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Introduction

The Rauzy fractal is a compact subset of the space Rd−1, d ≥ 2. It
has a fractal boundary and it induces two kind of tilings of Rd−1, one
of them is periodic and the other is auto-similar. Rauzy fractals are
connected to many areas as substitution dynamical system, Number
Theory among others (see [1],[2]). There are many ways of construc-
ting Rauzy fractals, one of them is by β-expansions. Let β > 1 be a
real number and x ∈ R

+. Using greedy algorithm , we can write x in
base β as x =

∑k
i=−∞ aiβ

i where k ∈ Z and ai belong to the set A
where A = {0, . . . , β − 1} if β ∈ N or A = {0, . . . , ⌊β⌋} otherwise,
where ⌊β⌋ is the integer part of β.
The sequence (ai)i≤k is called β expansion of x and is also denoted
by akak−1 . . . The greedy algorithm can be defined as follows (see
[3],[4]): denote by {y} the fractional party of a number y. There
exists an integer k ∈ Z such βk ≤ x < βk+1. Let xk = ⌊x/βk⌋ and
rk = {x/βk}. Then for i < k, put xi = ⌊βri+1⌋ e ri = {βri+1}.
We get

x = xkβ
k + xk−1β

k−1 + · · ·

if k < 0 (x < 1), we put x0 = x−1 = · · · = xk+1 = 0. If an
expansion (xi)i≤k satisfies xi = 0 for all i < n, it is said to be finite
and the ending zeros are omitted. It will be denoted by (xi)n≤i≤k or
xk . . . xn. For numbers 0 ≤ x < 1, the greedy expansion coincides
with the β-representation of Rényi (see [10]) which can be defined by
means of β-transformation of the interval [0, 1]

Tβ(x) = {βx}, x ∈ [0, 1].

For x ∈ [0, 1[, we have xk = ⌊βT k−1
β (x)⌋, but for x = 1, the two

algorithms differ. The β-expansion of 1 is 1 = 1.0000 · · · , while the
Rényi β- representation of 1 is

d(1, β) = .t−1t−2 . . . ,

where
t−k = ⌊βT k−1

β (1)⌋, ∀k ≥ 1.

We put

Eβ = {(xi)i≥k, k ∈ Z | ∀n ≥ k, (xi)n≥i≥k is a finite β expansion }.

Now, assume that β is a Pisot number of degree d ≥ 3, that means
that β is an algebraic integer of degree d whose Galois conjugates
have modulus less than one. We denote by β2, . . . , βr the real Galois
conjugates of β and by

βr+1, . . . , βr+s, βr+s+1 = βr+1, . . . , βr+2s = βr+s

its complex Galois conjugates. Let ψ = (β2, . . . , βr+s) ∈ R
r−1×C

s

and put ψi = (βi2, . . . , β
i
r+s) for all i ∈ Z.

If .x−1 . . . x−N is a finite β-expansion, we put

K.x−1...x−N = {
+∞
∑

i=−N

aiψ
i, (ai)i≥−N ∈ Eβ, ai = xi, ∀ −N ≤ i ≤ −1}.

The set K.x−1...x−N is a subset of Rr−1 × Cs called a tile.
The Rauzy fractal is by definition the central tile

R = K.0 = {
+∞
∑

i=0

aiψ
i, (ai)i≥0 ∈ Eβ}.

It is a compact subset of Rr−1×C
s ≈ R

d−1, and it induces a periodic
tiling of the above space. That is there exists a group H which is
isomorphic to Zd−1 such that Rr−1×C

s =
⋃

h∈H(R+h), moreover
the intersection of R with the interior of another tile R + h, is not
empty. An important class of Pisot numbers are those such that the
associated Rauzy fractal has 0 as an interior point. This numbers are
characterized by Akiyama in [7]. They are exactly the Pisot numbers
that satisfy

Z[β] ∩ [0,+∞[⊂ Fin(β) (called property (F)) ,

where Fin(β) is the set of nonnegative real numbers which have a
finite β-expansion. On the other hand, Akiyama [5] characterized the
set cubic unit Pisot’s numbers that satisfy property (F ) to be exactly
the set of dominant roots of the following polynomial (with integer
coefficients):

x3 − ax2 − bx− 1, a ≥ 0 and − 1 ≤ b ≤ a + 1.

(if b = −1 add the restriction a ≥ 2).
In particular, this set divided into three subsets:

a) 0 ≥ b ≥ a, and in this case d(1, β) = ·ab1,

b) b = −1, a ≥ 2. In this case d(1, β) = ·(a− 1)(a− 1)01,

c) b = a + 1, and in this case d(1, β) = ·(a + 1)00a1 .

The objective of this work is to study properties of the classical Rauzy
fractal

R = Ra =

{

+∞
∑

i=2

aiα
i, ai ∈ {0, 1, ..., a− 1}, aiai−1ai−2ai−3 < (a− 1)(a− 1)01

}

and the G-Rauzy fractal (or Rauzy fractal with initial conditions)

G = Ga =











+∞
∑

i=2

aiα
i, ai ∈ {0, 1, ..., a− 1}, a2 < a, a3a2 < (a− 1)(a− 1)

a4a3a2 < (a− 1)(a− 1)0, aiai−1ai−2ai−3 < (a− 1)(a− 1)01











in the case where b = −1 and a ≥ 2.

1. Results

Here we present the results about the sets defined earlier.

Theorem 1 The set G induces a periodic tiling of the complex plane,
that is,

a)C =
⋃

u∈Z+Zα(G + u);

b) int(G + u) ∩ (G + v) 6= ∅, u, v ∈ Z + Zα implies que u = v.

Theorem 2 For all a ≥ 2 we have

∂Ga =
⋃

u∈B

Ga ∩ (Ga + u)

where B = {±1,±α,±(α− 1)}.

G2

G3 G4

Theorem 3 The set R induces a periodic tiling of the complex plane,
that is,

a)C =
⋃

u∈Z+Zα(R + u);

b) int(R + u) ∩ (R + v) 6= ∅, u, v ∈ Z + Zα implies que u = v.

Theorem 4 For all a ≥ 2 we have

∂Ra =
⋃

x∈B

Ra ∩ (Ra + x)

where B = {±u,±αu,±(1 + α)u,±(1− α)u}, u = α− 1.

R2

In order to describe the fractal boundary of the sets Ga and Ra we use
a finite automata (finite directed graph with states and arrows connec-
ting these states) whose set of states are S = {0,±α,±α2,±(α −
α2), ±(1+(a−1)α2),±(1+(a−2)α2), ±(1−α+(a−1)α2), ±(1−
2α + aα2)} .We have that

∑∞
i=l aiα

i =
∑∞
i=l biα

i if only if, the se-
quence ((ai, bi))i≥l is an infinite path in automata starting from the
initial state. The automata is given above

2. The case a = 2

Using the automata we can prove that each of the six regions G ∩
(G + u) which forms the boundary Ga is the image of one of them by
affine functions. We can also show that there exists 3 affine functions
g0, g1, g2 such that

Gα−1 =
⋃

i=0,1,2

gi(Gα−1).

As consequence we can explicitly calculate the Hausdorff’s dimension
of ∂G.

Theorem 5 - Gα−1 satisfies the following properties:

1. Gα−1 = g0(Gα−1) ∪ g1(Gα−1) ∪ g2(Gα−1);

2. g0(Gα−1) ∩ g1(Gα−1) = {−(α−1 + α + α5)};

3. g1(Gα−1) ∩ g2(Gα−1) = {−(α−1 + α + α4 + α6)};

4. g0(Gα−1) ∩ g2(Gα−1) = ∅;

where g0(z) = α−3 + α−1 + α2z, g1(z) = −1 − α3 + α3z and
g2(z) = α2 + α5 + α4z.

Theorem 6 There is a bijective continuous function

f : [0, 1] −→ Gα−1

such that f (0) = −1− α3 and f (1) = α2 − α3.

Theorem 7 1. G1 = −α + α−1Gα−1;

2. Gα = −α2 + Gα−1;

3. G1−α = −α + 1 + Gα−1;

4. G−α = −α− α2 + Gα−1;

5. G−1 = −1− α + α−1Gα−1

We can use the results above to calculate the Hausdorff’s dimension
of Gα−1.

Theorem 8 - Let A be a compact set of C such that

A = ∪ni=0ϕi(A).

Suppose that | ϕi(x) − ϕi(y) |= ri | x − y |, ∀x, y ∈ C.
Then dimH(A) ≤ s, where s is the only real number which veri-
fies

∑n
i=0 r

s
i = 1.

When ϕi(A) intersect in points it is known that dimH(A) = s.
Using Theorem [5], g0(Rα−1)∩g1(Rα−1) and g1(Rα−1)∩g2(Rα−1)
are points and g0(Rα−1) ∩ g2(Rα−1) is empty. Consequently
dimH(Rα−1) = s, where s verifies

| α |2s + | α |3s + | α |4s= 1.

Here we have that

dimH(Rα−1) =
log ρ

log | α |
= 1.359337357,

where ρ is the maximum root of polynomial X4+X3+X2− 1 = 0.
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de Rauzy. J. Théor. Nombres Bordeaux 10 (1998), 135-162.

[10] A. Rényi. Représentations for real numbers and their ergodic pro-
perties. Acta. Math. Acad. Sci. Hungar 8 (1957) 477-493.


