Reversibility and branching of periodic orbits

<u>Ana Mereu O.¹</u>, Marco A. Teixeira²

¹ Department of Physics, Chemistry and Mathematics, UFSCar, Brazil. E-mail: anamereu@ufscar.br

² Department of Mathematics, Institute of Mathematics, Statistics and Scientific Computing, University of Campinas - UNICAMP, Brazil.

E-mail: teixeira@ime.unicamp.br

We study the dynamics near an equilibrium point of a 2-parameter family of a reversible system in \mathbb{R}^6 . In particular, we exhibit conditions for the existence of periodic orbits near the equilibrium of systems having the form $x^{(vi)} + \lambda_1 x^{(iv)} + \lambda_2 x'' + x = f(x, x', x'', x''', x^{(iv)}, x^{(v)})$. The techniques used are Belitskii normal form combined with Lyapunov-Schmidt reduction.

References

- M. F. S. Lima and M. Teixeira, Families of periodic orbits in resonant reversible systems, Bull. Braz. Math. Soc. 40 (2009), 521–547.
- [2] C. W. Shi, Bifurcations of Symmetric Periodic Orbits near Equilibrium in Reversible Systems, Int. J. Bifurcation and Chaos 7 (1997), 569–584.