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Introduction

What is the meaning of universality?
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Introduction

All measure-theoretic systems are assumed standard.

Definition
A topological dynamical system (Y ,S) is universal in a class T of
measure-theoretic systems if the following two conditions hold:

1 For any S-invariant measure ν on Y the measure-theoretic system
(Y , ν,S) belongs to T , and

2 For any system (X , µ,T ) ∈ T there exists an invariant measure ν
on Y such that (Y , ν,S) is measure-theoretically isomorphic to
(X , µ,T ).

Informally: The simplex of invariant measures of (Y ,S) contains
nothing but the isomorphic copies of measures of systems from T .
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Introduction

EXAMPLES

full shift on the Cantor alphabet is universal in the class of all
automorphisms on standard spaces
the full shift on n symbols has invariant measures representing
(up to isomorphism) all automorphisms with entropy strictly
smaller than log n, but only ONE measure with entropy equal to
log n. So, it is not a universal system, regardless of whether we
define the class using sharp or weak inequality.

PROBLEM (Weiss): Find a universal model for the class of
automorphisms of zero entropy, or more generally, for the class
T = {T : h(T ) ≤ r}, for r ≥ 0.
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Main result

Theorem
There does not exist a topological dynamical system, universal in the
class of all automorphisms of entropy zero.
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Main result

Three main ingredients of the proof:

(theory of symbolic extensions) if htop(T ) = 0 then T has a
principal symbolic extension, i.e., a zero-entropy subshift S such
that T is a topological factor of S
(measure-theoretic complexity, Ferenczi 1997) a simple fact that in
symbolic realizations of measure-theoretic ergodic systems this
complexity is dominated by the symbolic complexity
if U(n)↗∞ is a sequence for which 1

n log U(n)→ 0 then there
exists an ergodic zero-entropy system whose measure-theoretic
complexity grows faster than U(n)
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Main result

Measure-theoretic complexity

(X , µ,T ) a measure-theoretic d. s.,
Q a finite measurable partition of X , indexed by Λ,
x ∈ X gives rise to the Q-name (xn) ∈ ΛZ defined:
xn = i ⇐⇒ T n(x) ∈ Qi

A block B ∈ Λn corresponds to a cylinder set
[B] = {x : x [0,n − 1] = B}.
The Hamming distance between two cylinders B,C ⊂ Λn is

dH(B,C) = 1
n card{i = 0, . . . ,n − 1 : bi 6= ci}.

For ε > 0, the (ε,n)- ball with center B ∈ Λn is:

BH(B, ε) =
⋃

{C∈Λn:dH (B,C)<ε}

[C].
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Main result

Define Kµ(Q, ε,n,T ) to be the minimal number of (ε,n)- balls,
needed to cover a part of the space X of measure µ at least 1− ε.

If U(n) is a nondecreasing sequence of positive numbers
satisfying

lim
ε→0

lim sup
n→∞

Kµ(Q, ε,n,T )

U(n)
≤ 1

then we say that the measure-theoretic complexity of the system
(X , µ,T ) with regard to the partition Q is dominated by U(n).
A simple fact: if (Y ,S) is a symbolic system with (symbolic)
complexity UY (n), ν is an S-invariant ergodic measure, P is a
finite partition then clearly Kν(P, ε,n,S) ≤ UY (n).
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Main result

Third ingredient again:

Lemma (Rapidly growing complexity in entropy zero)

For every nondecreasing sequence U(n) of positive numbers such that
1
n log U(n)→ 0, there exists an ergodic measure-theoretic dynamical
system (X , µ,T ) with hµ(T ) = 0, and a finite measurable partition Q of
X such that the measure-theoretic complexity of (X , µ,T ) with regard
to Q is NOT dominated by U(n).
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Proof of the main theorem

Sketch of the proof of the main theorem:

Suppose (Y ′,S′) is a universal zero-entropy system.
Clearly (VP) htop(S′) = 0.
First ingredient: (Y ′,S′) has a symbolic extension (Y ,S) of zero
entropy. Let (UY (n))n≥1 be the symbolic complexity of (Y ,S).
By the second ingredient, if ν is an S-invariant ergodic measure
and P is a finite partition of Y , then the measure-theoretic
complexity of (Y , ν,S) with respect to P is dominated by UY (n).
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Proof of the main theorem

As htop(S) = 0, we have 1
n log UY (n)→ 0, so by the third

ingredient, there exists an ergodic zero-entropy
measure-preserving system (X , µ,T ), and a finite partition Q of X ,
such that the measure-theoretic complexity of (X , µ,T ) with
regard to Q grows essentially faster than UY (n).

By universality, (X , µ,T ) has an isomorphic realization as
(Y ′, ν ′,S′) which lifts to (Y , ν,S), where ν is someS-invariant
ergodic measure.
The partition Q of X lifts to a partition P of Y ; the
measure-theoretic complexities of (Y , ν,S) with regard to P
and of (X , µ,T ) with regard to Q are the same.
In particular, the measure-theoretic complexity of (Y , ν,S) with
regard to P is NOT dominated by UY (n). This contradicts the
existence of a universal zero-entropy system.
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Main lemma

Elements of X are arrays, rows 1,2, . . . contain an appropriate
odometer.
To define the 0th row need two elementary operations.
If C is a collection of blocks of a fixed length and q ∈ N then Cq is
the family of all (independent) concatenations of q blocks from C.
Also, Crep = {CC : C ∈ C} is the collection of repetitions of blocks
from C.
Clearly card(Crep) = card(C) and card(Cq) = (card C)q.
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Main lemma

Fix an increasing sequence of integers (pk )k≥0 such that
pk+1 is a multiple of pk , for each k .

Define B0 = {0,1}p0 , and, for k ≥ 1, Bk = ((Bk−1)rep)pk/pk−1 .
Clear: all blocks in Bk have the same length 2kpk and the
cardinality of Bk is 2pk .
Define Nk = 2k+1pk , the length of the blocks in the family (Bk )rep.
A k-block of x is any block x0[n,n + Nk − 1], where n is a position
of a k -marker in x .
We determine X by requiring that x ∈ X , if and only if, for any k ,
every k -block of x belongs to (Bk )rep. In other words, x ∈ X if 0th
row x0 is, for every k , an infinite concatenation of the blocks from
(Bk )rep with “gluing points” at the k -markers.
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Main lemma

X is nonempty, closed and shift-invariant, all blocks from Bk (for
every k ) occur in the 0th row system X0.

Not difficult to show that htop(X0) = 0, and then htop(X ) = 0, as X
is a joining of X0 with an odometer.
Define an invariant measure on X : for each k ≥ 1, declare all
k -blocks occurring in X to have the same measure:

µ({x : x0[0,Nk − 1] = BB, xk (0) = 1} =
1

Nk · card(Bk )
=

1
Nk2pk

,

for all B ∈ Bk .
Verification that the above indeed determines a shift-invariant
ergodic measure on X is standard. Variational principle implies
that hµ(T ) = 0.
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Main lemma

Let Q = {[0], [1]}, where [0] = {x ∈ X : x0(0) = 0} and
[1] = {x ∈ X : x0(0) = 1}, be the zero-coordinate partition of the
0th row, lifted to X .

X splits into Nk sets P0,P1,P2, . . . ,PNk−1 of equal measure 1
Nk

,
where Pi = {x : xk (i) = 1}, for i = 0, . . . ,Nk − 1, and k ≥ 1.
The mechanism of concatenations and repetitions:
the entries of a block B ∈ Bk are determined by a subset of pk (out
of Nk/2) coordinates, making up a fraction 1

2k of the length of B.
The symbols occurring along these coordinates are arbitrarily,
each of them is then repeated 2k times in B.
We have a bijection φk : Bk → {0,1}pk such that:

φk is “distance-preserving”, i.e. dH(B,C) = dH(φk (B), φk (C)),
λ(φk (B)) = µ(B|P0) = 2−pk , where λ = { 1

2 ,
1
2}

Z.

This bijection allows us to perform our estimation using the
measure λ.
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Main lemma

Let M(δ, n, ε) be the minimal number of (δ, n)-Hamming balls
needed to cover a subset of {0,1}Z of measure λ at least 1− ε.

Notice that applying Stirling’s formula we have

card{C ∈ {0,1}n : dH(B,C) < δ} =
∑
j<δn

(
n
j

)
≤ 2nH(2δ),

for all B ∈ {0,1}n and large n.
Fix ε > 0. All 2n cylinders of length n have equal measure λ, so
the minimal cardinality of a subfamily of cylinders whose elements
cover up more than 1− ε (in measure) of the space, must be at
least (1− ε) · 2n. All (δ, n)-Hamming balls include the same
number of cylinders, so we have

M(δ, n, ε) ≥ (1− ε) · 2n

2nH(2δ)
= (1− ε)2n(1−H(2δ)) (1)

(for all n sufficiently large).
Using the above we can estimate from below the quantity
Kµ(Q, ε,Nk ,T ).
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