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Quasi-periodic Schrédinger operators

In many physically relevant situations (eg. quasi-crystals,
Quantum Hall Effect, linearization around g-p orbits in DS) it is
necessary to consider a Schrédinger operator with

quasi-periodic potential:
(Hb:w7¢x)n = Xn+1 + Xn—1 + anXn.

where w, = (W(wn + ¢)) .., is a quasi-periodic sequence with
» W: T =R/Z — R areal analytic funcion, called the
potential.
» w € R airrational frequency,
» ¢ € T aphase.
» bis a coupling parameter.
and any of these operators satisfies
» Itis bounded and self-adjoint on /2(Z).
» The spectrum is independent of ¢ since w is irrational.



The dynamical connection: the eigenvalue equation

A link between spectral theory and dynamical systems for this
equation is to consider the corresponding eigenvalue equation:

Xni1 + Xn—1 + bW (nw + ¢)) Xp = axy, nez

where ais the energy. These are discrete difference equations
and quasi-periodic versions of the classical Hill's equation

X"(t) + (a+ bq(t)) x(t) =0, q(t)=q(t+T).
A “naive” discrete analog is the Harper equation
Xni1 + Xn_1 + bcos 27 (nw + ¢) xn, = axp, nez,
the eigenvalue equation of the Almost Mathieu operator

(Hpw,¢X) , = Xnt1 + Xn—1 + bCOS 27 (Nw + ) Xp.



A dynamical perspective
These ev equations can be viewed as linear skew-products:

() - (7 ()

V41 Aab(6n) Vn

Oni1 = Ohtw (mod 1),

and the solution is given by a cocycle on SL(2,R) x T
Map (On-1)-.-Map(6o) N >0,

M) (00) = {1 N =0,
M5 (6n) .- Mo p(6-1) N <O.

a,
(Aab,27)" (1, 60) = (M2, (o), 0o + o)

(Aapw): SL(2,R)xT — SL(2,R)xT
(X,0) —  (Aap(0)X,0+w).



Another perspective (not new, though...)
Writing yn = Xp_1/Xn, a family of Harper-like maps on R x T

1
yn+1 - a— bW(Hn) . yn)

fa,b(ynﬂn)
Opni1 = Ontw (mod 1),

» yeR=[-00,+o0]and § € T = R/Z.
» b (coupling), a (energy) and w (irrational frequency) are
parameters. Harper happens when W = cos.

A Harper map is a skew-product map on R x T
Fapw(Yn,0n) = (fap(¥n, On), On + w),

F(N) (.y0790) = (fg(zy))(y0790),90 + NW)a N € Z.

a,bw



.which is an gpf circle map

To get rid of the point at oo, take polar coordinates ¢ = arctan y
sothat y € P~ [-7/2, /2] and the resulting equations are

’
— arctan ,
Fnii (a — bcos (276,) — tan g0n>

fa,b(sonﬁn)
Onp1 = Ontw (mod 1).

Since P x T ~ S', it is a quasi-periodically forced circle map.
Take home message of the talk

Quasi-periodic Schrédinger operators (and their difference
equations, skew-producs and maps)

» Display interesting and nontrivial phenomena: coexistence
of different spectral types, nonuniform hyperbolicity or
SNAs ...

» Their study requires the combination of different areas.



An excursion in Etymology

SNA |
Strange Nonchaotic Attractor
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An excursion in Etymology
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The DANCE Network: History

~2000
2001

2002

2003
2003

2004

LI. Alseda and A. Delshams became interested in SNA

XT2001: Application for a Catalan network "Dinamica
discreta en dimensié baixa i atractors estranys" (Discrete
Dynamics in low dimension and strange attractors), formed
by 5 nodes (UAB, UB, UGR, UOV and UPC), unsuccessful.
BFM2001: Spanish network DANCE (Dindmica no lineal
en dimensién baja y atractores extranos), formed by 7
nodes (UAB, UB, UGR, UOV, UPC, US and UVA),
successfullll

Ddays 2003 in Salou: Total discussion about SNA

BFM2002: Spanish network DANCE (Dinamica, Atractores
y Nolinealidad: Caos y Estabilidad), formed by 10 nodes
(UAB, UB, UGR, UIB, UM, UQV, UPC, US, UV and UVA)

RTNS 2004 in Palma de Mallorca



The DANCE network today

Today The DANCE network (http://www.dance-net.org/) has 21
nodes, more than 200 researchers

» Ddays 2003, 2004, 2006, 2008, 2010, 2012, 2014

» RTNS 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
2012, 2013, 2014

» There have been several other coordinators, but Lluis
Alseda is currently again one of the two coordinators

» The SNA topic has been studied by several people of the
group: Lluis Alseda, Sara Costa, Jordi-Lluis Figueras, Alex
Haro, Angel Jorba, Carmen Nufiez, Rafael Obaya,
Joaquim Puig, Pau Rabassa, Joan Carles Tatjer, .. ..



DANCE rules

. Try new dances.
. Do not dance alone.



Lyapunov exponent. Almost Mathieu & beyond
(Upper) Lyapunov exponent of x,,1 + Xp—1 + bW(05)Xn = axn

Hab)= Jm 1/IogHAab27er+9) Aa(6)| 00

well-studied behaviour for the AMO W(6) = cos 2x6. In the
spectrum it equals max (O log ‘b‘) Forb=1,24:




Towards an explanation for the AMO: the IDS

1 .
KLbwo(8) = Z# {eigenvalues < aof Hp, sl(1,..11}

for fixed with a, b and ¢ and some boundary conditions. Then
li = K
Jim #1p.0,6(8) = Kow(@),

is the integrated density of states (IDS), exists and satisfies
» it is independent of ¢.
» it is continuous and not decreasing function of a (b fixed).
» ac o(b,w), spectrum of Hp,, , < the IDS increases at a.

One can recover the Lyapunov exponent from the IDS through
the Thouless Formula, which holds for more general potentials:

~H(a, b) = / log|a — &|dkp,,(&) forac Cand b € R.
R



Why is the Almost Mathieu, W = bcos, so special? |

The basic reason is invariance through Aubry Duality

» Assume that a is a point eigenvalue of an AMO H,, , whose
e.f decays exponentially in |n| (homoclinic at zero).

» This means that there is an exponentially decaying (vn)n,
solution of the eigenvalue equation

Uni1 + hn_y + bcos2n(wn+ )by = ayp,  nNeZ,

» Think of (vn)n as the Fourier coefficients of an analytic
funcion on T and consider the quasi-periodic Bloch wave

Xp = €"1j(wn), P(O) =) v

kezZ



Why is the Almost Mathieu, W = bcos, so special? Il

» This sequence (xp)ncz satisfies the difference equation

b
> (Xna1 + Xn_1) + 2cos(wn)x, = axp,

an e.v. equation for the Almost Mathieu with parameters

4,22

b’ ‘T b

» Aubry duality is this mechanism and applies to many
situations. For example, the IDS is invariant through duality

w(a,b) = r (2;",‘;) .

» Aubry duality can be made more precise under
Diophantine conditions for w and ¢.

8=



Duality of the Lyapunov exponent for the AMO
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Using Thouless Formula for the Almost Mathieu
1(a.b) = [ log|a— a|drp..(d)
R

and the duality of the IDS, a change of variables shows that
H — M H % f
77(a.b) =log 5+~ <b’b

Since 8" is zero in the spectrum for |b| < 2, (nontrivial but
natural, proved by Bourgain & Jitomirskaya 2002), in particular

~H(a, b) = max <0, log |g|> , aco(bw).



Extension to more general potentials |

v

The previous trick works only for the Almost Mathieu.

» However, we can still use it for more general trigonometric
polynomials.

For example, consider a Schrédinger operator with a
potential with two harmonics:

v

(hx)n = Xpi1 + Xp—1 + 28 (cos (270,) + cos (476p)) Xn,
W(6n)

0p=00+wn, nez,

with coupling 5 # 0.

v

W : T — R could be any trigopnometric polynomial.
We can compute numerically the Lyapunov exponents.

v



Extension to more general potentials Il

Figure : Upper Lyapunov exponent for 3 = 0.25 and w = ¥5-1.



Extension to more general potentials Il

Figure : Upper Lyapunov exponent for 5 = 0.5 and w = @



Extension to more general potentials IV

Figure : Upper Lyapunov exponent for 3 = 0.75 and w = ¥5-1.



Extension to more general potentials V

Figure : Upper Lyapunov exponent for 5 =1 and w = @



More numerical explorations

I Dyn Difl Equat (2011) 23:649-669
DOT 10.1007/510884-010-9199-5

Resonance Tongues and Spectral Gaps in Quasi-Periodic
Schridinger Operators with One or More Frequencies.
A Numerical Exploration

Joaquim Puig - Carles Sim6



Questions

» For small values of 3, the Lyapunov exponent is zero in the
spectrum (well-understood by Eliasson’s reducibility
theory).

» For large values of 3, the Lyapunov exponent is always
positive ("easy" using Herman’s trick).

» For intermediate values, coexistence (cf. Avila ICM2014).

» When the Lyapunov exponent is positive, it is not constant,
but rather on a smooth curve (related to the stratificated
regularity of the Lyapunov exponents (Avila 2013)).

» Is it possible to understand this through Aubry Duality?
» Can this explanation be purely dynamical?



An Aubry Duality approach |
» The Aubry dual of the operator with two harmonics

(hX)n = Xpi1 + Xn_1 + 25 (cos (270,) + cos (470p)) Xn,
W(6n)

is a difference operator of order 4 (twice the deg. of W)
(W'X)n = B (Xnt2 + Xnt1 + Xn—1 + Xp—2)+2€0S(270,)Xpn, N € Z.

» For any «, its eigenvalue equation A'x = ax, defines a
skew-product on R?,

Xni2 —1 9—2cos(2n0p) —1 —1\ [Xpis
Xnet | |1 0 0 0 Xn
Xa | |0 1 0 0| |xm |’
Xn—_1 0 0 1 0 Xn—2

9n+1 - 9[‘] + w.



An Aubry Duality approach Il

» Unlike the Almost Mathieu, these linear skew-products are
not in SL(2,R) but they preserve an adapted complex
symplectic structure (dependent on W.)

» In particular, for any a € C and g # 0, it has 2 Lyapunov
exponents which are non-negative, v{(«, 5) and v2(a, ).

» Which is the relationship between the Lyapunov exponent
of the original Schrédinger operator h at o and these two
Lyapunov exponents of the dual?

» We can show a similar relation than for the AMO:

(e, B) = A (a0, B) + 75 (e, B) + log | 8], (1)

~
normalized Lyapunov semi-trace




Numerical examples |

W =2fcos(2m -) +2fcos(4n ), V=2cos(27-), 3=0.25




Numerical example

W =208cos (2 ) +2[cos(4r ), V=2cos(27-), 3=0.5




Numerical example

W =28cos(2m -) +20cos(4r ), V=2cos(2r -), $=0.75




Numerical example

W =208cos(2 ) +2[cos(4r ), V=2cos(27-), B=1.0




Quasi-periodic long-range operators

A quasi-periodic long-range operator of finite range d and
(irrational) frequency w € R is a bounded self-adjoint operator
h = hy w.g, acting on x = (xp)n € ¢2(Z,C) by

d
(h)n= Y ViXnik + W(bn)xa, neZ,
k=—d
where

» V: T — Ris a real trigonometric function with average 0,
the symbol, with Fourier representation

d
V(Q): Z Vk627rik9;
k=—d

» W : T — Ris a real analytic funcion, the potential;
» g € Tis a phase, and 6, = 0y + nw for n € Z.



Quasi-periodic long-range linear skew-products
The eigenvalue equation of h for a € C,

d
Z Van+k + W(Hn)Xn = Oéth n 6 Z,
k=—d

is equivalent to

Xn+d Vg1 ... Vi a=W(0h) | —V_4

Va
Xni2 .
Xt [ 1 Va

Xn Vv, Vy
. ? Vy

Xn—d+2
Xn—d+1 7]
—_—

Unt1 Al (6n)

9n+1 = 0n+4~'»

defining a long-range linear skew-product
(Ah 7). C?d x T — C?? x T.

Xntd—1

X1



Symplectic properties of long-range cocycles

An adapted complex symplectic structure

Proposition

For o € R, the long-range skew-product (A, ) is complex
symplectic with respect to the complex symplectic structure

0 —-C
(e )

where
Vo - Vi
C=1o0 :
0 0 Vyu
That is:

1(AL(9))" Q AL(0) = .

Compare with [Johnson 87].



Thouless formula for long-range operators

Generalization of previous objects

The integrated densitity of states of the operator his a
non-decreasing function x5 : R — [0, 1] defined as the limit

, 1 .
rn(a) = fim oo # {elgenvalues < aof h[‘NvN]} ,

N—oo

where hl=N:-M is the restriction of h to the interval [~ N, N] with
zero boundary conditions.

The normalized Lyapunov semi-trace or entropy of h at o, 77(«)
is

() =4(a) + ... +75(a) + log( Va),

where 7/(a) > ... > 4f(a) > 0 are the d non-negative
Lyapunov exponents of (A7, 7).



Thouless formula for long-range operators

The main result

Theorem (Thouless formula)
The following integral formula holds:

/ log | — aldkn(a) = 57(a),
R

where ry, is the IDS of the long-range operator h, and 7"(«) is
the normalized Lyapunov semi-trace.



