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we were investigating topology of various spaces of continuous transitive

interval maps. Let us denote by Tn the space of all continuous transitive

piecewise monotone interval maps of modality n. For each n ≥ 1 we found

a loop in Tn ∪ Tn+1, which is not contractible in Tn ∪ Tn+1. We left as an

open problem the question whether this loop can be contracted in some

larger space obtained by adding spaces Tm for one or more m.

Here we solve this problem and investigate topology (and, in a sense,

geometry) of the spaces of transitive interval maps with constant slope and

given modality.



Two basic questions that we encounter are:

1) How to recognize that an interval map is transitive?

2) How to produce arcs in the spaces of transitive interval maps?

We work with maps of constant slope. We prove several lemmas that often

help us to answer the first question. Then we introduce parametrization of

our maps that helps us to deal with the second question.



We denote by CSn the space of all piecewise linear maps of the interval

[0, 1] to itself, with constant slope and of modality n. The set of all

transitive maps from CSn will be denoted by T CSn.

All those spaces are considered with the C0 metric:

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)|.

The loop in Tn ∪ Tn+1, not contractible in Tn ∪ Tn+1, that we mentioned

earlier, is contained in T CSn ∪ T CSn+1. We will call it the basic loop of

order n. It looks as follows (here n = 2):





The main result:

Theorem 1. For every n ≥ 2, the basic loops of order n and n+ 1 can be

contracted in T CSn ∪ T CSn+1 ∪ T CSn+2. Moreover, the basic loop of order

1 can be contracted in T CS1 ∪ T CS2 ∪ T CS4.

The situation is similar as for the following model. Think about the

sequence of spaces Rn, n = 0, 1, 2, . . . , where each space is a subset of the

next one. Set Rn = Rn rRn−1 for n = 1, 2, 3, . . . . Then the fundamental

group of the space

Rn ∪Rn+1 = Rn+1 rRn−1 = (R2 r {0})× Rn−1

is nontrivial, while the fundamental group of the space

Rn ∪Rn+1 ∪Rn+2 = Rn+2 rRn−1 = (R3 r {0})× Rn−1

is trivial.



To state the next result, we need a coding of the elements of CSn. The code

is a sequence of values of the map at the endpoints and turning points.

This gives us a sequence of length n+ 2. However, when we consider a

union of spaces CSn for several ns, we use the common length of the code,

that is, the largest of the ns plus 2. Then the codes for some maps may be

not unique. For instance, when we code the usual tent map using sequences

of length 4 (instead of length 3, when the code would be (0, 1, 0)), the code

may be (0, 0, 1, 0) or (0, 1, 0, 0). We do not use the code (0, 1, 1, 0), because

we want the increasing and decreasing laps to alternate.



We need simple properties of coding.

Lemma 2. The slope of a map f ∈
⋃n

i=1 CSi with the code

(a0, a1, . . . , an+1) is
∑n+1

j=1 |aj − aj−1|.

Lemma 3. The map f ∈
⋃n

i=1 CSi depends continuously on the parameters

a0, a1, . . . , an+1 (jointly).



The space T CS1 is very simple.

Lemma 4. A map f ∈ CS1 is transitive if and only if it has the code

(1) (a, 1, 0), where a ∈ [0, 2−
√

2], or

(2) (1, 0, c), where c ∈ [
√

2− 1, 1].



Lemma 5. Let f ∈ CS2 be transitive. Then it has one of the four codes:

(1) (a, 1, 0, d), where a ∈ [0, 1) and d ∈ (0, 1];

(2) (a, 0, 1, d), where a ∈ (0, 1] and d ∈ [0, 1);

(3) (1, 0, c, d), where c ∈ (0, 1] and d ∈ [0, c);

(4) (a, b, 1, 0), where a ∈ (0, 1] and b ∈ [0, a).



In the case (a, 1, 0, d), if x is the fixed point on the second lap, then

transitivity is equivalent to a ≤ x or d ≥ x:

Lemma 6. Let f ∈ CS2 have a code (a, 1, 0, d) where a ∈ [0, 1) and

d ∈ (0, 1]. Then f is transitive if and only if

d ≤ a− 4 +
2

a
or 1− a ≤ (1− d)− 4 +

2

1− d
. (1)

In the case (a, 0, 1, d), transitivity is equivalent to the slope being larger

than 2:

Lemma 7. Let f ∈ CS2 have a code (a, 0, 1, d) where a ∈ (0, 1] and

d ∈ [0, 1). Then f is transitive if and only if a > d.



In the case (1, 0, c, d), if the fixed point in the first lap is x, then transitivity

is equivalent to c ≥ x:

Lemma 8. Let f ∈ CS2 have a code (1, 0, c, d) where c ∈ (0, 1] and

d ∈ [0, c). Then f is transitive if and only if

d ≤ 2 + 2c− 1

c
. (2)

In the case (a, b, 1, 0), if the fixed point in the third lap is x, then

transitivity is equivalent to b ≤ x:

Lemma 9. Let f ∈ CS2 have a code (a, b, 1, 0) where a ∈ (0, 1] and

b ∈ [0, a). Then f is transitive if and only if

1− a ≤ 2 + 2(1− b)− 1

1− b
. (3)
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In order to contract the basic loop of order n in the space

T CSn ∪ T CSn+1 ∪ T CSn+2, we first deform it to the auxiliary loop of order

n. I show how it works for n = 2. Since the basic loop consists of 4 arc, I

will show 4 figures.

Observe that two of the four arcs of the auxiliary loop are constant, so we

can cut them out.











Using coding, we may describe the arcs of the loops as segments,

parametrized by a variable s varying from 0 to 1. For instance, the first arc

of the basic loop of order 2 is (0, 1, 0, 1, 1− s, 1− s). For the deformation of

this arc we use a parameter t, also varying form 0 (for the basic loop) to 1

(for the auxiliary loop); for instance (0, 1, 0, 1, 1− s, 1− s+ st).

The first arc of the auxiliary loop can be interpreted as a tooth consisting

of the last two laps growing from nothing to full laps. This arc is homotopic

to an arc where a tooth consisting of the next two laps (counting from the

right) is growing. This is illustrated by the figure:





Now by the same techniques we homotop this arc to an arc where a tooth

consisting of the next two laps is growing, etc. We continue this, and we get

the arc where a tooth consisting of the two leftmost laps is growing.

However, this is the second arc of the auxiliary loop run backward. This

shows that the auxiliary loop is contractible.

Of course, all this requires proofs that the maps we are using are transitive.

This follows from many lemmas. Let me cite three of them.



Lemma 10. Let f ∈ CSn have slope λ > 2, and assume that the image of

every lap of f (except perhaps the leftmost and the rightmost ones) is the

whole I. Then f is transitive.

Lemma 11. Let f ∈ CSn have slope λ > 3, and assume that the image of

every lap, except perhaps one or two leftmost or one or two rightmost ones,

is the whole I. Then f is transitive.

Denote by E(f) the set consisting of all turning points of f and the

endpoints of the interval.

Lemma 12. Let f ∈ CSn have slope λ > 3, and assume that

f({0, 1}) ⊂ {0, 1}. Assume also that out of any four consecutive points of

E(f) at least one is mapped to 0 and at least one to 1. Then f is transitive.



We can contract the basic loop of order 2 in T CSn ∪ T CSn+1 ∪ T CSn+2 in

a different way. You can think about it as taking the mirror images of the

previous figures. On the level of coding, we use different affine

parametrizations of the arcs of the basic loop with different codings of the

endpoints of those arcs.

Thus, the basic loop of order 2 is contained in a subset of

T CSn ∪ T CSn+1 ∪ T CSn+2 homeomorphic to the 2-dimensional sphere. It

turns out that the basic loop of order 3 is also contained in this sphere, so

it is also contractible in T CSn ∪ T CSn+1 ∪ T CSn+2.
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