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Basic notation

1 (X , d) - compact metric space
2 f : X → X - continuous (denoted f ∈ C (X ))
3 (X , f ) - dynamical system
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Scrambled sets

1 (x , y) is a LY-pair if it is proximal but not asymptotic, that is,
respectively,

lim inf n→∞d(f n(x), f n(y)) = 0 and

lim sup n→∞d(f n(x), f n(y)) > 0.

2 δ-LY when lim sup d(f n(x), f n(y)) > δ

3 S is a scrambled set (resp. δ-scrambled) if every pair od distinct
points is LY (resp. δ-LY).
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Some history

1 Start of the story...
[1975, Li & Yorke] If f : [0, 1]→ [0, 1] has a point of period 3 then it
has a scrambled set.

2 And other classical results implying existence of scrambled set...
[Iwanik, 1989] Weak mixing
[Huang & Ye, 2002] Devaney chaos
[Blanchard, Glasner, Kolyada & Maas, 2002] Positive entropy
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Natural questions

Question
What is the size of scrambled sets in concrete cases/spaces?

Question
How large scrambled sets can be?

Piotr Oprocha (AGH) Completely scrambled DS NPDDS 2014 5 / 21



How big scrambled set can be in dimension n?

1 Traditionally scrambled set should at least be uncountable (to
indicate complicated dynamics).

2 By result of Misiurewicz, on [0, 1] scrambled set can have full
(Lebesgue) measure.

3 The same is true on [0, 1]n (first proved by Kato).

4 But C1-maps on the unit interval never have full measure scrambled
sets (Jimenez-Lopez).

5 And on interval (continuous case) scrambled set is never residual
(Bruckner & Hu; Gedeon). The same holds on topological graphs
(Mai).

6 Mai constructed a DS on (0, 1)n with all non-diagonal pairs LY and
conjectured that it is not possible on compact spaces (the case [0, 1]n,
n > 1 is probably still open (?)).

Definition
A dynamical system (X , f ) is completely scrambled if X is a scrambled set.
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Completely scrambled systems

1 If (X , f ) is transitive and completely scrambled then it is a
homeomorphism.

2 (e.g. Akin & Kolyada) The following conditions are equivalent:
1 (X , f ) is proximal, i.e. lim infn d(f n(x), f n(y)) = 0 for every x , y ∈ X ,
2 (X , f ) has a fixed point which is the unique minimal subset of X .

3 (e.g. King) If X is infinite and f is homeomorphism, then for every
ε > 0
1 there are points x 6= y with ε-bounded future, i.e.
2 d(f n(x), f n(y)) < ε for every n ≥ 0.

4 In particular, for any δ > 0 the space X cannot be δ-scrambled (there
is no completely δ-scrambled system)

5 and expansive maps are never completely scrambled (so no example
among shift spaces on finite alphabet).

6 δ-scrambled set S can be closed or invariant (i.e. f (S) ⊂ S).

Piotr Oprocha (AGH) Completely scrambled DS NPDDS 2014 7 / 21



Completely scrambled systems

1 If (X , f ) is transitive and completely scrambled then it is a
homeomorphism.

2 (e.g. Akin & Kolyada) The following conditions are equivalent:
1 (X , f ) is proximal, i.e. lim infn d(f n(x), f n(y)) = 0 for every x , y ∈ X ,
2 (X , f ) has a fixed point which is the unique minimal subset of X .

3 (e.g. King) If X is infinite and f is homeomorphism, then for every
ε > 0
1 there are points x 6= y with ε-bounded future, i.e.
2 d(f n(x), f n(y)) < ε for every n ≥ 0.

4 In particular, for any δ > 0 the space X cannot be δ-scrambled (there
is no completely δ-scrambled system)

5 and expansive maps are never completely scrambled (so no example
among shift spaces on finite alphabet).

6 δ-scrambled set S can be closed or invariant (i.e. f (S) ⊂ S).

Piotr Oprocha (AGH) Completely scrambled DS NPDDS 2014 7 / 21



Completely scrambled systems

1 If (X , f ) is transitive and completely scrambled then it is a
homeomorphism.

2 (e.g. Akin & Kolyada) The following conditions are equivalent:
1 (X , f ) is proximal, i.e. lim infn d(f n(x), f n(y)) = 0 for every x , y ∈ X ,
2 (X , f ) has a fixed point which is the unique minimal subset of X .

3 (e.g. King) If X is infinite and f is homeomorphism, then for every
ε > 0
1 there are points x 6= y with ε-bounded future, i.e.
2 d(f n(x), f n(y)) < ε for every n ≥ 0.

4 In particular, for any δ > 0 the space X cannot be δ-scrambled (there
is no completely δ-scrambled system)

5 and expansive maps are never completely scrambled (so no example
among shift spaces on finite alphabet).

6 δ-scrambled set S can be closed or invariant (i.e. f (S) ⊂ S).

Piotr Oprocha (AGH) Completely scrambled DS NPDDS 2014 7 / 21



Method of Huang and Ye (publ. 2001; results from 1999)

Piotr Oprocha (AGH) Completely scrambled DS NPDDS 2014 8 / 21



Method of Huang and Ye (publ. 2001; results from 1999)

1 There is a countable and compact set Y ⊂ R2 admitting completely
scrambled (homeomorphism) F .

2 Technique for extending dimension....

Let (Y ,F ) be completely scrambled and let p be the unique fixed point
of F in Y .

Take any compact set Z and let g be obtained form the map F × idZ
by collapsing to a point (Y × {z0}) ∪ ({p} × Z ) in Y × Z for some
z0 ∈ Z .
If Z is continuum then resulting space is also a continuum.

3 DS obtained by this method is never transitive.
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Brief overview on the construction
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Hierarchy of (topological) ”mixing” properties

1 f is transitive if for every nonempty open set U,V there is n such
that f n(U) ∩ V 6= ∅.

2 f is totally transitive if f n is transitive for every n.

3 f is (topologically) weakly mixing if f × f is transitive.
Equivalently: f n(Ui ) ∩ Vi 6= ∅ for i = 1, . . . ,m, n,m > 0.

4 f is (topologically) mixing if there is N such that f n(U) ∩ V 6= ∅ for
n > N.

Mix =⇒ WMix =⇒ Tot. Trans =⇒ Trans
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Questions in H&Y paper

The following questions are form H & Y paper (and probably from 1999).
1 Can completely scrambled system have positive topological entropy?

NO!
Every system with positive entropy has an asymptotic pair (Blanchard,
Host, Ruette, 2002)

2 Can completely scrambled system be transitive?

YES! (Katznelson & Weiss construction, 1981; Akin, Auslander &
Berg, 1996)

3 Both answers added to H & Y paper before final publication.

Conjecture
Completely scrambled examples with mixing properties should exist.

Related question
Is there transitive completely scrambled system (on continua) in every
dimension?
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Uniformly rigid systems

1 Dynamical system (X , f ) is uniformly rigid if for every ε > 0 there is
n > 0 such that d(x , f n(x)) < ε for every x ∈ X .

2 Natural examples:
Periodic orbit
Irrational rotation of the circle (or Tn).

3 Uniformly rigid systems cannot be mixing.
4 Uniformly rigid systems do not contain (proper) asymptotic pairs.

5 But uniformly rigid system can be weakly mixing (Glasner & Maon,
1989)

On various spaces of the form S1 × Y (including all Tn, n ≥ 2) there
exists weakly mixing, uniformly rigid, minimal dynamical system.
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Theorem (Glasner & Maon)

Let H0(Y ) be a path component of identity in H(Y ). If Y is nontrivial
and action of H0(Y ) is minimal on Y then there is weakly mixing,
uniformly rigid and minimal homeomorphism (on S1 × Y ) in

{G−1 ◦ (Rα × id) ◦ G : G ∈ H(S1 × Y )}

Piotr Oprocha (AGH) Completely scrambled DS NPDDS 2014 13 / 21



Uniformly rigid systems (Katznelson & Weiss example)

1 If (X , f ) is uniformly rigid and proximal then it is completely
scrambled.

2 Katznelson and Weiss provided a method of construction of uniformly
rigid, proximal, transitive systems.

3 Constructed system is a subset of the Hilbert cube [0, 1]N with metric

d(α, β) =
∞∑
n=0

|α(n)− β(n)|
2n

and left shift σ(α)(i) = α(i + 1) on it.
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Uniformly rigid systems (Katznelson & Waiss example)

1 Fix L ≥ 2 and start with function a0 : [−1, 1]→ [0, 1] such that

|a0(s1)−a0(s2)| ≤ L|s1− s2| and a0(1) = a0(−1) = 1, a0(0) 6= 1.

2 Define a1 : R→ [0, 1] by a1(s) = a0(s) when |s| ≤ 1, and
a1(s + 2) = a1(s) for all s ∈ R.

3 Put ap(s) = a1(s/p), i.e. ”stretch” graph of a1.
4 Finally a∞(s) = supn apn(s) for a sequence pn where pn+1 = pnkn,
{kn}∞n=1 is strictly increasing and 8 divides each kn.

5 Define α(n) = a∞(n) and X = {σn(α) : n ≥ 0} ⊂ [0, 1]N.
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Uniformly rigid systems (Katznelson & Waiss example)

Main features of K-W construction:
1 |ap(s1)− ap(s2)| ≤ |a1(s1/p)− a1(s2/p)| ≤ Lp |s1 − s2| hence

|a∞(s + 2pi )− a∞(s)| ≤ sup
j>i
|aj(s + 2pm)− aj(s)| ≤ sup

j>i

2Lpi
pj
≤ 2L
ki
.

2 for any ε > 0, all odd m and |s| < εpi/L we have

1− ε < a∞(mpi + s) ≤ 1.

Theorem
Dynamical system (X, σ) (which is orbit closure of α) is uniformly rigid,
and {θ} is its unique minimal subsystem, where θ(n) = 1 for all n.

Theorem (Akin, Auslander, Berg)

If a0 has strict minimum in 0 then (X, σ) is almost equicontinuous.
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Uniformly rigid systems (Katznelson & Waiss example)

Theorem (Akin, Auslander, Berg)

Every almost equicontinuous dynamical system is uniformly rigid.

1 Defining a0(t) = 0 for |t| ≤ 1/2 and a0(t) = 2|t| − 1 for |t| > 1/2 we
obtain (X, σ) which is not almost equicontinuous.

Theorem
Let (X , f ) be transitive and pointwise recurrent. If (X , f ) contains a
minimial set that is connected, then X is connected.

1 Then X is always connected. However dimension of X is unknown.
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Weak mixing completely scrambled system - method I

This is part of joint work with M. Foryś, W. Huang and J. Li.
1 (X , f ) is scattering if (X × Y , f × g) is transitive for every minimal

(Y , g).

Theorem (Akin & Glasner)

There exists scattering almost equicontinuous transitive DS (Y , g).

1 Combining various results from Akin-Glasner it can be proved that:
there exists extension π : (Z , h)→ (Y , g),
(Z , h) is weakly mixing and uniformly rigid,
all minimal systems in (Z , h) are singletons.

2 Hence it is enough to collapse fixed points of (Z , h) to a single point.
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Weak mixing completely scrambled system - method II

Lemma
Assume that (X , f ) is transitive and that x ∈ X has dense orbit. Then
(X , f ) is weakly mixing if and only if for any open neighborhood U of x
there is n > 0 such that n, n + 1 ∈ N(U,U).

a0(t) =



0, for t ∈ [−1, 1],

1, for t ∈ [−3,−2] ∪ [2, 3],

−t − 1, for t ∈ [−2,−1],

t − 1, for t ∈ [1, 2]

0, for t 6∈ [−3, 3].

p0 = 3, Ln ≥ p2n−1, pn = p20Lnpn−1.
bn(t) = an(t) for t ∈ [−pn, pn], and bn(t + 2pn) = bn(t)
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bn(t) = an(t) for t ∈ [−pn, pn], and bn(t + 2pn) = bn(t)
cn(t) = b0(t/(pn−1Ln))

an+1(t) =


max {bn(t), cn+1(t)} , for t ∈ [−pn+1, p0Ln+1pn],
max {bn(t + 1), cn+1(t)} , for t ∈ (p0Ln+1pn, pn+1],

0, for t 6∈ [−pn+1, pn+1].

a∞(t) = supn∈N0 an(t), for t ∈ R.
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Questions (unanswered so far)

1 Is it possible to construct transitive completely scrambled system in
every dimension?

2 Examples of Huang & Ye are not pairwise recurrent. Are there
pairwise recurrent and proximal systems in every dimension?

3 Can completely scrambled system be mixing?

4 Is it possible to characterize continua without completely scrambled
homeomorphisms?

On dendrites there is no completely scrambled homeomorphism
(Naghmouchi)
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A related problem

1 We know that there is not completely δ-scrambled system.
2 When does invariant (not closed) δ-scrambled set exists?

3 We proved (with Balibrea and Garcia Guirao) that:
if (X , f ) is mixing then there exists a dense Mycielski (i.e. countable
sum of Cantor sets) invariant δ-scrambled set S (i.e. f (S) ⊂ S)
if (X , f ) is weakly mixing then there exists a dense Mycielski invariant
scrambled set S .

4 Is it only technical difficulty?

Theorem (Foryś, Huang, Li & O.)

Let (X , f ) be a non-trivial transitive dynamical system with a fixed point.
The following conditions are equivalent:
1 (X , f ) has a dense Mycielski invariant δ-scrambled set for some δ > 0,
2 (X , f ) has a fixed point and is not uniformly rigid.
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