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Part I

Introduction
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Discrete dynamics

For the present we will refer to iterations of C k -maps or
C k -diffeomorphisms.

f : M → M,

defined on a C k -manifold M. Mostly, M = Rn, n = 1, 2, 3
At some moment we will need to distinguish between invariant sets
and strictly invariant sets.

Definitions

A subset A ⊂ M of M is said invariant iff f (A) ⊆ A
A subset A ⊂ M of M is said strictly invariant iff f (A) = A
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Strange attractors

Definitions

Attractor A compact invariant set Λ with a dense orbit
(transitive) and whose stable set W s has a
non-empty interior.

Strange Λ contains a dense expansive orbit (with a positive
Liapunov exponent): sensitive dependence on initial
conditions.

Outstanding examples

Lorenz Attractor (continuous systems)

Hénon Attractor (discrete systems)
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Compactness + expansiveness ⇒ foldings

How can an invariant compact Λ = f (Λ) be expansive?

If f is a C k -map then we can suppose that there exist
non-empty subsets Λ1 and Λ2 of Λ such that

Λ = Λ1 ∪ Λ2 and f (Λ1) = Λ.

If f is a C k -diffeomorphism then Λ may be a submanifold of
M which folds more and more over itself. Λ is a set with
fractional dimension.
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Part II

One-dimensional strange attractors
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Tent maps

The simplest example of strange attractor is provide by the
following one-parametric family of tent maps:

fµ : x ∈ [0, 1] → [0, 1] , µ ∈ (1, 2]

fµ(x) =

{
µx , 0 ≤ x ≤ 1/2
µ− µx , 1/2 ≤ x ≤ 1

The invariant interval [µ(1− µ/2), µ/2] is an strange attractor of
fµ for µ >

√
2.

Grupo de Sistemas Dinámicos - Universidad de Oviedo Two-dimensional strange attractors



Quadratic maps

Strange attractors can be also found for the following
one-parameter family of quadratic maps

Qa : x ∈ [−1, 1] → [−1, 1] , a ∈ (0, 2]

Qa(x) = 1− ax2.

In fact, Qa is conjugate to the tent map fµ for a = µ = 2.
For a < 2, there exists a positive Lebesgue measure set
E ⊂ (2− ε, 2), with ε arbitrarily small, such that the interval[
Q2(0),Q(0)

]
is an strange attractor: the critical orbit is dense in[

Q2(0),Q(0)
]

and its Lyapunov exponent is positive.
Hence there exists an absolutely continuous invariant measure.

References

Benedicks, M.; Carleson, L. On iterations of 1− ax2 on (−1, 1). Ann. Math.,
122, 1985.

Jacobson, M. Absolutely continuous invariant measures for one-parameter
families of one-dimensional maps. Comm. Math. Phys. 81, 1981.
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Smooth unimodal maps

The existence of strange attractors can be also stated for families
fa : I → I of sufficiently smooth unimodal maps such that:

fa has a quadratic critical point c.

fa has a fixed point qa in the boundary of I which is repelling.

The map (x , a) → (fa(x),Dfa(x),D2fa(x)) is C 1.

There exists a value a = a∗ for wich fa∗ is a Misiurewicz map:
the forward iterates of fa∗(c) remain outside a neighbourhood
U of c.

fa∗ has no periodic attractors.

The transversality condition d
da(xa − fa(c)) 6= 0 holds for

a = a∗, where xa 6= qa is the point such that fa(xa) = qa.

References
De Melo, W.; Van Strien, L. One-dimensional dynamics. Springer Verlag, 1993.

Pumariño, A.; Rodŕıguez J.A. Coexistence and persistence of strange
attractors. Lecture Notes in Math. 1658. Springer Verlag, 1997.
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Strange attractors for diffeomorphisms

Tent maps, quadratic maps or, in general, unimodal ones are not
injective. Their iterations are not useful to model most of the
processes: those called reversible processes.
The reversible processes are mathematically modeled by
means of flows or by iterating diffeomorphisms. Therefore,
concepts like strange attractor must be mainly set in the
framework of diffeomorphisms.
An early example of diffeomorphism with an strange attractor was
given by Smale: the ”solenoid”. It is a hyperbolic attractor and
therefore is observable (structurally stable). However, there is no
natural scenery in dynamical systems leading to the abundance of
solenoids.
Since strange attractors are called to describe the nature of
dissipative chaos, they should be observable and abundant in
generic contexts.
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Non-hyperbolic strange attractors

Strange attractors found numerically in applications, such as the
Hénon attractor and Lorenz attractor, are not hyperbolic. But,

Does there exist any non-hyperbolic strange attractor which
is somehow persistent?

Are these attractors abundant in any generic context?

The first proof of the existence of a non-hyperbolic strange
attractor was given for the Hénon family by Benedicks and
Carleson.
A first answer to the second question was given by Mora and Viana
for a generic family of surface diffeomorphisms unfolding a
homoclinic tangency.

References
Benedicks, M.; Carleson, L. The dynamics of the Hénon map. Ann. Math.,
133, 1991.

Mora, L.; Viana, M. Abundance of strange attractors. Acta. Math. 171, 1993.
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The Hénon family

The Hénon family is the two-parameter family of diffeomorphisms

Ha,b(x , y) = (1− ax2 + y , bx).

If b > 0 is small enough then for a positive Lebesgue measure
set E (a, b) of values of a near to a = 2, the corresponding
diffeomorphism Ha,b exhibits a strange attractor.
Positive Lebesgue measure of E (a, b) means that the strange
attractor is observable with positive probability. It is said that the
attractor is persistent in the sense of the measure. Henceforth
persistent or probable.
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The limit family

When (a, b) is near to (2, 0), the Hénon family has a saddle fixed
point q close to the point (−1, 0). The Hénon attractor is the
closure of the unstable manifold W u(q) of q.
It is crucial to note that if b goes to b = 0 then this manifold
W u(q) is pressed against the attractor of

Ha,0(x , y) = (1− ax2 + y , 0),

which is the attractor in y = 0 of the quadratic family

Qa(x) = 1− ax2.

Definition

Q̃a(x) = (1− ax2, 0) is the limit family of Ha,b when b → 0 or,
reciprocally,
Ha,b is a unfolding of Q̃a(x) = (1− ax2, 0)
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Good unfoldings of the limit family

Let Ψa(x , y) = (ϕa(x), 0), where ϕa is a family of smooth
unimodal maps verifying the six previous conditions (d.M, v.S).
Let Fa,b(x , y) = Ψa(x , y) + ∆a,b(x , y) defined on a domain D̃, and

DFa,b =

(
A B
C D

)

Definition

Fa,b(x , y) is said a good unfolding of the limit family Ψa(x , y) iff

‖∆‖
C3(D̃)

≤ K
√

b

and, in adition, it holds the following techniques assumptions:
|A| ≤ K , |B| ≤ K

√
b, |C | ≤ K

√
b, |D| ≤ Kb, |detDFa,b| ≤ Kb.

|D(a,x,y)A| ≤ K , |D(a,x,y)B| ≤ K
√

b, |D(a,x,y)C | ≤ K
√

b, |D(a,x,y)D| ≤ Kb.

|D2
(a,x,y)

A| ≤ K , |D2
(a,x,y)

B| ≤ K
√

b, |D2
(a,x,y)

C | ≤ K
√

b, |D2
(a,x,y)

D| ≤ Kb.
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Hénon-like family

The above conditions are assumed to get that the unfolding
inherits the properties of the unimodal family: expansivity and
transitivity. This occurs in the case of Hénon-like family.

Definition

A good unfolding Fa,b(x , y) of the quadratic family

Ψa(x , y) = (1− ax2, 0)

is called a Hénon-like family.

Existence of persistent strange attractors in Hénon-like family was
proved by Mora and Viana. The same is proved in the book with
Pumariño for a good unfolding of the unimodal family

Ψa(x , y) = (λ−1 ln a + x + λ−1 ln cos x , 0)

in order to get persistent strange attractors in three-dimensional
flows.
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Strange attractors and homoclinic tangencies

In fact, Mora and Viana proved that Hénon-like families can be
defined in a neighborhood of a tangent homoclinic point when a
generic homoclinic bifurcation takes place. Therefore, they proved
the following conjecture of Jacob Palis.

Conjecture

Generic one-parameter families of surface diffeomorphisms
unfolding a homoclinic tangency exhibit strange attractors or
repeller in a persistent way in the measure theoretic sense.
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Unfoldings of homoclinic tangencies

Let {fµ : M → M}µ∈[0,1] be a family of diffeomorphisms with a
saddle fixed point pµ and such that

f0 has no homoclinic orbit.

f1 has a transversal homoclinic orbit.

µ ∈ [0, 1] → fµ is continuous.

There exists a value µ0 of µ such that fµ0 has a tangent
homoclinic point q
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Hénon-like family and homoclinic tangencies

Hénon-like families for generic unfoldings of a homoclinic tangency
are defined by means of:

A change of parameter a = a(µ) in a neighborhood of µ = µ0.

A variables change in a neighborhood of the homoclinic point
q .

Then

Fa,n = Φn ◦ f n
µ ◦ Φ−1

n such that limn→∞Fa,n = (1− ax2, 0).
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Hénon-like family and homoclinic tangencies in dimension
n > 2

The previous renormalization can also work in dimension n > 2 in
order to yield one-dimensional strange attractors. For instance, if
fµ : M → M unfolds a homoclinic tangency associated to a
sectionally dissipative periodic point p.

Definition

The periodic point p is said sectionally dissipative if its eigenvalues
λ1, λ2, ..., λn satisfy

|λ1| < |λ2| < ... < |λn−1| < 1 < |λn|

and

|λn−1λn| < 1

Under this assumption the family of limit return maps is given by

Fa(x1, x2, ..., xn) = (1− ax2
1 , 0, ..., 0)
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Non-hyperbolic dynamics in dimension two

References
Palis, J.; Viana, M. High dimension diffeomorphisms displaying infinitely many
sinks. Ann. Math., 140, 1994.

Romero, N. Persistence of homoclinic tangencies in higher dimensions. Ergod.
Th. Dyn. Sys. 15, 1995.

The gates to pass from hyperbolic to non-hyperbolic dynamics are
the homoclinic bifurcations. These are equivalent to creation or
destruction of horseshoes. This equivalence and the notion of limit
map allow to explain the following non-hyperbolic phenomena:

Infinitely many sinks (Newhouse phenomenon).

Existence of persistent (probable) strange attractors.

Infinitely many non-persistent strange attractors.

New references
Colli, E. Infinitely many coexisting strange attractors. Ann. Inst. H. Poincaré
Anal. Non Lináire, 15, 1998.

Newhouse, S. Diffeomorphisms with infitely many sinks. Topology 9, 1974.
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Non-hyperbolic dynamics in dimension n ≥ 3

Homoclinic tangencies can now yield non-hyperbolic persistent
two-dimensional strange attractors, whenever the unstable
manifold has dimension two.
In addition to the homoclinic tangencies, the existence of
heterodimensional cycles is a new mechanism implying robust
non-hyperbolic dynamics.
Associated to heterodimensional cycles can be introduced the
notion of blender (something like a generalization of the horseshoe)
and an iterated functions system (IFS).
Proving the existence of two-dimensional strange attractors and
researching the dynamics of IFS look like two interesting problems
in non-hyperbolic dynamics.
We will just talk about the existence of two-dimensional strange
attractors. But, it seems natural to wonder if strange
attractors and IFS may be closely related.
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Part III

Two-dimensional strange attractors
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Approach to the problem

Challenge

To prove the existence of persistent two-dimensional strange
attractors for diffeomorphisms on R3 in a generic context.

Assumptions

{fa,b}a,b is a two-parametric family of diffeomorphisms in R3

Existence of a dissipative saddle fixed point, but no sectionally
dissipative. The eigenvalues satisfy 0 < |λ1| < 1 < |λ2| < |λ3|
Existence of generalized homoclinic tangency, which is
generically unfolded (codimension two)

References
Tatjer, J.C. Three-dimensional dissipative diffeomorphisms with homoclinic
tangencies. Ergod. Th. Dyn. Sys. 21, 2001.

Gonchenko, S.V.; Gonchenko, V.S., Tatjer, J.C. Regular and Chaotic
Dynamics 12 (2007)
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Limit family for the case 3D dissipative (non s. d.)

By means of an adequate renormalization the following limit family
is obtained

Fa,b,n(x , y , z) −→
n→∞

Fa,b(x , y , z) = (z , a + by + z2, y)
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Two-dimensional limit family

For each (a, b) ∈ R2 every point in R3 falls by one iteration of Fa,b

into the surface
Ca,b = {(x , y , z) : y = a + bz + x2}

On the other hand it is not difficult to see that Fa,b restricted to
Ca,b is conjugate to the family of endomorphisms defined on R2 by

Ta,b(x , y) = (a + y2, x + by)

References
Tatjer, J. C. Three-dimensional dissipative diffeomorphisms with homoclinic
tangencies. Ergodic Theory and Dynamical Systems, 21 (2001), 249-302.

Pumariño, A. and Tajter, J. C. Dynamics near homoclinic bifurcations of
three-dimensional dissipative diffeomorphisms Nonlinearity, 19, 2006.

Pumariño, A. and Tatjer, J. C. Attractors for return maps near homoclinic
tangencies of three-dimensional dissipative diffeomorphisms. Discrete and
Continuous Dynamical Systems, series B, vol 8, no 4, 2007.
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Numerical results for parameters with invariant domains

Blue: attractor periodic
point.

Green: attractor formed by a
junction of closed curves.

Red: one-dimensional
strange attractor.

Black: two-dimensional
strange attractor.

G = {(a(s), b(s)) =

(
−s3

4
(s3 − 2s2 + 2s − 2),−s2 + s

)
: s ∈ [0, 2]}
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Possible strange attractors
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Invariant domain along the curve G

Invariant domain of Ta(s),b(s) : Ds

Si s < 2,

Ta(s),b(s)(Ds) ⊂ Ds

Si s = 2, a = −4, b = −2

T−4,−2(D2) = D2
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Possible strange attractors along the curve G
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The special case: (a, b) = (−4,−2)

Let us define T = T0 ∪ T1 with

T0 = {(x , y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}
T1 = {(x , y) : 1 ≤ x ≤ 2, 0 ≤ y ≤ 2− x}

Proposition

The map T−4,−2|D2 is conjugate to Λ1 = A1 ◦ S, where

S(x , y) =

{
(x , y) si (x , y) ∈ T0

(2− x , y) si (x , y) ∈ T1

A1 =

(
1 1
1 −1

)
.
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The two-dimensional tent map

Theorem

The map Λ1 (and so T−4,−2) verify:

1 They are conjugate to the shift with two simbols.

2 They have a dense orbit in the invariant domain with two
positive Lyapunov exponents.

3 They have a unique absolutely continua invariant (ergodic)
measure.

Λ1 is called two-dimensional tent map.

A. Pumariño and J. C. Tajter,

Dynamics near homoclinic bifurcations

of three-dimensional dissipative

diffeomorphisms Nonlinearity, 19, 2006.
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A good example of two-dimensional strange attractor?

As far as we know, Λ1 (and so T−4,−2) yield the first example of a
two-dimensional strange attractor for one endomorphism T such
that none n-composition T n is C 1-conjugate to a triangular map.
Nevertheless, we would like T−4,−2 to be a diffeomorphism.
Moreover:

We would like to find such attractor for an unfolding of T−4,−2

that it was a return map on a neighborhood of a generalized
homoclinic tangency

However:

To prove the existence of strange attractors from limit family to
the corresponding family of diffeomorphisms is a very difficult task.

It was seen even in the one-dimensional case
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Part IV

Two-dimensional strange attractors for limit
families: Expanding baker maps (EBM)
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Two-dimensional strange attractors for limit families:
Expanding baker maps

Existence of persistent one-dimensional strange attractors for
fa(x) = 1− ax2

was proved by means of a carefully process of excluding
parameters, in order to prevent that the critical orbit returns too
close to the critical point.
A similar process could be proposed for the limit family

Ta,b(x , y) = (a + y2, x + by) .
However, in this case we have a critical curve instead of a critical
point.
As a first approach we will work with piecewise linear maps:
Expanding baker maps.
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History in dimension one

To compare maps with sensitivity to simple maps (piecewise affine
maps) has a long history in dimension one: Section 8 of Chapter II
in the book by W. de Melo and S. van Strien.
For example,
If fa(x) = 1− ax2 has no stable periodic points and no
restrictive central point, then there exists a′ such that
λa′(x) = 1− a′|x | and fa are conjugate.

References
Collet P.; Eckmann, J. P. Iterated maps of the interval as dynamical systems.
Birkhauser, 1980.
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Definitions

Fold

Let D be a polygonal domain, P ∈ D y R a straight line that
divides D into two subsets D0 y D1 (w.l.g. P ∈ D0). We define the
fold of D by R as

SR(x , y) =

{
(x , y) if (x , y) ∈ D0

(x , y) if (x , y) ∈ D1

where (x , y) is the symmetric of (x , y) with respect to R.

Good fold

We say that the fold SR is good if SR(D) = D0.
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Sequence of folds

Let SR1 be a good fold defined in the domain D by means of
a straight R1 in order to obtain D0 .

Let SR2 be a good fold defined in the domain D0 by means of
R2. in order to obtain D00.

Let us iterate the process for R3 . . .Rn

After n good folds we obtain D0...0 ⊂ D with P ∈ D0...0.
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Definition of EBM

Let D be a polygonal domain, P ∈ D and SR1 . . .SRn a sequence
of good folds. Let TP(Q) = Q − P and M ∈M2x2 such that

T−1
p MTp(D0 n...0) ⊂ D.

We define the expanding baker map Λ as the map given by

Λ = T−1
P ◦M ◦ TP ◦ SRn ◦ . . . ◦ SR1

Two-dimensional tent map

D = T , P = (0, 0), n = 1, R1 = C = {(x , y) : x = 1}, M = At
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Expanding Baker Maps associated to Ta(s),b(s)

In order to reproduce the dynamics observed for Ta(s),b(s) we
introduce the family of EBM {Λt}0≤t≤1 given by

Λt = At ◦ S : T → T

where

S(x , y) =

{
(x , y) if (x , y) ∈ T0

(2− x , y) if (x , y) ∈ T1

At =

(
t t
t −t

)
.
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Expanding Baker Maps associated to Ta(s),b(s)

The choice of {Λt}0≤t≤1 was motivated and its dynamics
numerically studies in

Pumariño, A.; Rodŕıguez, J.A.; Tatjer, J.C.; Vigil, E. Expanding baker maps as
models for the dynamics emerging from 3D-homoclinic bifurcations. Discrete
and Cont. Dynamical Sys, series B, vol 19 n. 2 (2014).

Pumariño, A.; Rodŕıguez, J.A.; Tatjer, J.C.; Vigil, E. Piecewise linear
bidimensional maps as models of return maps for 3D-diffeomorphisms.
Proceeding of International Congress DS100 Year After Poincaré. Springer
(2013)
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Dinamics of Λt

Let t∗ = 1√
2
. The dynamics of Λt is simple for t ≤ t∗

If t < t∗, there exists a unique fixed point (in the origin)
which is a global attractor.

For t = t∗ every point of Λ2
t∗(T ) is fixed by Λ2

t∗ .

The interesting dynamics takes place when t > t∗: a new
fixed point Pt appear and the map Λt becomes expansive.
The origin is a repelling nodus while Pt emerge as a repelling
focus. Then non-trivial attractors (connected,non simply
connected, and non-connected) arise.
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Non-connected attractors

In the case 1√
2

< t < 1
5√4

, the attractor consists of eight pieces.

On the left, the attractor for Λt with t = 0.73.

On the right, the attractor for Ta(s),b(s) with s = 1.8909.

We will call this type of
attractors Fairy Cakes
Attractor
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Non simply connected attractors

In the case 1
5√4

< t < 1
3√2

, the attractor consists of a single piece

with a hole.

On the left, the attractor for Λt with t = 0.77.

On the right, the attractor for Ta(s),b(s) with s = 1.8939.

This type of attractor will be
called Bread Rolls Attractor
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Connected attractor

In the case 1
3√2

< t < 1 the attractor consists of a unique piece

without hole.

On the left, the attractor for Λt with t = 0.8.

A la right, the attractor para Ta(s),b(s) with s = 1.99.

This attractor can be named
Country Bread Attractor
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Part V

Are these attractors really strange?
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Analytical proof

Theorem

There exists an interval of parameters I ⊂ [ 1√
2
, 1] such that for

every t ∈ I the map Λt displays a two-dimensional strange
attractor Rt ⊂ T . Moreover, Rt supports a unique absolutely
continuous and ergodic invariant measure.

A. Pumariño, J. A. Rodriguez, J. C. Tatjer and E. Vigil, Chaotic dynamics for 2-D
tent maps. Submitted for publication in Nonlinearity
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Comments for the proof

Remarks

Actually, I ⊂ [ 1
3√2

, 1]. Hence Rt will be a pentagon according

to the previous graphic (Country Bread Attractor)

Both Lyapounov exponents are: log(
√

2t) (t > 1/
√

2)

The main difficulty is to prove that Rt is transitive.

The existence of a unique absolutely continuous and ergodic
invariant measure follows from the transitivity and the results
by J. Buzzi, and B. Saussol.

References
Buzzi, J. Absolutely continuous invariant measures for generic multidimensional
piecewise affine expanding maps. Inter. Jour. Bif. and Chaos 9, 1981.

Saussol, B. Absolutely continuous invariant measures for multidimensional
expanding maps. Israel Journal of Mathematics, 116, 2000.
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Transitivity of Rt

Definition

Rt is transitive if Λt|Rt
is topologically transitive: for every pair of

open sets U,V ⊂ Rt there exists a natural number n such that

Λn
t (U) ∩ V 6= ∅.

Alternative

Density of the pre-fixed points:
O−(Pt) = {q : ∃n ∈ N tal que Λn

t (q) = Pt}.

This property is stronger than the transitivity of Rt
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Results for the proof

Proposition

Let B = B(q, ε) ⊂ Rt a disk such that B ∩ C 6= ∅. Then at least
one of the following statements holds:

i) There exists a pre-fixed point in B
ii) (Expansitivity) There exists a disk B1 ⊂ B and a natural

number n1 such that Λn1
t (B1) is a disk of radio ε1 > ε.

Corollary 1: Density of the pre-fixed points

For every open set U ⊂ Rt there exists a point x ∈ U such that
Λn

t (x) = Pt for some n ∈ N.

Corollary 2: Transitivity

For every open set U ⊂ Rt there exists a natural number n ∈ N
such that Λn

t (U) = Rt .
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Sketch of the proof: staging

Let us return to the family EBM {Λt}0≤t≤1 given by

Λt = At ◦ S : T → T

where

S(x , y) =

{
(x , y) if (x , y) ∈ T0

(2− x , y) if (x , y) ∈ T1

At =

(
t t
t −t

)
.
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Sketch of the proof: partition and symmetries

C0 = C ∩ Rt
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Sketch of the proof: partition and symmetries

Θ0 = T0 ∩Rt
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Sketch of the proof: partition and symmetries

Pre-critical lines

C0 = C ∩ Rt

C−k = Λ−1
t (C−k+1) ∩ T1, k ∈ N

Partition

Θ0 = Rt ∩ T0

Θ−k = Λ−1
t (Θ−k+1) ∩ T1, k ∈ N
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Sketch of the proof: partition and symmetries

Propierties

1 The union of all pre-critical lines is dense in Rt .

2
⋃

k≥0
Θ−k = Rt \ {Pt}

3 int(Θ−i ) ∩ int(Θ−j) = ∅ for each i 6= j .

4 For every k ≥ 0 there exists nk such that Λnk
t (Θ−k) = Rt .

5 Let x ∈ Θ−k and x its symmetric with respect to C−k . Then
Λk+1

t (x) = Λk+1
t (x)

6 For every n ≥ 0 the set
⋃

k≥n
Θ−k is similar to Rt .
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Sketch of the proof: Proposition

Proposition

Let B = B(q, ε) ⊂ Rt be a disk such that B ∩ C 6= ∅. Then at least one
of the following statements holds:

i) There exists a pre-fixed point in B

ii) (Expansivity) There exists a disk B1 ⊂ B and a natural number n1

such that Λn1
t (B1) is a disk of radio ε1 > ε.

Proof

Let k be such that q ∈ Θ−k .

If k 6∈ {0, 2, 3, 5} then B contains a pre-fixed point

If k ∈ {3, 5} then either B contains a pre-fixed point or the
expansivity condition ii) holds.

If k ∈ {0, 2} the proof reduces to the previous cases by taking the
symmetric disk of B with respect to C−k .
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Sketch of the proof: corollary 1

Corollary1

For every open set U ⊂ Rt there exists a point x ∈ U such that
Λn

t (x) = Pt for some n ∈ N.

Proof

Let n0 be the first natural number such that Λn0
t (U) ∩ C 6= ∅. Then

B0 ⊂ Λn0
t (U)

Prop.ii)−→ B1 ⊂ Λn1
t (B0)

Prop.ii)−→ B2 ⊂ Λn2
t (B1)

Prop.ii)−→ . . .

namely, we obtain a sequence of disks {Bn} with radius
µ0 < µ1 < µ2 < . . .. Since this process has to be finite, there
exists a natural number m such that Bm contains a pre-fixed point.
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Sketch of the proof: corollary 2

Corollary 2

For every open set U ⊂ Rt there exists a natural number n ∈ N
such that Λn

t (U) = Rt .

Demostración

According to Corollary 1, there exist a point x ∈ U and a natural
number n1 ∈ N such that Λn1

t (x) = Pt . Let N be a neighborhood
of x such that N ⊂ U, . Then there exists a set Θ−k ⊂ Λn1

t (N )
and hence, Λn

t (N ) = Rt for some n.
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Part VI

Some final comments
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Last remarks

In the paper submitted to Nonlinearity the Theorem was proved for
the interval I = [0.88, 1]. Recently the proof was extended to the
interval [1/ 3

√
2, 1]. That is, for the case in which the attractor is

connected (Country Bread Attractor).

For the case when the attractor is not connected (fairy cakes) we
have introduced a renormalization process. However, renormaliation
forces to consider two-parametric family Λt,s of EBM with matrix

At,s =

(
t s
t −t

)
.

The family Λt,s furnish new types of attractors which were observed
numerically for Ta(s),b(s), but do not appear for the family Λt .
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An example

On the left, the attractor for a given Λt,s . On the right, the attractor for

Ta(s),b(s) with s = 1.8862.
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Outstanding work

1 To prove the transitivity of Λt for the remaining values of the
parameter.

2 We know that for each t ∈ I there exists a unique absolutely
continuous and ergodic invariant measure µt which is
determined by a function ft . But, is the map t ↪→ ft
continuous?

3 To bring the results obtained for the family of EBMs to the
limit family Ta,b.

4 (For the afterlife)By using the possible results obtained for the
limit family to prove the existence of two-dimensional strange
attractor for the return map in a neighborhood of a
generalized homoclinic tangency.
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