Universality and zero-entropy systems New Perspectives in Discrete Dynamical Systems Tossa de Mar, October 2014

Jacek Serafin

Institute of Mathematics and Computer Science Wrocław University of Technology, Wrocław, Poland

What is the meaning of universality?

All measure-theoretic systems are assumed standard.

Definition

A topological dynamical system (Y, S) is **universal** in a class T of measure-theoretic systems if the following two conditions hold:

- For any *S*-invariant measure ν on *Y* the measure-theoretic system (Y, ν, S) belongs to \mathcal{T} , and
- So For any system $(X, \mu, T) \in \mathcal{T}$ there exists an invariant measure ν on Y such that (Y, ν, S) is measure-theoretically isomorphic to (X, μ, T) .

イロト 不得 トイヨト イヨト 二日

All measure-theoretic systems are assumed standard.

Definition

A topological dynamical system (Y, S) is **universal** in a class T of measure-theoretic systems if the following two conditions hold:

- For any *S*-invariant measure ν on *Y* the measure-theoretic system (Y, ν, S) belongs to \mathcal{T} , and
- So For any system $(X, \mu, T) \in \mathcal{T}$ there exists an invariant measure ν on Y such that (Y, ν, S) is measure-theoretically isomorphic to (X, μ, T) .

Informally: The simplex of invariant measures of (Y, S) contains nothing but the isomorphic copies of measures of systems from T.

イロト イポト イヨト イヨト

• full shift on the Cantor alphabet is universal in the class of all automorphisms on standard spaces

- full shift on the Cantor alphabet is universal in the class of all automorphisms on standard spaces
- the full shift on *n* symbols has invariant measures representing (up to isomorphism) all automorphisms with entropy strictly smaller than log *n*, but only ONE measure with entropy equal to log *n*. So, it is not a universal system, regardless of whether we define the class using sharp or weak inequality.

イロト イ団ト イヨト イヨト

- full shift on the Cantor alphabet is universal in the class of all automorphisms on standard spaces
- the full shift on *n* symbols has invariant measures representing (up to isomorphism) all automorphisms with entropy strictly smaller than log *n*, but only ONE measure with entropy equal to log *n*. So, it is not a universal system, regardless of whether we define the class using sharp or weak inequality.

PROBLEM (Weiss): Find a universal model for the class of automorphisms of zero entropy, or more generally, for the class $T = \{T : h(T) \le r\}$, for $r \ge 0$.

イロト 不得 トイヨト イヨト 二日

Theorem

There does not exist a topological dynamical system, universal in the class of all automorphisms of entropy zero.

(theory of symbolic extensions) if h_{top}(T) = 0 then T has a principal symbolic extension, i.e., a zero-entropy subshift S such that T is a topological factor of S

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- (theory of symbolic extensions) if h_{top}(T) = 0 then T has a principal symbolic extension, i.e., a zero-entropy subshift S such that T is a topological factor of S
- (measure-theoretic complexity, Ferenczi 1997) a simple fact that in symbolic realizations of measure-theoretic ergodic systems this complexity is dominated by the *symbolic complexity*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- (theory of symbolic extensions) if h_{top}(T) = 0 then T has a principal symbolic extension, i.e., a zero-entropy subshift S such that T is a topological factor of S
- (measure-theoretic complexity, Ferenczi 1997) a simple fact that in symbolic realizations of measure-theoretic ergodic systems this complexity is dominated by the *symbolic complexity*
- if U(n)
 [¬]∞ is a sequence for which ¹/_n log U(n) → 0 then there exists an ergodic zero-entropy system whose measure-theoretic complexity grows faster than U(n)

Measure-theoretic complexity

イロト イヨト イヨト イヨト

Measure-theoretic complexity

• (X, μ, T) a measure-theoretic d. s., *Q* a finite measurable partition of *X*, indexed by Λ , $x \in X$ gives rise to the *Q*-name $(x_n) \in \Lambda^{\mathbb{Z}}$ defined: $x_n = i \iff T^n(x) \in Q_i$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main result

Measure-theoretic complexity

• (X, μ, T) a measure-theoretic d. s., Q a finite measurable partition of X, indexed by Λ , $x \in X$ gives rise to the Q-name $(x_n) \in \Lambda^{\mathbb{Z}}$ defined: $x_n = i \iff T^n(x) \in Q_i$

• A block $B \in \Lambda^n$ corresponds to a *cylinder set* $[B] = \{x : x[0, n-1] = B\}.$ The *Hamming distance* between two cylinders $B, C \subset \Lambda^n$ is

$$d_{\mathcal{H}}(B,C) = \frac{1}{n} \operatorname{card} \{i = 0, \ldots, n-1 : b_i \neq c_i\}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main result

Measure-theoretic complexity

- (X, μ, T) a measure-theoretic d. s., Q a finite measurable partition of X, indexed by Λ , $x \in X$ gives rise to the Q-name $(x_n) \in \Lambda^{\mathbb{Z}}$ defined: $x_n = i \iff T^n(x) \in Q_i$
- A block $B \in \Lambda^n$ corresponds to a *cylinder set* $[B] = \{x : x[0, n-1] = B\}.$ The *Hamming distance* between two cylinders $B, C \subset \Lambda^n$ is

$$d_H(B,C) = \frac{1}{n} \operatorname{card}\{i = 0, \ldots, n-1 : b_i \neq c_i\}.$$

• For $\epsilon > 0$, the (ϵ, n) - ball with center $B \in \Lambda^n$ is:

$$\mathbb{B}_{\mathcal{H}}(\boldsymbol{B},\epsilon) = \bigcup_{\{\boldsymbol{C}\in\Lambda^n: d_{\mathcal{H}}(\boldsymbol{B},\boldsymbol{C})<\epsilon\}} [\boldsymbol{C}].$$

< 口 > < 同 > < 回 > < 回 > < 回 > <

 Define K_μ(Q, ε, n, T) to be the minimal number of (ε, n)- balls, needed to cover a part of the space X of measure μ at least 1 - ε.

< ロ > < 同 > < 回 > < 回 >

Main result

- Define K_μ(Q, ε, n, T) to be the minimal number of (ε, n)- balls, needed to cover a part of the space X of measure μ at least 1 - ε.
- If *U*(*n*) is a nondecreasing sequence of positive numbers satisfying

$$\lim_{\epsilon o 0} \limsup_{n o \infty} rac{K_\mu(Q,\epsilon,n,T)}{U(n)} \leq 1$$

then we say that *the measure-theoretic complexity* of the system (X, μ, T) with regard to the partition *Q* is dominated by U(n).

Main result

- Define K_μ(Q, ε, n, T) to be the minimal number of (ε, n)- balls, needed to cover a part of the space X of measure μ at least 1 - ε.
- If *U*(*n*) is a nondecreasing sequence of positive numbers satisfying

$$\lim_{\epsilon o 0} \limsup_{n o \infty} rac{K_\mu(oldsymbol{Q},\epsilon,n,T)}{U(n)} \leq 1$$

then we say that *the measure-theoretic complexity* of the system (X, μ, T) with regard to the partition *Q* is dominated by U(n).

A simple fact: if (Y, S) is a symbolic system with (symbolic) complexity U_Y(n), ν is an S-invariant ergodic measure, P is a finite partition then clearly K_ν(P, ε, n, S) ≤ U_Y(n).

Third ingredient again:

Lemma (Rapidly growing complexity in entropy zero)

For every nondecreasing sequence U(n) of positive numbers such that $\frac{1}{n} \log U(n) \rightarrow 0$, there exists an ergodic measure-theoretic dynamical system (X, μ, T) with $h_{\mu}(T) = 0$, and a finite measurable partition Q of X such that the measure-theoretic complexity of (X, μ, T) with regard to Q is NOT dominated by U(n).

э

イロト イヨト イヨト イヨト

• Suppose (Y', S') is a universal zero-entropy system.

3

イロト イポト イヨト イヨト

- Suppose (Y', S') is a universal zero-entropy system.
- Clearly (VP) $h_{top}(S') = 0$.

イロト 不得 トイヨト イヨト 二日

- Suppose (Y', S') is a universal zero-entropy system.
- Clearly (VP) $h_{top}(S') = 0$.
- First ingredient: (Y', S') has a symbolic extension (Y, S) of zero entropy. Let (U_Y(n))_{n≥1} be the *symbolic complexity* of (Y, S).

- Suppose (Y', S') is a universal zero-entropy system.
- Clearly (VP) $h_{top}(S') = 0$.
- First ingredient: (Y', S') has a symbolic extension (Y, S) of zero entropy. Let (U_Y(n))_{n≥1} be the *symbolic complexity* of (Y, S).
- By the second ingredient, if ν is an S-invariant ergodic measure and P is a finite partition of Y, then the measure-theoretic complexity of (Y, ν, S) with respect to P is dominated by U_Y(n).

As h_{top}(S) = 0, we have ¹/_n log U_Y(n) → 0, so by the third ingredient, there exists an ergodic zero-entropy measure-preserving system (X, μ, T), and a finite partition Q of X, such that the measure-theoretic complexity of (X, μ, T) with regard to Q grows essentially faster than U_Y(n).

- As h_{top}(S) = 0, we have ¹/_n log U_Y(n) → 0, so by the third ingredient, there exists an ergodic zero-entropy measure-preserving system (X, μ, T), and a finite partition Q of X, such that the measure-theoretic complexity of (X, μ, T) with regard to Q grows essentially faster than U_Y(n).
- By universality, (X, μ, T) has an isomorphic realization as (Y', ν', S') which lifts to (Y, ν, S), where ν is someS-invariant ergodic measure.

- As h_{top}(S) = 0, we have ¹/_n log U_Y(n) → 0, so by the third ingredient, there exists an ergodic zero-entropy measure-preserving system (X, μ, T), and a finite partition Q of X, such that the measure-theoretic complexity of (X, μ, T) with regard to Q grows essentially faster than U_Y(n).
- By universality, (X, μ, T) has an isomorphic realization as (Y', ν', S') which lifts to (Y, ν, S), where ν is someS-invariant ergodic measure.
- The partition Q of X lifts to a partition P of Y; the measure-theoretic complexities of (Y, ν, S) with regard to P and of (X, μ, T) with regard to Q are the same.

- As h_{top}(S) = 0, we have ¹/_n log U_Y(n) → 0, so by the third ingredient, there exists an ergodic zero-entropy measure-preserving system (X, μ, T), and a finite partition Q of X, such that the measure-theoretic complexity of (X, μ, T) with regard to Q grows essentially faster than U_Y(n).
- By universality, (X, μ, T) has an isomorphic realization as (Y', ν', S') which lifts to (Y, ν, S), where ν is someS-invariant ergodic measure.
- The partition Q of X lifts to a partition P of Y; the measure-theoretic complexities of (Y, ν, S) with regard to P and of (X, μ, T) with regard to Q are the same.
- In particular, the measure-theoretic complexity of (Y, ν, S) with regard to P is NOT dominated by U_Y(n). This contradicts the existence of a universal zero-entropy system.

 Elements of X are arrays, rows 1, 2, ... contain an appropriate odometer.

To define the 0th row need two elementary operations.

If C is a collection of blocks of a fixed length and $q \in \mathbb{N}$ then C^q is the family of all (independent) concatenations of q blocks from C. Also, $C_{rep} = \{CC : C \in C\}$ is the collection of repetitions of blocks from C.

Clearly $\operatorname{card}(\mathcal{C}_{\mathsf{rep}}) = \operatorname{card}(\mathcal{C})$ and $\operatorname{card}(\mathcal{C}^q) = (\operatorname{card} \mathcal{C})^q$.

イロト 不得 トイヨト イヨト ニヨー

Fix an increasing sequence of integers (*p_k*)_{k≥0} such that *p_{k+1}* is a multiple of *p_k*, for each *k*.

3

- Fix an increasing sequence of integers (*p_k*)_{k≥0} such that *p_{k+1}* is a multiple of *p_k*, for each *k*.
- Define $\mathcal{B}_0 = \{0, 1\}^{p_0}$, and, for $k \ge 1$, $\mathcal{B}_k = ((\mathcal{B}_{k-1})_{rep})^{p_k/p_{k-1}}$.

イロト 不得 トイヨト イヨト 二日

- Fix an increasing sequence of integers (*p_k*)_{k≥0} such that *p_{k+1}* is a multiple of *p_k*, for each *k*.
- Define $\mathcal{B}_0 = \{0, 1\}^{p_0}$, and, for $k \ge 1$, $\mathcal{B}_k = ((\mathcal{B}_{k-1})_{rep})^{p_k/p_{k-1}}$.
- Clear: all blocks in B_k have the same length 2^kp_k and the cardinality of B_k is 2^{p_k}.

- Fix an increasing sequence of integers (*p_k*)_{k≥0} such that *p_{k+1}* is a multiple of *p_k*, for each *k*.
- Define $\mathcal{B}_0 = \{0, 1\}^{p_0}$, and, for $k \ge 1$, $\mathcal{B}_k = ((\mathcal{B}_{k-1})_{rep})^{p_k/p_{k-1}}$.
- Clear: all blocks in B_k have the same length 2^kp_k and the cardinality of B_k is 2^{p_k}.
- Define $N_k = 2^{k+1} p_k$, the length of the blocks in the family $(\mathcal{B}_k)_{rep}$.

- Fix an increasing sequence of integers (*p_k*)_{k≥0} such that *p_{k+1}* is a multiple of *p_k*, for each *k*.
- Define $\mathcal{B}_0 = \{0, 1\}^{p_0}$, and, for $k \ge 1$, $\mathcal{B}_k = ((\mathcal{B}_{k-1})_{rep})^{p_k/p_{k-1}}$.
- Clear: all blocks in B_k have the same length 2^kp_k and the cardinality of B_k is 2^{p_k}.
- Define $N_k = 2^{k+1} p_k$, the length of the blocks in the family $(\mathcal{B}_k)_{rep}$.
- A *k*-block of *x* is any block x₀[n, n + N_k − 1], where n is a position of a *k*-marker in x.

- Fix an increasing sequence of integers (*p_k*)_{k≥0} such that *p_{k+1}* is a multiple of *p_k*, for each *k*.
- Define $\mathcal{B}_0 = \{0, 1\}^{p_0}$, and, for $k \ge 1$, $\mathcal{B}_k = ((\mathcal{B}_{k-1})_{rep})^{p_k/p_{k-1}}$.
- Clear: all blocks in B_k have the same length 2^kp_k and the cardinality of B_k is 2^{p_k}.
- Define $N_k = 2^{k+1} p_k$, the length of the blocks in the family $(\mathcal{B}_k)_{rep}$.
- A *k*-block of *x* is any block x₀[n, n + N_k − 1], where n is a position of a *k*-marker in x.
- We determine X by requiring that x ∈ X, if and only if, for any k, every k-block of x belongs to (B_k)_{rep}. In other words, x ∈ X if 0th row x₀ is, for every k, an infinite concatenation of the blocks from (B_k)_{rep} with "gluing points" at the k-markers.

X is nonempty, closed and shift-invariant, all blocks from B_k (for every k) occur in the 0th row system X₀.

3

< ロ > < 同 > < 回 > < 回 >

- X is nonempty, closed and shift-invariant, all blocks from B_k (for every k) occur in the 0th row system X₀.
- Not difficult to show that h_{top}(X₀) = 0, and then h_{top}(X) = 0, as X is a joining of X₀ with an odometer.

- X is nonempty, closed and shift-invariant, all blocks from B_k (for every k) occur in the 0th row system X₀.
- Not difficult to show that h_{top}(X₀) = 0, and then h_{top}(X) = 0, as X is a joining of X₀ with an odometer.
- Define an invariant measure on X: for each k ≥ 1, declare all k-blocks occurring in X to have the same measure:

$$\mu(\{x: x_0[0, N_k - 1] = BB, x_k(0) = 1\} = \frac{1}{N_k \cdot \operatorname{card}(\mathcal{B}_k)} = \frac{1}{N_k 2^{p_k}},$$

for all $B \in \mathcal{B}_k$.

- X is nonempty, closed and shift-invariant, all blocks from B_k (for every k) occur in the 0th row system X₀.
- Not difficult to show that h_{top}(X₀) = 0, and then h_{top}(X) = 0, as X is a joining of X₀ with an odometer.
- Define an invariant measure on X: for each k ≥ 1, declare all k-blocks occurring in X to have the same measure:

$$\mu(\{x: x_0[0, N_k - 1] = BB, x_k(0) = 1\} = \frac{1}{N_k \cdot \operatorname{card}(\mathcal{B}_k)} = \frac{1}{N_k 2^{p_k}},$$

for all $B \in \mathcal{B}_k$.

• Verification that the above indeed determines a shift-invariant ergodic measure on X is standard. Variational principle implies that $h_{\mu}(T) = 0$.

• Let $Q = \{[0], [1]\}$, where $[0] = \{x \in X : x_0(0) = 0\}$ and $[1] = \{x \in X : x_0(0) = 1\}$, be the zero-coordinate partition of the 0th row, lifted to X.

イロト 不得 トイヨト イヨト 二日

- Let $Q = \{[0], [1]\}$, where $[0] = \{x \in X : x_0(0) = 0\}$ and $[1] = \{x \in X : x_0(0) = 1\}$, be the zero-coordinate partition of the 0th row, lifted to *X*.
- X splits into N_k sets $P_0, P_1, P_2, \ldots, P_{N_k-1}$ of equal measure $\frac{1}{N_k}$, where $P_i = \{x : x_k(i) = 1\}$, for $i = 0, \ldots, N_k 1$, and $k \ge 1$.

- Let $Q = \{[0], [1]\}$, where $[0] = \{x \in X : x_0(0) = 0\}$ and $[1] = \{x \in X : x_0(0) = 1\}$, be the zero-coordinate partition of the 0th row, lifted to X.
- X splits into N_k sets $P_0, P_1, P_2, \ldots, P_{N_k-1}$ of equal measure $\frac{1}{N_k}$, where $P_i = \{x : x_k(i) = 1\}$, for $i = 0, \ldots, N_k 1$, and $k \ge 1$.
- The mechanism of concatenations and repetitions: the entries of a block B ∈ B_k are determined by a subset of p_k (out of N_k/2) coordinates, making up a fraction ¹/_{2^k} of the length of B. The symbols occurring along these coordinates are arbitrarily, each of them is then repeated 2^k times in B.

イロト 不得 トイヨト イヨト ニヨー

- Let $Q = \{[0], [1]\}$, where $[0] = \{x \in X : x_0(0) = 0\}$ and $[1] = \{x \in X : x_0(0) = 1\}$, be the zero-coordinate partition of the 0th row, lifted to X.
- X splits into N_k sets $P_0, P_1, P_2, \ldots, P_{N_k-1}$ of equal measure $\frac{1}{N_k}$, where $P_i = \{x : x_k(i) = 1\}$, for $i = 0, \ldots, N_k 1$, and $k \ge 1$.
- The mechanism of concatenations and repetitions: the entries of a block B ∈ B_k are determined by a subset of p_k (out of N_k/2) coordinates, making up a fraction ¹/_{2^k} of the length of B. The symbols occurring along these coordinates are arbitrarily, each of them is then repeated 2^k times in B.
- We have a bijection $\phi_k : \mathcal{B}_k \to \{0, 1\}^{p_k}$ such that:
 - ϕ_k is "distance-preserving", i.e. $d_H(B, C) = d_H(\phi_k(B), \phi_k(C))$,
 - $\lambda(\phi_k(B)) = \mu(B|P_0) = 2^{-p_k}$, where $\lambda = \{\frac{1}{2}, \frac{1}{2}\}^{\mathbb{Z}}$.

This bijection allows us to perform our estimation using the measure λ .

くロン 不通 とくほ とくほ とうほう

Let *M*(δ, *n*, ε) be the minimal number of (δ, *n*)-Hamming balls needed to cover a subset of {0,1}^ℤ of measure λ at least 1 − ε.

3

(a)

Let *M*(δ, *n*, ε) be the minimal number of (δ, *n*)-Hamming balls needed to cover a subset of {0, 1}^ℤ of measure λ at least 1 - ε.
Notice that applying Stirling's formula we have

$$\operatorname{Card} \{ \boldsymbol{C} \in \{0,1\}^n : \boldsymbol{d}_{\boldsymbol{H}}(\boldsymbol{B},\boldsymbol{C}) < \delta \} = \sum_{j < \delta n} \binom{n}{j} \leq 2^{n H(2\delta)},$$

for all $B \in \{0, 1\}^n$ and large *n*.

Let *M*(δ, *n*, ε) be the minimal number of (δ, *n*)-Hamming balls needed to cover a subset of {0,1}^ℤ of measure λ at least 1 - ε.
Notice that applying Stirling's formula we have

$$\operatorname{card} \{ \boldsymbol{C} \in \{0,1\}^n : \boldsymbol{d}_{\boldsymbol{H}}(\boldsymbol{B},\boldsymbol{C}) < \delta \} = \sum_{j < \delta n} \binom{n}{j} \leq 2^{n \boldsymbol{H}(2\delta)},$$

for all $B \in \{0, 1\}^n$ and large n.

Fix ε > 0. All 2ⁿ cylinders of length n have equal measure λ, so the minimal cardinality of a subfamily of cylinders whose elements cover up more than 1 − ε (in measure) of the space, must be at least (1 − ε) · 2ⁿ. All (δ, n)-Hamming balls include the same number of cylinders, so we have

$$M(\delta, n, \epsilon) \ge \frac{(1-\epsilon) \cdot 2^n}{2^{nH(2\delta)}} = (1-\epsilon)2^{n(1-H(2\delta))}$$
(1)

(for all *n* sufficiently large).

Let *M*(δ, *n*, ε) be the minimal number of (δ, *n*)-Hamming balls needed to cover a subset of {0,1}^ℤ of measure λ at least 1 - ε.
Notice that applying Stirling's formula we have

$$\operatorname{card} \{ \boldsymbol{C} \in \{0,1\}^n : \boldsymbol{d}_{\boldsymbol{H}}(\boldsymbol{B},\boldsymbol{C}) < \delta \} = \sum_{j < \delta n} \binom{n}{j} \leq 2^{n \boldsymbol{H}(2\delta)},$$

for all $B \in \{0, 1\}^n$ and large n.

Fix ε > 0. All 2ⁿ cylinders of length n have equal measure λ, so the minimal cardinality of a subfamily of cylinders whose elements cover up more than 1 − ε (in measure) of the space, must be at least (1 − ε) · 2ⁿ. All (δ, n)-Hamming balls include the same number of cylinders, so we have

$$M(\delta, n, \epsilon) \ge \frac{(1-\epsilon) \cdot 2^n}{2^{nH(2\delta)}} = (1-\epsilon)2^{n(1-H(2\delta))}$$
(1)

(for all *n* sufficiently large).

• Using the above we can estimate from below the quantity $K_{\mu}(Q, \epsilon, N_k, T)$.