No Semiconjugacy to a Map of Constant Slope

Samuel Roth

Indiana University - Purdue University Indianapolis

Joint work with Michał Misiurewicz

Kepler's Third Law

Kepler's Third Law

Theorem (Parry, 1966)

Let $f : [0,1] \rightarrow [0,1]$ be continuous, piecewise monotone, and topologically transitive. Then f is conjugate to an interval map of constant slope.

Theorem (Milnor-Thurston, 1988)

Let $f:[0,1] \rightarrow [0,1]$ be continuous, piecewise monotone, and have positive topological entropy. Then f is semiconjugate to an interval map of constant slope. This semiconjugating map is nondecreasing.

Countably Piecewise Monotone

Research Question: What about maps with infinitely many turning points?

A continuous map $f: [0,1] \rightarrow [0,1]$ is called *countably piecewise* monotone if the closure of the set of turning points is countable. Notation: P - a closed countable set containing the turning points.

Samuel Roth (IUPUI)

No Semiconjugacy

6 / 17

Countably Piecewise Monotone and Markov

Markov Condition: P can be chosen such that $f(P) \subseteq P$

Theorem (Bobok, 2012)

Suppose f is countably piecewise monotone and Markov w.r.t. P. Then

There exists a nondecreasing semiconjugacy of f with a map of constant slope λ

The 0-1 transition matrix for (f, P) admits a summable, nonnegative eigenvector of eigenvalue λ

Countably Piecewise Monotone and Markov

Markov Condition: P can be chosen such that $f(P) \subseteq P$

Theorem (Bobok, 2012)

Suppose f is countably piecewise monotone and Markov w.r.t. P. Then

There exists a nondecreasing semiconjugacy of f with a map of constant slope λ

The 0-1 transition matrix for (f, P) admits a summable, nonnegative eigenvector of eigenvalue λ

Research Goals:

- Produce non-trivial examples that violate the criterion.
- Tackle the non-Markov case.

Countably Piecewise Monotone Piecewise Continuous

We study the class C of maps f such that

- there exists a closed, countable set P such that f is continuous and strictly monotone on each P-basic interval.
- $f:[0,1]\smallsetminus P \to [0,1]$
- \bullet two maps in ${\mathcal C}$ are considered equal if they differ only on a countable, closed set.

The Pullback Operator f^*

 ${\mathcal M}$ - the set of nonatomic, Borel measures on [0,1].

Definition

To each $f \in \mathcal{C}$ associate the operator $f^*: \mathcal{M} \to \mathcal{M}$ given by

$$(f^*\mu)(A) = \sum_I \mu(f(I \cap A))$$

Example:

f - piecewise linear, constant slope 2

m - Lebesgue measure

The Pullback Operator f^*

 ${\mathcal M}$ - the set of nonatomic, Borel measures on [0,1].

Definition

To each $f \in \mathcal{C}$ associate the operator $f^*: \mathcal{M} \to \mathcal{M}$ given by

$$(f^*\mu)(A) = \sum_I \mu(f(I \cap A))$$

Example:

f - piecewise linear, constant slope $2 \$

m - Lebesgue measure

$$A = (.1, .2)$$

 $m(A) = .1$
 $(f^*m)(A) = m(f(A)) = .2$

The Pullback Operator f^*

 ${\mathcal M}$ - the set of nonatomic, Borel measures on [0,1].

Definition

To each $f \in \mathcal{C}$ associate the operator $f^*: \mathcal{M} \to \mathcal{M}$ given by

$$(f^*\mu)(A) = \sum_I \mu(f(I \cap A))$$

Example:

f - piecewise linear, constant slope 2

m - Lebesgue measure

$$B = (.4, 1)$$

 $m(B) = .6$
 $(f^*m)(B) = .4 + .8 = 1.2$

Samuel Roth (IUPUI)

Lemma

The map $f \in C$ has constant slope λ iff the Lebesgue measure m satisfies $f^*m = \lambda m$.

Lemma

The map $f \in C$ has constant slope λ iff the Lebesgue measure m satisfies $f^*m = \lambda m$.

 \Leftrightarrow

Theorem (Criterion for Semiconjugacy)

Let $f \in \mathcal{C}$ and fix $\lambda > 0$. Then

There exists a nondecreasing semiconjugacy of f with a map of constant slope λ

There exists a probability measure $\mu \in \mathcal{M}$ such that $f^*\mu = \lambda \mu$

Lemma

The map $f \in C$ has constant slope λ iff the Lebesgue measure m satisfies $f^*m = \lambda m$.

 \Leftrightarrow

Theorem (Criterion for Semiconjugacy)

Let $f \in \mathcal{C}$ and fix $\lambda > 0$. Then

There exists a nondecreasing semiconjugacy of f with a map of constant slope λ

There exists a probability measure $\mu \in \mathcal{M}$ such that $f^*\mu = \lambda \mu$

Sketch of Proof.

$$\begin{array}{l} (\Rightarrow) \text{ Define } \mu = \psi^* m. \\ (\Leftarrow) \text{ Define } \psi \text{ by } \psi(x) := \mu([0,x]). \text{ Then } \psi_* \mu = m. \end{array}$$

Theorem (Main Technical Theorem)

Let $f \in \mathcal{C}$ and fix $\lambda > 2$.

Suppose there is an infinite measure $\mu \in \mathcal{M}$ such that $f^*\mu = \lambda \mu$.

- + technical hypothesis
- + technical hypothesis

Then there is no probability measure $\nu \in \mathcal{M}$ such that $f^*\nu = \lambda \nu$.

Theorem (Main Technical Theorem)

Let $f \in C$ and fix $\lambda > 2$.

Suppose there is an infinite measure $\mu \in \mathcal{M}$ such that $f^*\mu = \lambda \mu$.

Assume f is substantially transitive.

Assume $\exists P, \exists \delta > 0$, $\forall P$ -basic interval I, $\delta \leq \mu(I) < \infty$.

Then there is no probability measure $\nu \in \mathcal{M}$ such that $f^*\nu = \lambda \nu$.

Theorem (Main Technical Theorem)

Let $f \in \mathcal{C}$ and fix $\lambda > 2$.

Suppose there is an infinite measure $\mu \in \mathcal{M}$ such that $f^*\mu = \lambda \mu$.

Assume f is substantially transitive.

Assume $\exists P, \exists \delta > 0$, $\forall P$ -basic interval I, $\delta \leq \mu(I) < \infty$.

Then there is no probability measure $\nu \in \mathcal{M}$ such that $f^*\nu = \lambda \nu$.

Proof - Part I.

We show the ergodicity of the measure μ .

Assume E is invariant, $\mu(E) > 0$.

"Lebesgue Density Theorem" $\Rightarrow E$ has a μ -density point x.

Technical Hypothesis 2 \Rightarrow 3 successively smaller intervals $L_k \ni x$ with

"large" monotone continuous images $f^{n_k}(L_k)$, each of measure δ . E has the same density in these images as in the sets L_k . We find an open interval U (of measure δ) in which the density of E is 1. "Substantial Transitivity" $\Rightarrow E = [0, 1] \pmod{0}$.

Theorem (Main Technical Theorem)

Let $f \in \mathcal{C}$ and fix $\lambda > 2$.

Suppose there is an infinite measure $\mu \in \mathcal{M}$ such that $f^*\mu = \lambda \mu$.

Assume f is substantially transitive.

Assume $\exists P, \exists \delta > 0$, $\forall P$ -basic interval I, $\delta \leq \mu(I) < \infty$.

Then there is no probability measure $\nu \in \mathcal{M}$ such that $f^*\nu = \lambda \nu$.

Proof - Part II.

Now assume that ν exists.

After replacing μ by $\mu + \nu$, we obtain absolute continuity $\nu \ll \mu$.

Let $\xi = d\nu/d\mu$ be the Radon-Nikodym derivative.

$$\xi \circ f = df^* \nu / df^* \mu = (\lambda d\nu) / (\lambda d\mu) = \xi.$$

Ergodicity $\Rightarrow \xi$ is constant.

Thus, a probability measure is a constant multiple of an infinite measure. Absurd!

Theorem (Main Theorem)

Assume that $F : \mathbb{R} \to \mathbb{R}$ is continuous, topologically transitive, has constant slope $\lambda > 1$, and is the lifting of a degree one circle map $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$.

Assume also that f is piecewise monotone with finitely many pieces.

Take any homeomorphism $h : \mathbb{R} \to (0,1)$ and let $g : [0,1] \to [0,1]$ be the continuous interval map $h \circ F \circ h^{-1}$ (with additional fixed points at 0, 1).

Then there does not exist any nondecreasing semiconjugacy of g to an interval map of constant slope.

Example

Proof - Part I.

Suppose there is a semiconjugacy of q to an interval map of constant slope λ' . $\exists \nu_a \in \mathcal{M}, \ g^* \nu_a = \lambda' \nu_a.$ Push down to the circle. $\nu_f := \pi_* h_* \nu_q$. $f^*\nu_f = \lambda'\nu_f.$ There is a nondecreasing semiconjugacy of f to a circle map of constant slope λ' . By transitivity, that semiconjugacy is a conjugacy. Entropy (= \log of constant slope) is a conjugacy invariant. Therefore $\lambda' = \lambda$. This rules out any slope except λ .

Proof - Part II.

Let $\mu = h^*m$. Thus, $\mu([0,1]) = \infty$. The technical hypotheses are met and $g^*\mu = \lambda\mu$. Therefore there is no probability measure $\nu \in \mathcal{M}$ such that $g^*\nu = \lambda\nu$. Therefore there is no semiconjugacy to a map of constant slope λ .

How are we using the extra structure from the underlying circle map?

- When F^* acts on prob. measures, the only possible eigenvalue is λ .
- Markov vs non-Markov ...
- Additional tools for studying entropy ...

Samuel Roth (IUPUI)

No Semiconjugacy

Jozef Bobok,

Semiconjugacy to a Map of a Constant Slope, Studia Math. **208** (2012), 213–228.

Jozef Bobok and Henk Bruin Semiconjugacy to a Map of a Constant Slope II, Forthcoming.

 Michał Misiurewicz and Samuel Roth, No Semiconjugacy to a Map of Constant Slope, To Appear: Ergodic Theory and Dynamical Systems. Arxiv 1403.2701.