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Introduction

One of the main problems in the theory of ordinary differential equa-
tions is the study of their limit cycles, their existence, their number
and their stability. A limit cycle of a differential equation is a periodic
orbit in the set of all isolated periodic orbits of the differential equa-
tion. These last years hundreds of papers studied the limit cycles of
planar polynomial differential systems. The Second part of the 16th
Hilbert's problem is related with the least upper bound on the number
of limit cycles of polynomial vector fields having a fixed degree. The
generalized polynomial Liénard differential equation

i+ f(2)7 + g(x) = 0. (1)

was introduced in [?]. Here the dot denotes differentiation with respect
to the time ¢, and f(x) and g(x) are polynomials in the variable x of
degrees n and m respectively.

In this work, we study the maximum number of limit cycles of the
Liénard polynomial differential system

t=yg=—1— Y € fz,y)y. (2)

k>1

which bifurcate from the periodic orbits of the linear differential system
(2) with € = 0, using the averaging theory of first and second order.

1. Main Results

The main results of this paper are the following.

Theorem 1.
By applying the first order averaging method to the Liénard polyno-
mial differential system (2) at most [5] limit cycles bifurcate from the

periodic orbits of the linear system (2) with € = 0.

Theorem 2.
By applying the second order averaging method to the Liénard poly-

_1\n+1
nomial differential system (2) at most max{[n + ( 12) |, 5} limit
cycles bifurcate from the periodic orbits of the linear system (2) with
e = 0.

2. The Averaging Theory of First
and Second Orders

The averaging theory of first and second order for studying periodic
orbits was developed in [1] and [2]. It is summarized as follows.

Consider the differential system

2/ (t) = eFy(t, x) + € Fo(t, x) + € R(t, x, €), (3)
where F1, F5 : RX D — R" R: Rx D X (—€f,€er) — R" are

continuous functions, T-periodic in the first variable, and D is an open
subset of R". Assume that the following hypotheses (i) and (i7) hold.

(i) Fi(t,.) € CH(D) for all t € R, F|, F5, R, D,F] are locally Lips-
chitz with respect to x, and R is differentiable with respect to e.

We define
. (T
Fu(:) =7 [ Fils.2)ds
1 o

(ii) For V' C D an open and bounded set and for each ¢ €
(—€f,€¢) {0}, there exists ac € V such that Fyp(ae)+eFhy(ae) = 0
and dp(Fio+ eFy, V,ae) # 0.

Then, for |e| > 0 sufficiently small there exists a T-periodic solution
©(., €) of the system 1.2 such that (0, €) = ae.

The expression dp(Fg + €Fog, V,ae) # 0 means that the Brouwer
degree of the function Fjy+ €Fhy : V — R at the fixed point a
Is not zero. A sufficient condition for the inequality to be true is that
the Jacobian of the function F'jg + €F5q at ae is not zero.

It F'( is not identically zero, then the zeros of F'y + €F5y are mainly
the zeros of I for € sufficiently small. In this case the previous result
provides the averaging theory of first order.

It F is identically zero and F5( is not identically zero, then the zeros
of F1g + €Fby are mainly the zeros of Fo( for € sufficiently small. In
this case the previous result provides the averaging theory of second
order.

For more information about the averaging theory see [4] and [5].
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2. Proof of Theorem 1

We shall need the first order averaging theory to prove Theorem 1.

In order to apply the first order averaging method we write system (2)
with & = 1, in polar coordinates (r, ) where x = rcos(6),

y = rsin(@),r > 0 In this way system (2) is written in the standard
form for applying the averaging theory.

If we write fi(x,y) = Z?ﬂ-:@ aijmiyj then system (2) becomes
r = —¢ Z?Jrj:() aij’riﬂ“cosi(9)3inj+2(6),
f=—1—¢ D i i=0 a;r' cos"H(0)sindT1(0).
Now taking 6 as the new independent variable, we obtain
=€ (Zzﬂ 0 aZJTZ+j+1COSi(@)Sinj+2((9)) + O(€?)
and
Fio(r) = 27T (ZH] Oawrzﬂﬂwsi(9)5in~7+2(9)) do.

In order to calculate the exact expression of I}y we use the following
formula

2T cost(0)sind T2(0)df = 0 of 1odd or 7 odd
Jo

fOQW cos'(8)sin? T2(0)dh = a;j if ieven and j even,
Hence

1 U .
Fio(r) = 5 Z CLZ-]-()zZ-J-frH]Jrl where i even and j even. (4)
i+j=0

Then the polynomial Fo(r) has at most 5] positive roots, and we can
choose the coefficients a;; with i even and j even in such a way that
F1((r) has exactly [5] simple positive roots. Hence Theorem 1 is proved.

3. Proof of Theorem 2

For proving Theorem 2, we shall use the second order averaging the-
ory. If we write fi(z, y) flz,y) = Z?ﬂ-:o aijxiyj and fo(x,y) =
g(z,y) = ZH o bijrty ' then system (2) with & = 2 in polar coordi-
nates (r,6),r > 0 becomes

—¢€ (Z?Jrjzo ai]-rHchasi(Q)Sinj+2(9)) —
62( iti—0bi TZ+]+1cosi(9)sinj+2(9)),

r _

0 = —1 — er (Z?ﬂ:o aijTi+j+1COSi+1((9>Sinj+1(9>) —
e’r ( ?}r] ObZ]TZ+j+1COSi+1<9>Sinj+1(9)) .

Taking 6 as the new independent variable, we obtain

@ = eFy(0,7) + €€ Fo(0,7) + O(e?),

Where Fi(0,7r) = ?Jrj:() aijTHchosi(@)sian 0),
F5(0,r) = it e o bijr It cos! (0)sind T2(0)  —

. 2
rcos(f) sin(0) [ ?Jrj:() az-jrzﬂcos (0)sint t1(6)

Now we determine the corresponding function F5). For this we put
F19 = 0 which is equivalent to a;; = 0 for all 7 even and j even, and
we compute

LE0,7) = P joli + 4+ Dajjrt™ cos'(6)sind T3(6),

- foe F1(¢,r)d¢ which is equal to

CL107“2 (&1108@%(9) + aglosin(BG)) + ...+ CleTl_HH_l

aqpsin(f) + aoppsin(30) + ... + o (t4i2)1 sin((l +b+ 2)(9))

[b
+ap1r? (aqo1 + ooy cos(8) + asgy 005(39)) bt a ot

Q1 pg + Qopg €O8(0) + ai.gcos(30) + ... + Qerdi2)ts
2

+ay 1 (aq11 + aoqg cos(20) + aszpq cos(40)) + ... + aggritit]

aqyg + o cos(20) + aia g cos(40) + ... + Q(rai2)2) )
2

Where [ is the greatest odd number and b is the greatest even num-
ber so that [ + b is less than or equal to n. c¢ is the greatest even
number and d is the greatest odd number so that ¢ + d is less than or
equal to n. a1 are real constants exhibited during the computation of

J¥ cosi(¢)sinit2(¢)dg for all i and j. We know from (4) that Fiq is
identically zero if and only if a;; = 0 for all ¢ even and j even.

Moreover |
fOQW cos'(6)sint t2(8)sin((2k +1)0)dd =0 if i odd and Vj € N,
:A?]]?CH #0 of 1even and jodd, k=0,1,...

fo% cos'(8)sin? T2(0)dh # 0, if andonlyif ieven and jeven,

f()% cos'(6)sint t2(8)cos((2k +1)8)d0 =0 if j odd and Vi € N,
— ngkfl = () zf v odd and j even, k=0,1, ...

fOQW cos(8)sin? T2(0)cos((2k)0)db = 0, Vi,j e
N with 1 odd or 7 odd, k=0,1, ...

cos((c+ d + 2)9))

cos(({ +d + 2)9)) .‘

So
o ddr F (60, 7)y1(0,r)df =
;‘:Lj:l(i + 7+ 1)aijri+j fOQW cos(8)sin? T2(0) x

[a107‘2(&110 sin(f) 4+ a910sin(36)) + ... + alel+b+1(Ozllein(9) +

Q971p Siﬂ(?)@) + ...+
(1 pr2)+ 120 S0((L+ b+ 2)0))]

+ Z?ﬂ-:l(i + 7+ 1)aijri+j fOQW cosi(e)sianrz(H) X

[agr* (101 + az01 cos(0) + azor cos(36)) + ...+

apgr T oy +  aougcos(0) 4+ agegcos(30) + ..+
(4 d42)432¢d COS((¢ + d +2)0))].

Then
ddTFl(Q r)y1(6,1r)d0 = H] 47+ l)az-erj

[6110"“2(04110A1 - 04210143 )+ . apr Hbﬂ(%uﬁ + 042le

l—|—b—|—2
- pr) 1204 )]

+> i@+ 7+ Dagr'™
[a01r2(a2013 - 043013 ) + ...+ achC+d+1(a20dB@'1j + O‘SCde'Sj +

e
.+ O‘(c+d+2)+320dB )

Moreover
Fg(@ r)dd =3 i i _obirttIt fOQW cos'(8) sind 72(9)db

n » 1+7+k+h+1
—2 Zzodd—l_]even—l Zkeven+hodd:1 CLZ] ajkh r /

2m , ,
/ cos' TFHL(0) sind TP 3(9)d.
0

but

f cos'(0)sindt2(6)d0 =0 if i odd or j odd,
=Cy;;#0 if ieven and j even,

and fOQW cos"TFHL(9) sind T 3(9)dp = Clith+1)(j+h+1) 7 0.
Hence

ZWFQ(Q,T)CW = byoCoor + (bpaCpa + byCy)r?  +
n (sz;}e%] evenb C ) m4-1

2 Zz'oddﬂ'@ven:n Zkeveﬁhodd:n Aij Akh O(z‘+/~c+1)(j+h+1)”“

3
—aipagrCoor® — ... —
i+7+k+h+1

Then Fyy(r) is the polynomial

P>t =i+ 4 Daggr'™
X [@107“(04110A1 +O‘210A?j) T +alb7“l+b(0411bA +0425bA3 + ...+

I4b+2
(l+b+2)+12le )

+ a017“(04201B + 0430133) + ...+ &chCM(Oézch + 043ch

d—|—2
S O‘(c+d+2)+32ch@] )

+ booCoo + (bo2Co2 + b20Ca0)r” + oo+ (35 S0 T by Cig)r™

2
o alOaOlCZQT — 2 Ziodd—i_jeven:n
. i+7+k+h
2 ks thogi=n %j Wb Clivk1)(+hn)T |

We conclude that:
1.if m > 2n, 5y has at most |[m2] positive roots.
2.if m < 2n we have
(a)if nisodd: l+b=n,c+d=nand i+ j+k+h =2n
Then, F5q has at most n positive roots.

(b) ifniseven: [+b=n—1, c+d =n—1and i+j+k+h = 2n—2.
Then, F5y has at most n — 1 positive roots.

Then
Fhg has at most maxz{[n + (—1)""12],[m2]} positive roots. This
completes the proof of Theorem 2.
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