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Introduction

One of the main problems in the theory of ordinary differential equa-
tions is the study of their limit cycles, their existence, their number
and their stability. A limit cycle of a differential equation is a periodic
orbit in the set of all isolated periodic orbits of the differential equa-
tion. These last years hundreds of papers studied the limit cycles of
planar polynomial differential systems. The Second part of the 16th
Hilbert’s problem is related with the least upper bound on the number
of limit cycles of polynomial vector fields having a fixed degree. The
generalized polynomial Liénard differential equation

ẍ + f (x)ẋ + g(x) = 0. (1)

was introduced in [?]. Here the dot denotes differentiation with respect
to the time t, and f (x) and g(x) are polynomials in the variable x of
degrees n and m respectively.

In this work, we study the maximum number of limit cycles of the
Liénard polynomial differential system

ẋ = y, ẏ = −x−
∑
k≥1

εkfk(x, y)y. (2)

which bifurcate from the periodic orbits of the linear differential system
(2) with ε = 0, using the averaging theory of first and second order.

1. Main Results

The main results of this paper are the following.
Theorem 1.
By applying the first order averaging method to the Liénard polyno-
mial differential system (2) at most [n2 ] limit cycles bifurcate from the
periodic orbits of the linear system (2) with ε = 0.

Theorem 2.
By applying the second order averaging method to the Liénard poly-

nomial differential system (2) at most max{[n +
(−1)n+1

2 ], [m2 ]} limit
cycles bifurcate from the periodic orbits of the linear system (2) with
ε = 0.

2. The Averaging Theory of First
and Second Orders

The averaging theory of first and second order for studying periodic
orbits was developed in [1] and [2]. It is summarized as follows.

Consider the differential system

x′(t) = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε), (3)

where F1, F2 : R × D → Rn, R : R × D × (−εf , εf ) → Rn are
continuous functions, T -periodic in the first variable, and D is an open
subset of Rn. Assume that the following hypotheses (i) and (ii) hold.

(i) F1(t, .) ∈ C1(D) for all t ∈ R, F1, F2, R,DxF1 are locally Lips-
chitz with respect to x, and R is differentiable with respect to ε.
We define

F10(z) =
1

T

∫ T

0
F1(s, z)ds,

F20(z) =
1

T

∫ T

0
[DzF1(s, z).y1(s, z) + F2(s, z)] ds,

where

y1(s, z) =

∫ s

0
F1(t, z)dt.

(ii) For V ⊂ D an open and bounded set and for each ε ∈
(−εf , εf ) {0}, there exists aε ∈ V such that F10(aε)+εF20(aε) = 0
and dB(F10 + εF20, V, aε) 6= 0.

Then, for |ε| > 0 sufficiently small there exists a T -periodic solution
ϕ(., ε) of the system 1.2 such that ϕ(0, ε) = aε.

The expression dB(F10 + εF20, V, aε) 6= 0 means that the Brouwer
degree of the function F10 + εF20 : V → Rn at the fixed point aε
is not zero. A sufficient condition for the inequality to be true is that
the Jacobian of the function F10 + εF20 at aε is not zero.

If F10 is not identically zero, then the zeros of F10 + εF20 are mainly
the zeros of F10 for ε sufficiently small. In this case the previous result
provides the averaging theory of first order.

If F10 is identically zero and F20 is not identically zero, then the zeros
of F10 + εF20 are mainly the zeros of F20 for ε sufficiently small. In
this case the previous result provides the averaging theory of second
order.
For more information about the averaging theory see [4] and [5].

2. Proof of Theorem 1

We shall need the first order averaging theory to prove Theorem 1.

In order to apply the first order averaging method we write system (2)
with k = 1, in polar coordinates (r, θ) where x = rcos(θ),
y = rsin(θ), r > 0 In this way system (2) is written in the standard
form for applying the averaging theory.

If we write f1(x, y) =
∑n
i+j=0 aijx

iyj then system (2) becomes

ṙ = −ε
∑n
i+j=0 aijr

i+j+1cosi(θ)sinj+2(θ),

θ̇ = −1− ε
∑n
i+j=0 aijr

i+jcosi+1(θ)sinj+1(θ).

Now taking θ as the new independent variable, we obtain

dr
dθ = ε

(∑n
i+j=0 aijr

i+j+1cosi(θ)sinj+2(θ)
)

+ O(ε2)

and

F10(r) = 1
2π

∫ 2π
0

(∑n
i+j=0 aijr

i+j+1cosi(θ)sinj+2(θ)
)
dθ.

In order to calculate the exact expression of F10 we use the following
formula∫ 2π

0 cosi(θ)sinj+2(θ)dθ = 0 if i odd or j odd∫ 2π
0 cosi(θ)sinj+2(θ)dθ = αij if i even and j even,

Hence

F10(r) =
1

2π

n∑
i+j=0

aijαijr
i+j+1 where i even and j even. (4)

Then the polynomial F10(r) has at most [n2 ] positive roots, and we can
choose the coefficients aij with i even and j even in such a way that
F10(r) has exactly [n2 ] simple positive roots. Hence Theorem 1 is proved.

3. Proof of Theorem 2

For proving Theorem 2, we shall use the second order averaging the-
ory. If we write f1(x, y) = f (x, y) =

∑n
i+j=0 aijx

iyj and f2(x, y) =

g(x, y) =
∑m
i+j=0 bijx

iyj then system (2) with k = 2 in polar coordi-
nates (r, θ), r > 0 becomes

ṙ = −ε
(∑n

i+j=0 aijr
i+j+1cosi(θ)sinj+2(θ)

)
−

ε2
(∑m

i+j=0 bijr
i+j+1cosi(θ)sinj+2(θ)

)
,

θ̇ = −1 − εr
(∑n

i+j=0 aijr
i+j+1cosi+1(θ)sinj+1(θ)

)
−

ε2r
(∑m

i+j=0 bijr
i+j+1cosi+1(θ)sinj+1(θ)

)
.

Taking θ as the new independent variable, we obtain

dr
dθ = εF1(θ, r) + ε2F2(θ, r) + O(ε3),

Where F1(θ, r) =
∑n
i+j=0 aijr

i+j+1cosi(θ)sinj+2(θ),

F2(θ, r) =
∑m
i+j=0 bijr

i+j+1cosi(θ)sinj+2(θ) −

r cos(θ) sin(θ)
[∑n

i+j=0 aijr
i+jcosi(θ)sinj+1(θ)

]2
.

Now we determine the corresponding function F20. For this we put
F10 ≡ 0 which is equivalent to aij = 0 for all i even and j even, and
we compute

d
drF1(θ, r) =

∑n
i+j=0(i + j + 1)aijr

i+jcosi(θ)sinj+2(θ),

y1 =
∫ θ

0 F1(φ, r)dφ which is equal to

a10r
2 (α110sin(θ) + α210sin(3θ)) + ... + albr

l+b+1(
α1lbsin(θ) + α2lbsin(3θ) + ... + α(l+b+2)+1

2 lb
sin((l + b + 2)θ)

)
+a01r

2 (α101 + α201 cos(θ) + α301 cos(3θ)) + ... + acdr
c+d+1(

α1cd + α2cd cos(θ) + α3cd cos(3θ) + ... + α(c+d+2)+3
2 cd

cos((c + d + 2)θ)

)
+a11r

3 (α111 + α211 cos(2θ) + α311 cos(4θ)) + ... + aldr
l+d+1(

α1ld + α2ld cos(2θ) + α3ld cos(4θ) + ... + α(l+d+2)+2
2 ld

cos((l + d + 2)θ)

)
.

Where l is the greatest odd number and b is the greatest even num-
ber so that l + b is less than or equal to n. c is the greatest even
number and d is the greatest odd number so that c + d is less than or
equal to n. αijk are real constants exhibited during the computation of∫ θ

0 cos
i(φ)sinj+2(φ)dφ for all i and j. We know from (4) that F10 is

identically zero if and only if aij = 0 for all i even and j even.

Moreover∫ 2π
0 cosi(θ)sinj+2(θ)sin((2k + 1)θ)dθ = 0 if i odd and ∀j ∈ N,

= A2k+1
ij 6= 0 if i even and j odd, k = 0, 1, ...∫ 2π

0 cosi(θ)sinj+2(θ)dθ 6= 0, if and only if i even and j even,∫ 2π
0 cosi(θ)sinj+2(θ)cos((2k + 1)θ)dθ = 0 if j odd and ∀i ∈ N,

= B2k+1
ij 6= 0 if i odd and j even, k = 0, 1, ...∫ 2π

0 cosi(θ)sinj+2(θ)cos((2k)θ)dθ = 0, ∀i, j ∈
N with i odd or j odd, k = 0, 1, ...

So∫ 2π
0 ddrF1(θ, r)y1(θ, r)dθ =∑n
i+j=1(i + j + 1)aijr

i+j
∫ 2π

0 cosi(θ)sinj+2(θ)×

[a10r
2(α110 sin(θ) + α210 sin(3θ)) + ... + albr

l+b+1(α1lb sin(θ) +
α2lb sin(3θ) + ... +
α(l+b+2)+12lb sin((l + b + 2)θ))]

+
∑n
i+j=1(i + j + 1)aijr

i+j
∫ 2π

0 cosi(θ)sinj+2(θ)×

[a01r
2(α101 + α201 cos(θ) + α301 cos(3θ)) + ...+

acdr
c+d+1(α1cd + α2cd cos(θ) + α3cd cos(3θ) + ... +

α(c+d+2)+32cd cos((c + d + 2)θ))].

Then∫ 2π
0 ddrF1(θ, r)y1(θ, r)dθ =

∑n
i+j=1(i + j + 1)aijr

i+j

×[a10r
2(α110A

1
ij + α210A

3
ij) + ... + albr

l+b+1(α1lbA
1
ij + α2lbA

3
ij +

... + α(l+b+2)+12lbA
l+b+2
ij )]

+
∑n
i+j=1(i + j + 1)aijr

i+j

×[a01r
2(α201B

1
ij +α301B

3
ij) + ...+ acdr

c+d+1(α2cdB
1
ij +α3cdB

3
ij +

... + α(c+d+2)+32cdB
c+d+2
ij )].

Moreover∫ 2π
0 F2(θ, r)dθ =

∑m
i+j=0 bijr

i+j+1
∫ 2π

0 cosi(θ) sinj+2(θ)dθ

−2
∑n
iodd+jeven=1

∑n
keven+hodd=1 aij akh r

i+j+k+h+1∫ 2π

0
cosi+k+1(θ) sinj+h+3(θ)dθ.

but∫ 2π
0 cosi(θ) sinj+2(θ)dθ = 0 if i odd or j odd,

= Cij 6= 0 if i even and j even,

and
∫ 2π

0 cosi+k+1(θ) sinj+h+3(θ)dθ = C(i+k+1)(j+h+1) 6= 0.

Hence∫ 2π
0 F2(θ, r)dθ = b00C00r + (b02C02 + b20C20)r3 +

... + (
∑i even,j even
i+j=m bijCij)r

m+1 −a10a01C22r
3 − ... −

2
∑
iodd+jeven=n

∑
keven+hodd=n aij akh C(i+k+1)(j+h+1)r

i+j+k+h+1

Then F20(r) is the polynomial

r
∑n
i+j=1(i + j + 1)aijr

i+j

× [a10r(α110A
1
ij +α210A

3
ij) + ...+ albr

l+b(α1lbA
1
ij +α2lbA

3
ij + ...+

α(l+b+2)+12lbA
l+b+2
ij )

+ a01r(α201B
1
ij + α301B

3
ij) + ... + acdr

c+d(α2cdB
1
ij + α3cdB

3
ij +

... + α(c+d+2)+32cdB
c+d+2
ij )

+ b00C00 + (b02C02 + b20C20)r2 + ... + (
∑i even,j even
i+j=m bijCij)r

m

− a10a01C22r
2 − ...− 2

∑
iodd+jeven=n∑

keven+hodd=n aij akh C(i+k+1)(j+h+1)r
i+j+k+h].

We conclude that:

1. if m > 2n, F20 has at most [m2] positive roots.

2. if m ≤ 2n we have

(a) if n is odd: l + b = n, c + d = n and i + j + k + h = 2n.
Then, F20 has at most n positive roots.

(b) if n is even: l+b = n−1, c+d = n−1 and i+j+k+h = 2n−2.
Then, F20 has at most n− 1 positive roots.

Then
F20 has at most max{[n + (−1)n+12], [m2]} positive roots. This
completes the proof of Theorem 2.
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