Periodic orbits of integrable birational maps on the plane: blending dynamics and algebraic geometry, the Lyness' case.

VÍCTOR MAÑOSA

Department de Matemàtica Aplicada III (MA3), Control, Dynamics and Applications Group (CoDALab), Universitat Politècnica de Catalunya (UPC) Colom 1, 08222 Terrassa, Spain

E-mail: victor.manosa@upc.edu *URL:* http://www-ma3.upc.es/users/manosa

A birational planar map F possessing a rational first integral, preserve a foliation of the plane given by algebraic curves, which in the case that F is not of finite order, generically is given by a foliation of elliptic curves. In this case the group structure of the elliptic foliation characterizes the dynamics of any birational map preserving it [3]. We will see how take advantage of this structure in two contexts:

(1) The characterization of the set of periods appearing in the family of 2-periodic Lyness difference equations $u_{n+2}u_n = a_n + u_{n+1}$, where a_n is a 2-cycle.

(2) The negative answer to a conjecture of Zeeman about the existence of rational 9-periodic orbits of the autonomous Lyness equation $u_{n+2}u_n = a + u_{n+1}$.

The new results presented here have been jointly obtained with G. Bastien and M. Rogalski [1], and A. Gasull and X. Xarles [2].

References

- G. Bastien, V. Mañosa, M. Rogalski, On the periodic solutions of 2-periodic Lyness difference equations. Preprint, arXiv:1201.1027v1 [math.DS]
- [2] A. Gasull, V. Mañosa, X. Xarles, Rational periodic sequences for the Lyness equation, Discrete and Continuous Dynamical Systems A. 32 (2012), 587–604.
- [3] D. Jogia, J.A.G. Roberts, F. Vivaldi, An algebraic geometric approach to integrable maps of the plane, Journal of Physics A, 39 (2006), 1133–1149