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The Meaning of Life

La vida es una milonga
(Anibal Troilo,

Pa’ Que Bailen Los Muchachos)
...y la dinámica hiperbólica es el Nuevo

Tango
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Compact Dynamics

Classically (i.e., since the 1960’s) dynamical systems live in a
compact phase space (e.g.,closed manifold).
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Classically (i.e., since the 1960’s) dynamical systems live in a
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Compact Dynamics

Classically (i.e., since the 1960’s) dynamical systems live in a
compact phase space (e.g.,closed manifold).
This automatically insures certain features of the dynamics:

All orbits have nonempty α- and ω-limit sets.
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Compact Dynamics

Classically (i.e., since the 1960’s) dynamical systems live in a
compact phase space (e.g.,closed manifold).
This automatically insures certain features of the dynamics:

All orbits have nonempty α- and ω-limit sets.

The notion of an attractor can be formulated in purely
topological terms.
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Compact Dynamics

Classically (i.e., since the 1960’s) dynamical systems live in a
compact phase space (e.g.,closed manifold).
This automatically insures certain features of the dynamics:

All orbits have nonempty α- and ω-limit sets.

The notion of an attractor can be formulated in purely
topological terms.

There is a unique uniform structure, so that many definitions
in terms of a (Riemann) metric are independent of the metric
used, and many can be formulated in purely topological terms.
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Non-Compact Dynamics

When the phase space is not compact, none of these are
guaranteed.
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Orbits may have no α- or
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Non-Compact Dynamics: Limit points

Orbits may have no α- or
ω-limits points –in fact there
may be no ω-limit points, for
example in a parallel
translation:
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Attractors

There exists a neighborhood
U of the given (closed) set Λ
such that

clos f (U) ⊂ U
⋂

∞

k=0 f
k(U)

U
f (U)

Λ
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There exists a neighborhood
U of the given (closed) set Λ
such that

clos f (U) ⊂ U
⋂

∞

k=0 f
k(U)

The definition works well for
compact attractors, but in the
non-compact setting, for
example, one finds that every
closed set invariant under a
parallel translation
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There exists a neighborhood
U of the given (closed) set Λ
such that

clos f (U) ⊂ U
⋂

∞

k=0 f
k(U)

The definition works well for
compact attractors, but in the
non-compact setting, for
example, one finds that every
closed set invariant under a
parallel translation is an
attractor
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Attractors

There exists a neighborhood
U of the given (closed) set Λ
such that

clos f (U) ⊂ U
⋂

∞

k=0 f
k(U)

The definition works well for
compact attractors, but in the
non-compact setting, for
example, one finds that every
closed set invariant under a
parallel translation is an
attractor as well as a
repeller (=attractor for
f −1).
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Uniform Structures

Perhaps the most interesting difference between compact and
non-compact systems is the important role played by the choice of
a uniform structure.
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Uniform Structures

Perhaps the most interesting difference between compact and
non-compact systems is the important role played by the choice of
a uniform structure. This is the particular aspect of a metric
which allows us talk about two orbits being asymptotic when
neither has an ω-limit point.
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Anosov Diffeomorphisms (compact setting)

Recall that a diffeomorphism f : M → M of a compact manifold to
itself is an Anosov diffeomorphism if it has
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Anosov Diffeomorphisms (compact setting)

Recall that a diffeomorphism f : M → M of a compact manifold to
itself is an Anosov diffeomorphism if it has a (global)

Hyperbolic Splitting

For every x ∈ M, the tangent space splits as

TxM = E s

x ⊕ Eu

x

satisfying, for some constants µ < 1 < λ and some Riemannian
metric ‖ · ‖,

the splitting is f -invariant: for σ = u and s,Tf (Eσ

x ) = Eσ

f (x);

for every ~vs ∈ E s
x , ‖Tfx(~vs)‖ ≤ µ‖~vs‖;

for every ~vu ∈ Eu
x , ‖Tfx(~vu)‖ ≥ λ‖~vu‖.
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Anosov Dynamics

In a compact setting, the existence of a global hyperbolic splitting
has major dynamic consequences, including
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Anosov Dynamics

In a compact setting, the existence of a global hyperbolic splitting
has major dynamic consequences, including

density of periodic orbits
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Anosov Dynamics

In a compact setting, the existence of a global hyperbolic splitting
has major dynamic consequences, including

density of periodic orbits

existence of a dense orbit
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Anosov Dynamics

In a compact setting, the existence of a global hyperbolic splitting
has major dynamic consequences, including

density of periodic orbits

existence of a dense orbit

sensitive dependence on initial conditions.
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Anosov Dynamics

In a compact setting, the existence of a global hyperbolic splitting
has major dynamic consequences, including

density of periodic orbits

existence of a dense orbit

sensitive dependence on initial conditions.

This is often taken as a definition of “chaos”.
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Stable and Unstable Foliations

For us, the most important property of Anosov diffeomorphisms is
that the two bundles E s and Eu are automatically integrable: there
is a stable foliation (respectively unstable foliation) whose
leaves are tangent at each of its points to E s (respectively Eu).
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Stable and Unstable Foliations

For us, the most important property of Anosov diffeomorphisms is
that the two bundles E s and Eu are automatically integrable: there
is a stable foliation (respectively unstable foliation) whose
leaves are tangent at each of its points to E s (respectively Eu).

Furthermore, the stable leaf through any point x is its stable
manifold, defined dynamically as the set of points y such that
dist(f n(x)), f n(y)) → 0.
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Hyperbolic Splitting

When the phase space is non-compact (our example will be R
2),

we adopt the definition of hyperbolic splitting that we had in the
compact case, with the proviso that the metric be complete:
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Hyperbolic Splitting

When the phase space is non-compact (our example will be R
2),

we adopt the definition of hyperbolic splitting that we had in the
compact case, with the proviso that the metric be complete:

Hyperbolic Splitting (Non-Compact Setting)

For every x ∈ M, the tangent space splits as

TxM = E s

x ⊕ Eu

x

satisfying, for some constants µ < 1 < λ and some complete
Riemannian metric ‖ · ‖,

the splitting is f -invariant: for σ = u and s,Tf (Eσ

x ) = Eσ

f (x);

for every ~vs ∈ E s
x , ‖Tfx(~vs)‖ ≤ µ‖~vs‖;

for every ~vu ∈ Eu
x , ‖Tfx(~vu)‖ ≥ λ‖~vu‖.

Zbigniew Nitecki (joint with Jorge Groisman) Hyperbolicity and Compactness



Compact vs Non-Compact Dynamics
Anosov Diffeomorphisms

Constructing Anosov Structures
Invariants of Equivalence

Summary

Compact Setting
Non-Compact Setting
White’s Example
Mendes’ Conjecture
Equivalence of Anosov Structures

Anosov Structure

The Stable Manifold Theorem, which ensures the integrability of
the stable and unstable bundles, rests on some uniformity
estimates for derivatives which are not automatic in a non-compact
setting. Wishing to avoid this issue, we build the foliations into our
definition.
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Anosov Structure

The Stable Manifold Theorem, which ensures the integrability of
the stable and unstable bundles, rests on some uniformity
estimates for derivatives which are not automatic in a non-compact
setting. Wishing to avoid this issue, we build the foliations into our
definition.

Anosov Structure

An Anosov structure for a diffeomorphism f : R2 → R
2 consists

of a complete Riemannian metric ‖ · ‖ on R
2, two constants

µ < 1 < λ, and a pair F s , Fu of transverse foliations of R2 by
curves satisfying:

f takes the leaves of each foliation to other leaves;

If ~vs is tangent to a leaf of F s , then ‖Tf (~vs)‖ ≤ µ‖~vs‖;

If ~vu is tangent to a leaf of Fu , then ‖Tf (~vu)‖ ≥ λ‖~vu‖.
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Linear Hyperbolic Maps

An obvious example of a diffeomorphism of R2 with an Anosov
structure is the action of any 2× 2 matrix with eigenvalues
µ < 1 < λ: the standard Euclidean metric and the foliations by
translates of the two eigenspaces give the Anosov structure. In
particular, any two such diffeomorphisms are topologically
conjugate, so we will take as our basic instance of this example the
matrix

(

2 0

0 1
2

)

for which F s (resp. Fu) is the foliation by vertical (resp.
horizontal) lines.
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Warren White’s Example

In 1971, Warren White constructed another, strikingly
counter-intuitive example.
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Warren White’s Example

In 1971, Warren White constructed another, strikingly
counter-intuitive example.

Theorem (W. White, 1971)

There exists an Anosov structure for the translation
(x , y) 7→ (x + 1, y).
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White’s Construction (sketch)

White constructs the foliations by integrating an orthonormal pair
of vector fields ~es , ~eu which are independent of the second
coordinate
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White’s Construction (sketch)

White constructs the foliations by integrating an orthonormal pair
of vector fields ~es , ~eu which are independent of the second
coordinate but vary periodically with the first coordinate so as to
perform a full rotation as the first coordinate varies over a unit
interval;
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White’s Construction (sketch)

White constructs the foliations by integrating an orthonormal pair
of vector fields ~es , ~eu which are independent of the second
coordinate but vary periodically with the first coordinate so as to
perform a full rotation as the first coordinate varies over a unit
interval; he then distorts the Euclidean metric by decreeing the
length of ~eu (resp. ~es) at (x,y) to be λx (resp λ−x) times its
Euclidean length, for some λ > 1.
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White’s Construction (sketch)

White constructs the foliations by integrating an orthonormal pair
of vector fields ~es , ~eu which are independent of the second
coordinate but vary periodically with the first coordinate so as to
perform a full rotation as the first coordinate varies over a unit
interval; he then distorts the Euclidean metric by decreeing the
length of ~eu (resp. ~es) at (x,y) to be λx (resp λ−x) times its
Euclidean length, for some λ > 1.
This automatically gives the hyperbolic estimates, and by further
controlling the rotation of the vector fields with x the metric can
be made complete.
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Pedro Mendes’ Conjecture

In 1977, Pedro Mendes studied general properties of Anosov
diffeomorphisms in R

2,

1“Prolongation” will be defined later.
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Pedro Mendes’ Conjecture

In 1977, Pedro Mendes studied general properties of Anosov
diffeomorphisms in R

2, proving that such a diffeomorphism has at
most one non-wandering point (which of course must then be a
fixed point)

1“Prolongation” will be defined later.
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Pedro Mendes’ Conjecture

In 1977, Pedro Mendes studied general properties of Anosov
diffeomorphisms in R

2, proving that such a diffeomorphism has at
most one non-wandering point (which of course must then be a
fixed point) and that every wandering point has empty
prolongation.1

1“Prolongation” will be defined later.
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Pedro Mendes’ Conjecture

In 1977, Pedro Mendes studied general properties of Anosov
diffeomorphisms in R

2, proving that such a diffeomorphism has at
most one non-wandering point (which of course must then be a
fixed point) and that every wandering point has empty
prolongation.1 Based on these results, Mendes conjectured

1“Prolongation” will be defined later.
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Pedro Mendes’ Conjecture

In 1977, Pedro Mendes studied general properties of Anosov
diffeomorphisms in R

2, proving that such a diffeomorphism has at
most one non-wandering point (which of course must then be a
fixed point) and that every wandering point has empty
prolongation.1 Based on these results, Mendes conjectured that
White’s example is (up to topological conjugacy) the only example
of an Anosov diffeomorphism in R

2 other than the linear
hyperbolic example.

1“Prolongation” will be defined later.
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Pedro Mendes’ Conjecture

In 1977, Pedro Mendes studied general properties of Anosov
diffeomorphisms in R

2, proving that such a diffeomorphism has at
most one non-wandering point (which of course must then be a
fixed point) and that every wandering point has empty
prolongation.1 Based on these results, Mendes conjectured that
White’s example is (up to topological conjugacy) the only example
of an Anosov diffeomorphism in R

2 other than the linear
hyperbolic example.

Mendes’ Conjecture

Every Anosov diffeomorphism of R2 is topologically conjugate
either to a linear hyperbolic map or to a translation.

1“Prolongation” will be defined later.
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Foliated Conjugacy

Two years ago, Jorge Groisman and I, visiting UAB (hosted by
Lluis), shared an office and fell into conversation about Mendes’
conjecture.
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Foliated Conjugacy

Two years ago, Jorge Groisman and I, visiting UAB (hosted by
Lluis), shared an office and fell into conversation about Mendes’
conjecture. We attempted to prove the conjecture by taking
advantage of the two foliations.
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Foliated Conjugacy

Two years ago, Jorge Groisman and I, visiting UAB (hosted by
Lluis), shared an office and fell into conversation about Mendes’
conjecture. We attempted to prove the conjecture by taking
advantage of the two foliations. We failed.

Zbigniew Nitecki (joint with Jorge Groisman) Hyperbolicity and Compactness



Compact vs Non-Compact Dynamics
Anosov Diffeomorphisms

Constructing Anosov Structures
Invariants of Equivalence

Summary

Compact Setting
Non-Compact Setting
White’s Example
Mendes’ Conjecture
Equivalence of Anosov Structures

Foliated Conjugacy

But in the process we stumbled upon a finer, but natural structure
which has provided a rich family of examples.
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Foliated Conjugacy

But in the process we stumbled upon a finer, but natural structure
which has provided a rich family of examples.

Definition: Foliated Conjugacy

A foliated conjugacy between two Anosov diffeomorphisms
f , g : R2 → R

2 is a homeomorphism h : R2 → R
2 which

conjugates f with g : g ◦ h = h ◦ f

maps leaves of the stable (resp. unstable) foliation for f to
leaves of the corresponding foliation for g .

We call f and g equivalent if there is a foliated conjugacy
between them.
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Two Kinds of Invariant Open Discs

Our examples are all built from the restriction of the linear
hyperbolic map f (x , y) = (2x , y/2) to an invariant topological
disc.
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Two Kinds of Invariant Open Discs

Our examples are all built from the restriction of the linear
hyperbolic map f (x , y) = (2x , y/2) to an invariant topological
disc. Note that the function τ(x , y) = xy is invariant under f
(τ ◦ f = τ), and in particular we can form two kinds of f -invariant
open topological discs:
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Invariant Open Discs Containing a Fixed Point

Given a < 0 < b, the set
V = {(x , y)|a < τ(x , y) < b}
is an f − invariant open
neighborhood of the origin
(the unique fixed point of f )
homeomorphic to an open
disc:

V
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Invariant Open Discs Containing a Fixed Point

Given a < 0 < b, the set
V = {(x , y)|a < τ(x , y) < b}
is an f − invariant open
neighborhood of the origin
(the unique fixed point of f )
homeomorphic to an open
disc: note that the level curves
of τ give a foliation of V by
f -invariant curves.

V

Zbigniew Nitecki (joint with Jorge Groisman) Hyperbolicity and Compactness



Compact vs Non-Compact Dynamics
Anosov Diffeomorphisms

Constructing Anosov Structures
Invariants of Equivalence

Summary

Invariant Open Discs for Linear Hyperbolic Maps
Constructing Complete Metrics

Invariant Open Discs Containing No Fixed Point

Given 0 ≤ a < b, the set
U = {(x , y)|a < τ(x , y) <
b, x > 0} is an f − invariant

open set not containing the
origin, and homeomorphic to
an open disc;

U
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Invariant Open Discs Containing No Fixed Point

Given 0 ≤ a < b, the set
U = {(x , y)|a < τ(x , y) <
b, x > 0} is an f − invariant

open set not containing the
origin, and homeomorphic to
an open disc; again, the level
curves of τ give a foliation of
U by f -invariant curves.

U
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Invariant Open Discs Containing No Fixed Point

It is easy to
see that the restriction of f to
U is conjugate to a translation:

U
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Invariant Open Discs Containing No Fixed Point

It is easy to
see that the restriction of f to
U is conjugate to a translation:
for example the vertical lines
x = 2k , k = 1, 2, . . . cut U
into open sets, each mapped
to the next.

U
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Constructing a Complete Metric on U

Given a < b, consider the function

ϕ(t) =
1

(t − a)(b − t)

on the interval (a, b). It is positive, unimodal, and for any
c ∈ (a, b) both of the (improper) integrals

∫

c

a

ϕ(t) dt and

∫

b

c

ϕ(t) dt

diverge.
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Constructing a Complete Metric on U

To define a Riemann metric on U we multiply the Euclidean length
of every vector at a point by the value of g = ϕ ◦ τ there.
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Constructing a Complete Metric on U

To define a Riemann metric on U we multiply the Euclidean length
of every vector at a point by the value of g = ϕ ◦ τ there. The fact
that g is f -invariant means that the stretching and shrinking by f

with respect to the Euclidean metric,
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Constructing a Complete Metric on U

To define a Riemann metric on U we multiply the Euclidean length
of every vector at a point by the value of g = ϕ ◦ τ there. The fact
that g is f -invariant means that the stretching and shrinking by f

with respect to the Euclidean metric, and the fact that the vertical
(resp. horizontal) lines are the stable (resp. unstable) foliation,
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Constructing a Complete Metric on U

To define a Riemann metric on U we multiply the Euclidean length
of every vector at a point by the value of g = ϕ ◦ τ there. The fact
that g is f -invariant means that the stretching and shrinking by f

with respect to the Euclidean metric, and the fact that the vertical
(resp. horizontal) lines are the stable (resp. unstable) foliation,
remains in the new metric.
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Constructing a Complete Metric on U

To define a Riemann metric on U we multiply the Euclidean length
of every vector at a point by the value of g = ϕ ◦ τ there. The fact
that g is f -invariant means that the stretching and shrinking by f

with respect to the Euclidean metric, and the fact that the vertical
(resp. horizontal) lines are the stable (resp. unstable) foliation,
remains in the new metric.
The completeness of the metric follows (with some work) from the
divergence of integrals of ϕ which involve a or b.
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Complete Metrics

Note that this construction
cannot be carried out for the
analogue of U with a < 0 < b.

τ = 0
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Transfer to R
2

Now, the Riemann Mapping Theorem gives us a diffeomorphism
between U and R

2.
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Transfer to R
2

Now, the Riemann Mapping Theorem gives us a diffeomorphism
between U and R

2. Conjugating our example by this
diffeomorphism, we obtain an Anosov structure for a
diffeomorphism of the plane which is (conjugate to) a translation.
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Transfer to R
2

Now, the Riemann Mapping Theorem gives us a diffeomorphism
between U and R

2. Conjugating our example by this
diffeomorphism, we obtain an Anosov structure for a
diffeomorphism of the plane which is (conjugate to) a translation.
A similar construction can be carried out replacing U with V, to
get an Anosov diffeomorphism of R2 with a single fixed point.
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Transfer to R
2

Now, the Riemann Mapping Theorem gives us a diffeomorphism
between U and R

2. Conjugating our example by this
diffeomorphism, we obtain an Anosov structure for a
diffeomorphism of the plane which is (conjugate to) a translation.
A similar construction can be carried out replacing U with V, to
get an Anosov diffeomorphism of R2 with a single fixed point. The
point here is that we can construct a variety of non-equivalent
examples by using different f -invariant open discs and then
transferring to R

2 via the Riemann mapping theorem.
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Non-equivalent examples

We will discuss two invariants of the equivalence relation, both
based on the homeomorphism type of the two foliations.
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Accessibility

The first involves the connection between points using leaves of
the foliation.
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Accessibility

The first involves the connection between points using leaves of
the foliation.

Definition: Accessibility

Given the pair of foliations F s and Fu coming from an Anosov
structure, we say that q ∈ R

2 is n-accessible from p ∈ R
2
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Accessibility

The first involves the connection between points using leaves of
the foliation.

Definition: Accessibility

Given the pair of foliations F s and Fu coming from an Anosov
structure, we say that q ∈ R

2 is n-accessible from p ∈ R
2 if there

exist points p = p0, p1, . . . , pn = q
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Accessibility

The first involves the connection between points using leaves of
the foliation.

Definition: Accessibility

Given the pair of foliations F s and Fu coming from an Anosov
structure, we say that q ∈ R

2 is n-accessible from p ∈ R
2 if there

exist points p = p0, p1, . . . , pn = q such that each successive pair
pi , pi+1
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Accessibility

The first involves the connection between points using leaves of
the foliation.

Definition: Accessibility

Given the pair of foliations F s and Fu coming from an Anosov
structure, we say that q ∈ R

2 is n-accessible from p ∈ R
2 if there

exist points p = p0, p1, . . . , pn = q such that each successive pair
pi , pi+1 lies on a common stable or unstable leaf.

We say that p and q are n-connected in this case.
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Accessibility

Using the product structure of F s and Fu and the connectedness
of the plane, it is easy to show that any two points p, q ∈ R

2 are
n-connected for some finite n.
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Accessibility

Using the product structure of F s and Fu and the connectedness
of the plane, it is easy to show that any two points p, q ∈ R

2 are
n-connected for some finite n. For each pair p, q ∈ R

2, we
minimize the degree of accessibility n:

Definition:N (p, q)

N (p, q) := min{n|p and q are n-connected}.
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Degree of Inaccessibility

By maximizing over all pairs of points, we obtain an invariant of
foliated conjugacy, which we call the degree of inaccessibility of
the Anosov structure.

Definition: Degree of Inaccessibility

The degree of inaccessibility for the pair of foliations F s and Fu

is
sup{N (p, q)|p, q ∈ R

2}.
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Accessibility in V

For the foliations coming from
our construction using the
neighborhood V, the degree of
inaccessibility is 2:

V

•
p

• q
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Accessibility in V

For the foliations coming from
our construction using the
neighborhood V, the degree of
inaccessibility is 2: Given two
points p, q ∈ V, the rectangle
with vertical and horizontal
sides and p and q vertices has
at least one vertex r in V

•
p

• q•
r
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Accessibility in V

For the foliations coming from
our construction using the
neighborhood V, the degree of
inaccessibility is 2: Given two
points p, q ∈ V, the rectangle
with vertical and horizontal
sides and p and q vertices has
at least one vertex r in V , and
the triple p, r , q is a
2-connection.

•
p

• q•
r
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Infinite Degree of Inaccessibility in U

By contrast, for U with
0 < a < b, the degree of
inaccessibility is infinite:

U

•p

•
q
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Infinite Degree of Inaccessibility in U

By contrast, for U with
0 < a < b, the degree of
inaccessibility is infinite: from
p we can only go as far down
as the lower edge of U ,

•p

•
q
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Infinite Degree of Inaccessibility in U

By contrast, for U with
0 < a < b, the degree of
inaccessibility is infinite: from
p we can only go as far down
as the lower edge of U , then
from there only as far to the
right as the upper edge of U ,

•p

•
q
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Infinite Degree of Inaccessibility in U

By contrast, for U with
0 < a < b, the degree of
inaccessibility is infinite: from
p we can only go as far down
as the lower edge of U , then
from there only as far to the
right as the upper edge of U ,
...and so on.

•p

•
q
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Infinite Degree of Inaccessibility in U

By contrast, for U with
0 < a < b, the degree of
inaccessibility is infinite: from
p we can only go as far down
as the lower edge of U , then
from there only as far to the
right as the upper edge of U ,
...and so on. So there exist
pairs of points in U for which
N (p, q) is arbitrarily high.

•p

•
q
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Finite Degree of Inaccessibility in U

When a = 0 < b the situation
is similar to that in V: the
degree of accessibility is 2.

•
p

• q
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Arbitrary Finite Degree of Inaccessibility

It is also possible to create
examples for which the degree
of inaccessibility is equal to
any finite value above 2.

x = x0 x = λx0

τ(x , y) = b

τ = a = 0
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Arbitrary Finite Degree of Inaccessibility

It is also possible to create
examples for which the degree
of inaccessibility is equal to
any finite value above 2. We
can adjoin to one edge of U
(with a = 0 < b) a “whisker”
together with a neighborhood,
contained in a fundamental
neighborhood of f ,

x = x0 x = λx0

τ(x , y) = b

τ = a = 0
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Arbitrary Finite Degree of Inaccessibility

It is also possible to create
examples for which the degree
of inaccessibility is equal to
any finite value above 2. We
can adjoin to one edge of U
(with a = 0 < b) a “whisker”
together with a neighborhood,
contained in a fundamental
neighborhood of f , then use f

to copy it on the edge of U in
every fundamental
neighborhood of f .

x = x0 x = λx0

τ(x , y) = b

τ = a = 0
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Arbitrary Finite Degree of Inaccessibility

The new open disc is
diffeomorphic to U and we can
use this to modify τ so as to
get an f -invariant function on
this new set, and then mimic
the construction of a complete
metric on this disc.

x = x0 x = λx0

τ(x , y) = b

τ = a = 0

Zbigniew Nitecki (joint with Jorge Groisman) Hyperbolicity and Compactness



Compact vs Non-Compact Dynamics
Anosov Diffeomorphisms

Constructing Anosov Structures
Invariants of Equivalence

Summary

Accessibility
Quasi-Parallel Foliations

Arbitrary Finite Degree of Inaccessibility

The new open disc is
diffeomorphic to U and we can
use this to modify τ so as to
get an f -invariant function on
this new set, and then mimic
the construction of a complete
metric on this disc. The
“wiggles” in the whisker
increase the degree of
inaccessibility by as much as
we want.

x = x0 x = λx0

τ(x , y) = b

τ = a = 0
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Are All Examples Given by Our Construction?

The question naturally arises, is every example of an Anosov
structure in the plane equivalent to one constructed from
restriction to an invariant open disc for the linear hyperbolic map?
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Are All Examples Given by Our Construction?

The question naturally arises, is every example of an Anosov
structure in the plane equivalent to one constructed from
restriction to an invariant open disc for the linear hyperbolic map?
The question more or less rests on whether we can take the two
foliations F s and Fu to the foliations by vertical (resp. horizontal)
lines via some homeomorphism from R

2 to an open disc in R
2.

Zbigniew Nitecki (joint with Jorge Groisman) Hyperbolicity and Compactness



Compact vs Non-Compact Dynamics
Anosov Diffeomorphisms

Constructing Anosov Structures
Invariants of Equivalence

Summary

Accessibility
Quasi-Parallel Foliations

Are All Examples Given by Our Construction?

The question naturally arises, is every example of an Anosov
structure in the plane equivalent to one constructed from
restriction to an invariant open disc for the linear hyperbolic map?
The question more or less rests on whether we can take the two
foliations F s and Fu to the foliations by vertical (resp. horizontal)
lines via some homeomorphism from R

2 to an open disc in R
2.

Definition: Quasi-Parallel Foliation

A foliation F of R2 is quasi-parallel if there exists a
homeomorphism from R

2 to some open topological disc taking the
leaves of F to horizontal (or equivalently, vertical) lines.
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Quasi-Parallel vs Parallelizable Foliations

This is not the same as
parallelizability, that is,
existence of a homeomorphism
of the plane to itself taking
leaves to horizontal lines, or
equivalently, the existence of a
cross-section (a curve crossing
every leaf transversally): a well
known obstruction to
parallelizability is the presence
of a Reeb component.

(a)(b) (c)
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Quasi-Parallel vs Parallelizable Foliations

No cross-section can join the
two vertical leaves at the edge
of the Reeb component (the
region marked (a)), so the
foliation is not parallelizable.

(a)(b) (c)
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Quasi-Parallel Foliations with Reeb Components

However, the dashed vertical
line down the middle of the
Reeb component intersects
every leaf interior to the Reeb
component, so the restriction
of the foliation to this open
strip is parallelizable.

(a)
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Quasi-Parallel Foliations with Reeb Components

By mapping this cross-section
to the open interval
{0} × (0, 1), we can clearly
find a homeomorphism taking
leaves of the Reeb component
to horizontal lines in the open
square (−1, 1) × (0, 1) and the
two edges of this component
to the open intervals
(−1, 0)× {0} and (0, 1)×{0}.

(a)
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Quasi-Parallel Foliations with Reeb Components

We can then extend this
homeomorphism so as to take
the regions marked (b) and (c)
(each of which is individually
parallelizable) into open
triangles abutting these two
segments.

(a)

(b) (c)
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An Obstruction to Quasi-Parallelizability

However, there is an obstruction to quasi-parallizability, which can
be formulated using the fact that all foliations of R2 by lines are
orientable, and so can be regarded as integral curves of a flow.
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Prolongation

We formulate this in terms of the prolongational limit relation,
studied extensively by Joe Auslander and Peter Seibert.
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Prolongation

We formulate this in terms of the prolongational limit relation,
studied extensively by Joe Auslander and Peter Seibert.

Definition: Prolongation

The point y is in the forward prolongation of the point x ,
denoted y ∈ J+(x)
(and x is in the backward prolongation of y , x ∈ J

−
(y))

under the dynamical system ϕt ,
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Prolongation

We formulate this in terms of the prolongational limit relation,
studied extensively by Joe Auslander and Peter Seibert.

Definition: Prolongation

The point y is in the forward prolongation of the point x ,
denoted y ∈ J+(x)
(and x is in the backward prolongation of y , x ∈ J

−
(y))

under the dynamical system ϕt ,
if there exists a sequence of points xk → x and a sequence of times
tk → ∞ so that

yk = ϕtk (xk) → y .
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Prolongation

We formulate this in terms of the prolongational limit relation,
studied extensively by Joe Auslander and Peter Seibert.

Definition: Prolongation

The point y is in the forward prolongation of the point x ,
denoted y ∈ J+(x)
(and x is in the backward prolongation of y , x ∈ J

−
(y))

under the dynamical system ϕt ,
if there exists a sequence of points xk → x and a sequence of times
tk → ∞ so that

yk = ϕtk (xk) → y .

(When x = y , this is precisely the definition of non-wandering.)
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Prolongation

One way to picture
prolongation, in the case of a
planar flow, is as a Reeb
component.

x xk y ∈ J+(x)yk
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An Obstruction to Quasi-Parallelizability

Consider the situation of two
Reeb components, with the
interior leaves in each curling
up, and separated by a single
orbit.

(a)

(c)

(b)
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An Obstruction to Quasi-Parallelizability

We claim this cannot be part
of a quasi-parallel foliation.

(a)

(c)

(b)
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An Obsruction to Quasi-Parallelizability

To see this, note that in a
quasi-parallelized picture, the
horizontal lines must all be
oriented in the same direction,
which we have taken to be
left-to-right. The orbit (c)
separating the two Reeb
components maps to an open
interval I = (α, β), which we
can take on the x-axis.

(c)
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An Obsruction to Quasi-Parallelizability

Since the orbit on the left
edge of (a) is the backward

prolongational limit of these
points, the orbits in (a) map
to line segments extending to
the left of α.

(a)

(c)
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An Obsruction to Quasi-Parallelizability

Since orbits in (a) see (c) on
their right side, the image of
(a) is in the upper half plane.

(a)

(c)
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An Obsruction to Quasi-Parallelizability

However, (c) also has the right
edge of (b) in its backward
prolongational limit, so the
orbits of (b) must also extend
to the left of the image of (c),
and the image of (b) must be
in the upper half plane.

(b)

(c)
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An Obsruction to Quasi-Parallelizability

It follows that the images of (a) and (b) must intersect, a
contradiction to the fact that these are images under a
homeomorphism of the whole plane into the plane.
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An Obsruction to Quasi-Parallelizability

It follows that the images of (a) and (b) must intersect, a
contradiction to the fact that these are images under a
homeomorphism of the whole plane into the plane. The critical
situation here is that two Reeb components curling in the same
direction are separated by a single orbit.
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An Obsruction to Quasi-Parallelizability

It follows that the images of (a) and (b) must intersect, a
contradiction to the fact that these are images under a
homeomorphism of the whole plane into the plane. The critical
situation here is that two Reeb components curling in the same
direction are separated by a single orbit.
This can be formulated as: there is a leaf which separates two
distinct leaves in its backward prolongation (or both in its forward
prolongation).
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An Obsruction to Quasi-Parallelizability

It follows that the images of (a) and (b) must intersect, a
contradiction to the fact that these are images under a
homeomorphism of the whole plane into the plane. The critical
situation here is that two Reeb components curling in the same
direction are separated by a single orbit.
This can be formulated as: there is a leaf which separates two
distinct leaves in its backward prolongation (or both in its forward
prolongation).
It is possible to adapt White’s construction to exhibit an Anosov
structure on R

2 which exhibits this phenomenon, and hence is not
given by one of our examples coming from an invariant open disc
for f .
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An Obsruction to Quasi-Parallelizability

It follows that the images of (a) and (b) must intersect, a
contradiction to the fact that these are images under a
homeomorphism of the whole plane into the plane. The critical
situation here is that two Reeb components curling in the same
direction are separated by a single orbit.
This can be formulated as: there is a leaf which separates two
distinct leaves in its backward prolongation (or both in its forward
prolongation).
It is possible to adapt White’s construction to exhibit an Anosov
structure on R

2 which exhibits this phenomenon, and hence is not
given by one of our examples coming from an invariant open disc
for f . We have not determined whether this is true of White’s
original example.
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Summary

Mendes’ conjecture remains open: Are there Anosov
structures for diffeomorphisms of R2 which are not conjugate
to either linear hyperbolic maps or translations?

Zbigniew Nitecki (joint with Jorge Groisman) Hyperbolicity and Compactness



Compact vs Non-Compact Dynamics
Anosov Diffeomorphisms

Constructing Anosov Structures
Invariants of Equivalence

Summary

Summary

Mendes’ conjecture remains open: Are there Anosov
structures for diffeomorphisms of R2 which are not conjugate
to either linear hyperbolic maps or translations?

Examples of Anosov diffeomorphisms of R2 in either
topological conjugacy class can be constructed by restricting a
linear hyperbolic map to an invariant topological disc and
transferring to R

2 via the Riemann mapping theorem.
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Summary

Mendes’ conjecture remains open: Are there Anosov
structures for diffeomorphisms of R2 which are not conjugate
to either linear hyperbolic maps or translations?

Examples of Anosov diffeomorphisms of R2 in either
topological conjugacy class can be constructed by restricting a
linear hyperbolic map to an invariant topological disc and
transferring to R

2 via the Riemann mapping theorem.

These include infinitely many mutually non-equivalent Anosov
diffeomorphisms of R2.
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Summary

Summary

Mendes’ conjecture remains open: Are there Anosov
structures for diffeomorphisms of R2 which are not conjugate
to either linear hyperbolic maps or translations?

Examples of Anosov diffeomorphisms of R2 in either
topological conjugacy class can be constructed by restricting a
linear hyperbolic map to an invariant topological disc and
transferring to R

2 via the Riemann mapping theorem.

These include infinitely many mutually non-equivalent Anosov
diffeomorphisms of R2.

There are Anosov structures (in either topological conjgacy
class) which are not equivalent to the restriction of a linear
hyperbolic map to an invariant open topological disc.
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Gracias por su atención!
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