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The Mobius function

Let n€ N={1,2,...}. For n > 2 let (n) be the number of
distinct prime factors of n.

1, if n=1,
u(n) =<0, if nis not square-free,
(—1){" if n is square-free.

Is the sequence (p(n))32; random?



From sequences to dynamical systems

Given a sequence x = (x;)%°; € {0, 1} we consider the shift space
X which is the closure of the orbit of x with respect to the shift
map o, that is
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From sequences to dynamical systems

Given a sequence x = (x;)%°; € {0, 1} we consider the shift space
X which is the closure of the orbit of x with respect to the shift
map o, that is

X ={o"(x) : n>0}.

Definition
A square-free flow is a shift space generated as above by the
sequence 7(n) = u?(n).



Which sequences are random?

A heuristic is: a sequence is random if it is orthogonal to a
deterministic one. Which sequences are deterministic? Those who
come from a zero entropy homeomorphisms.
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Shift spaces

Definition
Let A =1{0,1,...,r — 1} be an alphabet. The full r-shift is

AN = {x=(x)72; : x; € A for all i € N}.

The shift map o: AN — AN maps x = (x;)2°; to the sequence
o(x) = (xi+1)?21. A shift space is any closed o-invariant subset of
AN,
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The language of a shift space

Definition

A block over A is a finite sequence of symbols from A. An n-block
stands for a block of length n. The set of all blocks over A is
denoted by A*. Let x = (x;)%°, € AN

<o Xi—1 | Xi Xig1-- - Xj—1 Xj | Xjgl .-

X[i ]
A block w € A* occurs in x if w = X[i j] for some 1 < i <j < oo.
Definition
A language of a shift space X is the set BI(X) of all blocks which

do occur in some sequence x € X. We write B,(X) for the set of
all n-blocks contained in B(X).
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Topological entropy

Definition
The entropy of a shift space X is

.1 o1
h(X) - n||—>n;o ; Iog ‘Bn(x)‘ - rlrgfl ; |Og ‘Bn(X)’
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Subordinate shift

Definition

A block w = wy ... wy € A* (x € AY) dominates a block
v=v.. v €A (ye AN)if vi<wifori=1,...,k (y; < x for
i €N).

Definition
A subordinate of £ C A* is the set L= of all v € A* that are
dominated by some w € L.

Definition
Given a point x € AN a subordinate shift of x, denoted by X=X is
a shift space given by the language BS, where B, is the language

of x.
(Remark: Subordinate shifts are hereditary.)



Examples



Examples

Lemma
Square-free flow is a subordinate shift.



Examples

Lemma
Square-free flow is a subordinate shift.

As a consequence the combinatorial patterns appearing in its
characteristic function are chaotic...
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Independence set for a shift space

Definition

We say that a set J C N is an independence set for a shift space
X c AN if for every function : J — A there is a point

x = {x;};2; € X such that x; = () for every j € J.
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Examples of independence sets

Example
Any subset of N is an independence set for the full shift.

Example
A subset of N is an independence set for the golden mean shift if
and only if it does not contain two consecutive integers.

Example
If J C N is an independence set for a shift space X, then so is
every subset of J.

Example
If X is a binary hereditary shift, then a J C N is an independence
set for X if and only if its characteristic function belongs to X.



Densities



Densities

Definition
A set A C N has density « if the limit

An{1,2,...
||m ‘ ﬂ{, Y

d(A) =

n—00 n

exists and is equal to a.



Densities

Definition
A set A C N has density « if the limit

An{1,2,...
||m ‘ ﬂ{, Y 7n}|

n—00 n

d(A) =

exists and is equal to a.

Definition
The Shnirelman density of a set A C N is

AN{1l,2,...
it HEL TR

dsn(A) = inf {
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Main theorem

Theorem

Let X be a binary shift. Then the entropy of X is positive if and
only if X is independent over a set A whose density exists, is
positive, and is equal to its Shnirelman density.
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Limiting frequency

Definition
Letac Aand w=wy...w, € A*. Define
[wlla=H1<j<k:w=a}|,
MZ(X) = max{||w||s : w € Bx(X)}.

The sequence {M7(X)}¢2, is subadditive, that is

0< M2, (X)<M2(X)+M3(X) nmeN.

m+n
We define the limiting frequency of a in X by

lim M = inf m

Fra(X):k—wo k k>1  k
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A topological consequence of maximal ergodic theorem

Definition
For a € A and x € X define the characteristic set x,(x) as the set
of positions at which a appears in x, that is,

Xa(x) ={j e N:x = a}.

Theorem
Let X be a shift space over an alphabet A. Then for every symbol
a € A there exists a point w, € X such that

dsn(xa(wa)) = d(xa(wa)) = Fra(X).
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Independence sets for blocks

Definition

Let F be a (possibly empty) family of binary blocks of length

n > 0. We say that F is independent over a set J C N and J is an
independence set for J if for each map ¢: J — {0,1} thereis a
block w € F whose i-th symbol is (i) for every i € J. We
denote the collection of all sets of independence for F by J(F). We
assume the convention that the empty set is a set of independence
for every (including empty) family of n-blocks.
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Sauer-Perles®-Shelah Lemma

Lemma (Sauer-Perles®-Shelah)

Let § C {0,1}" be a family of binary blocks of length n > 1. If for
some 1 < k < n we have

k—1 n
7 >Z(.),
=0 M

then & is independent over some set of cardinality k.

Lemma (Pajor)

Let F be a family of binary blocks of length n > 0. Then
[ I(F)] = [F].



Karpovsky-Milman

Lemma (Calculus)
Let0<e<1/2andn>1. Then

[ne]
> (") < 2mHee),
J

j=0

where H(e) = —cloge — (1 — ¢) log(1 — ¢).



Karpovsky-Milman

Lemma (Karpovsky-Milman)

Let X be a binary shift with positive topological entropy. Then
there is an € > 0 such that for every n > 1 there is a set

J C{1,...,n} with |en]| elements which is an independence set
for X.

Lemma (Calculus)
Let0<e<1/2andn>1. Then

[ne]
> (”) < 2mHee),
J

j=0

where H(e) = —cloge — (1 — ¢) log(1 — ¢).



Entropy of subordinate shifts

Theorem
If X=X s a subordinate shift of x, then

Fri(x) < h(X=¥) < Fri(x) + h(x).
In particular, if h(x) = 0, then h(X=X) = Fry(x).

Theorem

For every t € [0, 1] there is a binary subordinate shift with entropy
t.



Intrinsic ergodicity of subordinate shifts

Let M™M2*(X) be the set of all measures of maximal entropy for X.

Theorem

If X=% is a subordinate shift of x and h(x) = 0 then
MMX(X) = {p: p[l] = Fri(x)}. In particular, if x is uniquely
ergodic, then X=% is intrinsically ergodic.

Theorem
There is a mixing binary subordinate shift with uncountably many
measures of maximal entropy.












