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1. Rigid spaces for homeomorphisms

X ... topological space
H(X ,X ) ... group of all homeomorphisms of X onto X

(group operation = composition)

Question. G = abstract group
?

=⇒ ∃X : H(X ,X ) ≈ G
(X is called a topological group-picture of G )

Answer. Yes (de Groot 1959)

I ∃X= connected, locally connected, complete metric space
of any dim > 0

I ∃X= compact, connected, Hausdorff space

I in general X does not exist in the class of compact metric
spaces because then cardX ≤ c while there are groups with
arbitrarily large cardinalities

I G countable ⇒ X exists in the class of Peano continua of any
dim > 0 (de Groot, Wille 1958)
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1. Rigid spaces for homeomorphisms

In particular (in the class of Peano continua):

∃X : H(X ,X ) ≈ Z = infinite cyclic group
∃X : H(X ,X ) = {idX} ... rigid space for homeomorphisms

First examples of rigid spaces (1-dim Peano continua) for
homeomorphisms (de Groot, Wille 1958):

- dendrite with a dense set of branching points of different
orders
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2. Rigid spaces for homeomorphisms

- disc with interiors of a dense family of propellers (with
different numbers of blades) removed
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2. Rigid spaces for continuous maps

X ... topological space
C (X ,X ) ... monoid of all continuous maps of X into X

(semigroup operation = composition,
unit element = identity)

Question. M = abstract monoid
?

=⇒ ∃X : C (X ,X ) ≈ M
Answer. No

I C (X ,X ) ⊇ {constant maps} and constant maps are left
absorbing elements of the composition: consta ◦ f = consta

I Monoids with many left absorbing elements are rather special

I In particular, C (X ,X ) 6≈ Z

What about C (X ,X ) \ {constant maps}? In general it is not a
monoid (composition of non-constant maps may be a constant
map). Nevertheless, in some cases it is a monoid.
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2. Rigid spaces for continuous maps

Question. M = abstract monoid
?

=⇒
∃X : C (X ,X ) \ {constant maps} is a monoid
and C (X ,X ) \ {constant maps} ≈ M

Answer. Yes

I ∃X= metric space (Trnková 1972)

I ∃X= compact Hausdorff space (Trnková 1976)

In particular:

∃X : C (X ,X ) \ {constant maps} ≈ Z
∃X : C (X ,X ) \ {constant maps} = {idX} ... rigid space for

cont. maps
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In particular:

∃X : C (X ,X ) \ {constant maps} ≈ Z
∃X : C (X ,X ) \ {constant maps} = {idX} ... rigid space for

cont. maps



3. Cook continua as extremely rigid spaces

∃ nondegenerate metric continuum C (Cook continuum) such
that for every subcontinuum K and every continuous map
f : K → C , either f is constant (i.e. f (K ) is a singleton) or
f (x) = x for all x ∈ K (hence f (K ) = K ).

I ∃C = 1-dim, hence embeddable into R3 (Cook 1967)

I ∃C = chainable (i.e. arc-like), hence planar non-separating
continuum (Maćkowiak 1986)



4. Are rigid spaces useful/meaningful in topological
dynamics?

Pessimist: “They are not.”
Optimist: “They are.”
Pessimist: “Explain that!”
Optimist: “Such spaces show us important restrictions. For
instance, among metric continua there are spaces rigid for
continuous maps and therefore one cannot hope that every
continuum admits a continuous map with interesting dynamics, say
with an omega-limit set different from a singleton.”
Pessimist: “Nobody takes care about such degenerate dynamics.”
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4. Are rigid spaces useful/meaningful in topological
dynamics?

Optimist: “Well,

I rigid spaces can be used to build spaces which are not really
rigid, but still can be called rigid-like (i.e. they admit a
relatively small number of continuos maps/homeos) and they
are useful to disprove quite serious conjectures;

I spaces which are rigid-like w.r.t. some dynamical property
(i.e. spaces admitting a small number of continuos
maps/homeos with that property, or even a small number of
continuos maps/homeos at all and they all have that property)
sometimes appear as by-products, or we construct them on
purpose, to be able to answer natural ‘dynamical’ questions.”

Pessimist: “Examples?”



4. Are rigid spaces useful/meaningful in topological
dynamics?

Optimist:

I “Cook continua can be used to produce a rigid-like space
which admits only a small number of continuous maps (and
we are able to describe them) and serves as a counterexample
to a conjecture in the theory of topological sequence entropy
(in preparation, X. Ye, R. Zhang and L’. S.).

I Bruin, Štimac (2012) showed that, for some tent maps, if
we restrict all self-homeomorphisms of the inverse limit space
to its core (which is a chainable indecomposable continuum),
then we get just all the iterates of the shift homeomorphism.
So, they all, except of the identity, are transitive. This space
can be called “transitivity” rigid-like for homeomorphisms.

I Moreover, we are going to explain that there exist uniquely
minimal spaces:”



5. Existence of uniquely minimal spaces and applications

For a compact metric space X there are two possibilities:

I X does not admit any minimal homeomorphism

I X admits a minimal homeomorphism
(in this case, if X is infinite then in known examples usually
(always?) X admits uncountably many homeomorphisms and
even uncountably many of them are minimal)

Question. Is there a third possibility? That is, does there exist an
infinite compact metric space X such that it admits, but only
“a few”, minimal homeomorphisms?
Answer. Yes, in the following sense.
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5. Existence of uniquely minimal spaces and applications

Definition. An infinite compact metric space X is Slovak if it is
uniquely minimal in the following sense: X admits a minimal
homeomorphism T and H(X ,X ) = {T n : n ∈ Z}.

Observation.

I The assumption that X is infinite eliminates two trivial
examples: the one-point space and the two-point space.

I If X is Slovak then cardX = c , X has no isolated point and
all iterates T n, n ∈ Z are different, i.e. H(X,X) ≈ Z.
Moreover, all iterates T n, except identity, are minimal.

Theorem. There exist Slovak spaces in the class of metric
continua. (Moreover, the topological entropies of generating
homeomorphisms T exhaust the interval [0,∞].)
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5. Existence of uniquely minimal spaces and applications

circle ... minimal homeo, minimal non-invertible map
another space with this property?

Corollary 1. There exist infinite metric continua, which are not
homeomorphic to the circle, admitting minimal homeomorphisms
but not minimal non-invertible maps.

Idea of proof. Let X be a Slovak space constructed in the proof
of Theorem. In that proof we show that every homeomorphism
X → X coincides with the iterate of some distinguished minimal
homeomorphism X → X . Developing further these ideas, one can
show that any minimal continuous map X → X is invertible.
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5. Existence of uniquely minimal spaces and applications

(X , f ) ... X compact metric, f : X → X continuous map
(C (X ,X ),Ff ) ... functional envelope of 1st kind,

C (X ,X ) with uniform metric
Ff (ϕ) = f ◦ ϕ for all ϕ ∈ C (X ,X )
easy: htop(Ff ) ≥ htop(f )

(X , f ) ... X compact metric, T : X → X homeomorphism
(H(X ,X ),FT ) ... functional envelope of 2nd kind

H(X ,X ) with uniform metric
FT (φ) = f ◦ φ for all φ ∈ H(X ,X )
question (Kolyada, Semikina 2013): Is

htop(FT ) ≥ htop(T ) ?
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5. Existence of uniquely minimal spaces and applications

Corollary 2. There exists a dynamical system given by a compact
metric space X and a homeomorphism T : X → X with finite
positive or even infinite entropy, whose functional envelope
(H(X ,X ),FT ) has entropy zero.

Idea of proof. Let (X ,T ) be a Slovak space with T being the
generating homeomorphism of the group H(X ,X ). We know that
T may have positive, even infinite entropy. However, H(X ,X ) is
only countable and this enables to show that htop(FT ) = 0.
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6. Idea of a construction of uniquely minimal spaces

Step 1. h : C → C ... Cantor minimal homeo (arbitrary entropy)

Step 2. X = C × [0, 1]/∼ where (x , 1) ∼ (h(x), 0)
(the generalized solenoid induced by (C , h))

Φ = suspension flow over h (with ceiling function ≡ 1)
Step 3. By Fayad (2000): ∃t0 ∈ R such that

T = time t0-map of Φ is a minimal homeo X → X
Step 4 (technical step).

I the continuum X has uncountably many composants (orbits
of the flow Φ); choose a composant γ and a point x0 ∈ γ.

I on a closed arc around x0 (minus the point x0 itself) and lying
in γ, we define a function which looks like a one-sided
topologist’s sine curve (values in [0, 1], wiggles of height 1 in
any left neighbourhood of x0, constant value 0 to the right of
x0). It is continuous and not defined at x0.

I extend it to a continuous function f : X \ {x0} → [0, 1]
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I the continuum X has uncountably many composants (orbits
of the flow Φ); choose a composant γ and a point x0 ∈ γ.

I on a closed arc around x0 (minus the point x0 itself) and lying
in γ, we define a function which looks like a one-sided
topologist’s sine curve (values in [0, 1], wiggles of height 1 in
any left neighbourhood of x0, constant value 0 to the right of
x0). It is continuous and not defined at x0.

I extend it to a continuous function f : X \ {x0} → [0, 1]
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6. Idea of a construction of uniquely minimal spaces
I let F =

∑
n∈Z anf ◦ T n, where the coefficients an are all

strictly positive,
∑

n∈Z an = 1 and satisfying some technical
assumptions (F is defined on X minus the T -orbit of x0).

I then one can show that both the mapping
(x ,F (x)) 7→ (Tx ,F (Tx)) and its inverse are uniformly
continuous homeomorphisms of the graph of F . Therefore, the
map (x ,F (x)) 7→ (Tx ,F (Tx)) extends to a homeomorphism
T̄ (=notation) of F̄ (=the closure of the graph of F ).

I F̄ ⊆ X × [0, 1] is our Slovak space, looks as follows:
the composant γ̄ of F̄ “above” γ has basicly this shape:

the other composants of F̄ are continuous bijective
images of the real line



6. Idea of a construction of uniquely minimal spaces

If ϕ is an arbitrary homeomorphism F̄ → F̄ then:

I ϕ sends path components to path components preserving the
type (real line or closed half-line)

I the set Z of upper endpoints of the vertical intervals Wn is
therefore preserved by ϕ

I ϕ preserves the successor relation on Z

I therefore, on Z , ϕ coincides with T̄ n for some n. Since Z is
dense in F̄ (being the orbit of the minimal
homeomorphism T̄ ), we get that ϕ coincides with T̄ n

everywhere on F̄ . Q.E.D.


