Solar System transport in a chain of bicircular models

Esther Barrabés¹, Gerard Gómez², Josep M. Mondelo³, <u>Mercè Ollé⁴</u>

¹ Departament d'Informàtica i Matemàtica Aplicada, Universitat de Girona, Spain. E-mail: barrabes@ima.udg.edu

² Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Spain. E-mail: gerard@maia.ub.es

³ Departament de Matemàtiques, Universitat Autònoma de Barcelona, Spain. E-mail: jmm@mat.uab.cat

⁴ Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Spain. E-mail: Merce.Olle@upc.edu

The bicircular problem (BCP) is a simplified model for the four body problem. In this model, we assume that the Sun and Jupiter are revolving in circular orbits around their center of mass, and a planet moves in a circular orbit around their barycenter. This is not a coherent model in the sense that the trajectories of the Sun, Jupiter and the planet do not satisfy Newton's equations. In a first step, our aim is to consider the Solar System as a set of coupled bicircular models. This is done in order to obtain a first insight of transport in the Solar System that may be explained using the *separated* bicircular problems. The invariant manifolds of convenient periodic orbits of each particular bicircular problem are considered in order to find connections between two consecutive problems. These connections allow to obtain a mechanism to explain transport of infinitesimal particles towards the inner Solar System. Finally the results obtained are validated using the complete Solar System.