\mathcal{G}_{\alpha-1} = g_0(\mathcal{G}_{\alpha-1}) \cup g_1(\mathcal{G}_{\alpha-1}) \cup g_2(\mathcal{G}_{\alpha-1});$ 2. $g_0(\mathcal{G}_{\alpha-1}) \cap g_1(\mathcal{G}_{\alpha-1}) = \{-(\alpha^{-1} + \alpha + \alpha^5)\};$ 3. $g_1(\mathcal{G}_{\alpha-1}) \cap g_2(\mathcal{G}_{\alpha-1}) = \{-(\alpha^{-1} + \alpha + \alpha^4 + \alpha^6)\};$ 4. $g_0(\mathcal{G}_{\alpha-1}) \cap g_2(\mathcal{G}_{\alpha-1}) = \emptyset;$ where $g_0(z) = \alpha^{-3} + \alpha^{-1} + \alpha^2 z$, $g_1(z) = -1 - \alpha^3 + \alpha^3 z$ and $g_2(z) = \alpha^2 + \alpha^5 + \alpha^4 z.$

We get

$$x = x_k \beta^k + x_{k-1} \beta^{k-1} + \cdots$$

if k < 0 (x < 1), we put $x_0 = x_{-1} = \cdots = x_{k+1} = 0$. If an expansion $(x_i)_{i \le k}$ satisfies $x_i = 0$ for all i < n, it is said to be finite and the ending zeros are omitted. It will be denoted by $(x_i)_{n \le i \le k}$ or $x_k \dots x_n$. For numbers $0 \le x < 1$, the greedy expansion coincides with the β -representation of Rényi (see [10]) which can be defined by means of β -transformation of the interval [0, 1]

 $T_{\beta}(x) = \{\beta x\}, \ x \in [0, 1].$

For $x \in [0,1[$, we have $x_k = \lfloor \beta T_{\beta}^{k-1}(x) \rfloor$, but for x = 1, the two algorithms differ. The β -expansion of 1 is $1 = 1.0000 \cdots$, while the Rényi β - representation of 1 is

 $d(1,\beta) = .t_{-1}t_{-2}\ldots,$

where

 $t_{-k} = \lfloor \beta T_{\beta}^{k-1}(1) \rfloor, \ \forall k \ge 1.$

We put

 $E_{\beta} = \{ (x_i)_{i > k}, k \in \mathbb{Z} \mid \forall n \ge k, (x_i)_{n > i > k} \text{ is a finite } \beta \text{ expansion } \}.$

Now, assume that β is a Pisot number of degree $d \geq 3$, that means that β is an algebraic integer of degree d whose Galois conjugates have modulus less than one. We denote by β_2, \ldots, β_r the real Galois conjugates of β and by

 $\beta_{r+1}, \ldots, \beta_{r+s}, \beta_{r+s+1} = \overline{\beta_{r+1}}, \ldots, \beta_{r+2s} = \overline{\beta_{r+s}}$

Theorem 6 There is a bijective continuous function

 $f: [0,1] \longrightarrow \mathcal{G}_{\alpha-1}$ such that $f(0) = -1 - \alpha^3$ and $f(1) = \alpha^2 - \alpha^3$. **Theorem 7** 1. $\mathcal{G}_1 = -\alpha + \alpha^{-1} \mathcal{G}_{\alpha-1}$; 2. $\mathcal{G}_{\alpha} = -\alpha^2 + \mathcal{G}_{\alpha-1};$ 3. $\mathcal{G}_{1-\alpha} = -\alpha + 1 + \mathcal{G}_{\alpha-1};$ 4. $\mathcal{G}_{-\alpha} = -\alpha - \alpha^2 + \mathcal{G}_{\alpha-1};$ 5. $\mathcal{G}_{-1} = -1 - \alpha + \alpha^{-1} \mathcal{G}_{\alpha-1}$ We can use the results above to calculate the Hausdorff's dimension of \mathcal{G}_{lpha-1} .

its complex Galois conjugates. Let $\psi = (\beta_2, \ldots, \beta_{r+s}) \in \mathbb{R}^{r-1} \times \mathbb{C}^s$ and put $\psi^i = (\beta_2^i, \dots, \beta_{r+s}^i)$ for all $i \in \mathbb{Z}$. If $x_{-1} \dots x_{-N}$ is a finite β -expansion, we put

$$\mathcal{K}_{x_{-1}\dots x_{-N}} = \{\sum_{i=-N}^{+\infty} a_i \psi^i, \ (a_i)_{i\geq -N} \in E_\beta, \ a_i = x_i, \ \forall -N \le i \le -1\}.$$

The set $\mathcal{K}_{x_{-1}\dots x_{-N}}$ is a subset of $\mathbb{R}^{r-1} \times \mathbb{C}^s$ called a tile. The Rauzy fractal is by definition the central tile

$$\mathcal{R} = \mathcal{K}_{.0} = \{ \sum_{i=0}^{+\infty} a_i \psi^i, \ (a_i)_{i \ge 0} \in E_\beta \}.$$

It is a compact subset of $\mathbb{R}^{r-1} \times \mathbb{C}^s \approx \mathbb{R}^{d-1}$, and it induces a periodic tiling of the above space. That is there exists a group H which is isomorphic to \mathbb{Z}^{d-1} such that $\mathbb{R}^{r-1} \times \mathbb{C}^s = \bigcup_{h \in H} (\mathcal{R} + h)$, moreover the intersection of \mathcal{R} with the interior of another tile $\mathcal{R} + h$, is not empty. An important class of Pisot numbers are those such that the associated Rauzy fractal has 0 as an interior point. This numbers are characterized by Akiyama in [7]. They are exactly the Pisot numbers that satisfy

$\mathbb{Z}[\beta] \cap [0, +\infty[\subset \operatorname{Fin}(\beta) \text{ (called property (F))}],$

where $Fin(\beta)$ is the set of nonnegative real numbers which have a finite β -expansion. On the other hand, Akiyama [5] characterized the set cubic unit Pisot's numbers that satisfy property (F) to be exactly the set of dominant roots of the following polynomial (with integer coefficients):

$$x^3 - ax^2 - bx - 1$$
 $a \ge 0$ and $-1 \le b \le a + 1$

In order to describe the fractal boundary of the sets \mathcal{G}_a and \mathcal{R}_a we use a finite automata (finite directed graph with states and arrows connecting these states) whose set of states are $S = \{0, \pm \alpha, \pm \alpha^2, \pm (\alpha - \beta)\}$ α^2), $\pm (1 + (a - 1)\alpha^2)$, $\pm (1 + (a - 2)\alpha^2)$, $\pm (1 - \alpha + (a - 1)\alpha^2)$, $\pm (1 - \alpha + (a -$ $2\alpha + a\alpha^2$. We have that $\sum_{i=l}^{\infty} a_i \alpha^i = \sum_{i=l}^{\infty} b_i \alpha^i$ if only if, the sequence $((a_i, b_i))_{i>l}$ is an infinite path in automata starting from the initial state. The automata is given above

Theorem 8 - Let A be a compact set of \mathbb{C} such that

$$A = \bigcup_{i=0}^{n} \varphi_i(A).$$

Suppose that $| \varphi_i(x) - \varphi_i(y) | = r_i | x - y |, \forall x, y \in \mathbb{C}.$ Then $dim_H(A) \leq s$, where s is the only real number which verifies $\sum_{i=0}^{n} r_{i}^{s} = 1$.

When $\varphi_i(A)$ intersect in points it is known that $dim_H(A) = s$. Using Theorem [5], $g_0(\mathcal{R}_{\alpha-1}) \cap g_1(\mathcal{R}_{\alpha-1})$ and $g_1(\mathcal{R}_{\alpha-1}) \cap g_2(\mathcal{R}_{\alpha-1})$ are points and $g_0(\mathcal{R}_{\alpha-1}) \cap g_2(\mathcal{R}_{\alpha-1})$ is empty. Consequently $dim_H(\mathcal{R}_{\alpha-1}) = s$, where s verifies

$$|\alpha|^{2s} + |\alpha|^{3s} + |\alpha|^{4s} = 1.$$

Here we have that

$$dim_H(\mathcal{R}_{\alpha-1}) = \frac{\log \rho}{\log \mid \alpha \mid} = 1.359337357,$$

where ρ is the maximum root of polynomial $X^4 + X^3 + X^2 - 1 = 0$.

References

- [1] P. Arnoux, S. Ito. *Pisot substitutions and Rauzy fractals*. Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181-207.
- [2] P. Arnoux, S. Ito, Y.Sano. *Higher dimensional extensions of subs*titutions and their dual maps. J. Anal. Math. 83 (2001), 183-206.

 $0x = 1, \ a \geq 0$ and $-1 \geq 0 \geq a + 1$.

(if b = -1 add the restriction $a \ge 2$). In particular, this set divided into three subsets: a) $0 \ge b \ge a$, and in this case $d(1,\beta) = \cdot ab1$, b) b = -1, $a \ge 2$. In this case $d(1,\beta) = \cdot (a-1)(a-1)01$, c) b = a + 1, and in this case $d(1, \beta) = \cdot (a + 1)00a1$.

The objective of this work is to study properties of the classical Rauzy fractal

$$\mathcal{R} = \mathcal{R}_a = \left\{ \sum_{i=2}^{+\infty} a_i \alpha^i, a_i \in \{0, 1, \dots, a-1\}, a_i a_{i-1} a_{i-2} a_{i-3} < (a-1)(a-1)01 \right\}$$

and the G-Rauzy fractal (or Rauzy fractal with initial conditions)

$$\mathcal{G} = \mathcal{G}_a = \left\{ \sum_{i=2}^{+\infty} a_i \alpha^i, a_i \in \{0, 1, \dots, a-1\}, a_2 < a, a_3 a_2 < (a-1)(a-1) \\ a_4 a_3 a_2 < (a-1)(a-1)0, a_i a_{i-1} a_{i-2} a_{i-3} < (a-1)(a-1)01 \right\}$$

in the case where b = -1 and $a \ge 2$.

[3] W. Parry,. On the β -expansions of real numbers. Acta Math. Acad. Sci. Hungar 11 (1960) 401-416.

Representation of numbers and finite automata. [4] C. Frougny. Math. Systems Theory 25 (1992), p.713-723.

[5] S. Akiyama. *Cubic Pisot units with finite beta expansions*. Algebraic Number theory and Diophantine Analysis, (2000), 11-26.

[6] S. Akiyama. Self affine tiling and Pisot numeration system. Number theory and its Applications, (1999), 7-17.

[7] S. Akiyama. On the boundary of self affine tilings generated by Pisot numbers. Journal of Math. Soc. Japan, (2002), 283-308.

[8] P. Hubert, A. Messaoudi. *Best simultaneous diophantine appro*ximations of Pisot numbers and Rauzy fractals. Acta Arith. 124 (2006), 1-15.

[9] A. Messaoudi. Propriétés arithmétiques et dynamiques du fractal de Rauzy. J. Théor. Nombres Bordeaux 10 (1998), 135-162.

[10] A. Rényi. Représentations for real numbers and their ergodic properties. Acta. Math. Acad. Sci. Hungar 8 (1957) 477-493.