Entropy and independence in symbolic dynamics

Dominik Kwietniak
based on a joint work with
Marcin Kulczycki (UJ) and Jian Li (Shantou)

Tossa de Mar, October 2, 2014
An Enigma

Which of these strings is generated at random?
An Enigma

Which of these strings is generated at random?
An Enigma

Which of these strings is generated at random?
Which of these strings is generated at random?
The Möbius function

Let $n \in \mathbb{N} = \{1, 2, \ldots \}$. For $n \geq 2$ let $\langle n \rangle$ be the number of distinct prime factors of n.

\[
\mu(n) = \begin{cases}
1, & \text{if } n = 1, \\
0, & \text{if } n \text{ is not square-free}, \\
(-1)^{\langle n \rangle}, & \text{if } n \text{ is square-free}.
\end{cases}
\]

Is the sequence $(\mu(n))_{n=1}^{\infty}$ random?
Given a sequence \(x = (x_i)_{i=1}^{\infty} \in \{0, 1\}^\mathbb{N} \) we consider the shift space \(X \) which is the closure of the orbit of \(x \) with respect to the shift map \(\sigma \), that is
\[
X = \overline{\{\sigma^n(x) : n \geq 0\}}.
\]
From sequences to dynamical systems

Given a sequence $x = (x_i)_{i=1}^{\infty} \in \{0, 1\}^\mathbb{N}$ we consider the shift space X which is the closure of the orbit of x with respect to the shift map σ, that is

$$X = \overline{\{\sigma^n(x) : n \geq 0\}}.$$

Definition
A square-free flow is a shift space generated as above by the sequence $\eta(n) = \mu^2(n)$.
Which sequences are random?

A heuristic is: a sequence is random if it is orthogonal to a deterministic one. Which sequences are deterministic? Those who come from a zero entropy homeomorphisms.
Shift spaces

Definition

Let $A = \{0, 1, \ldots, r - 1\}$ be an alphabet. The full r-shift is $A^\mathbb{N} = \{x = (x_i)_{i=1}^\infty : x_i \in A \text{ for all } i \in \mathbb{N}\}$.

The shift map $\sigma : A^\mathbb{N} \rightarrow A^\mathbb{N}$ maps $x = (x_i)_{i=1}^\infty$ to the sequence $\sigma(x) = (x_i+1)_{i=1}^\infty$.

A shift space is any closed σ-invariant subset of $A^\mathbb{N}$.
Shift spaces

Definition
Let \(\mathcal{A} = \{0, 1, \ldots, r - 1\} \) be an alphabet.
Definition

Let $\mathcal{A} = \{0, 1, \ldots, r - 1\}$ be an alphabet. The full r-shift is

$$\mathcal{A}^\mathbb{N} = \{ x = (x_i)_{i=1}^\infty : x_i \in \mathcal{A} \text{ for all } i \in \mathbb{N} \}.$$
Definition
Let $\mathcal{A} = \{0, 1, \ldots, r - 1\}$ be an alphabet. The full r-shift is

$$\mathcal{A}^\mathbb{N} = \{ x = (x_i)_{i=1}^\infty : x_i \in \mathcal{A} \text{ for all } i \in \mathbb{N} \}.$$

The shift map $\sigma : \mathcal{A}^\mathbb{N} \mapsto \mathcal{A}^\mathbb{N}$ maps $x = (x_i)_{i=1}^\infty$ to the sequence $\sigma(x) = (x_{i+1})_{i=1}^\infty$.
Definition

Let $\mathcal{A} = \{0, 1, \ldots, r - 1\}$ be an alphabet. The full r-shift is

$$\mathcal{A}^\mathbb{N} = \{x = (x_i)_{i=1}^\infty : x_i \in \mathcal{A} \text{ for all } i \in \mathbb{N}\}.$$

The shift map $\sigma : \mathcal{A}^\mathbb{N} \mapsto \mathcal{A}^\mathbb{N}$ maps $x = (x_i)_{i=1}^\infty$ to the sequence $\sigma(x) = (x_{i+1})_{i=1}^\infty$. A **shift space** is any closed σ-invariant subset of $\mathcal{A}^\mathbb{N}$.
The language of a shift space

A block over A is a finite sequence of symbols from A. An n-block stands for a block of length n.

The set of all blocks over A is denoted by A^*. Let $x = (x_i)_{i=1}^{\infty} \in A^N$.

A block $w \in A^*$ occurs in x if $w = x_{[i,j]}$ for some $1 \leq i < j < \infty$.

Definition: A language of a shift space X is the set $Bl(X)$ of all blocks which do occur in some sequence $x \in X$. We write $B_n(X)$ for the set of all n-blocks contained in $B(X)$.
The language of a shift space

Definition

A block over \mathcal{A} is a finite sequence of symbols from \mathcal{A}. An n-block stands for a block of length n.

A block $w \in \mathcal{A}^*$ occurs in x if $w = x_{[i,j]}$ for some $1 \leq i < j < \infty$.

Definition

A language of a shift space X is the set $\text{Bl}(X)$ of all blocks which do occur in some sequence $x \in X$. We write $B_n(X)$ for the set of all n-blocks contained in $B(X)$.
The language of a shift space

Definition
A block over \mathcal{A} is a finite sequence of symbols from \mathcal{A}. An n-block stands for a block of length n.

We write $B_n(X)$ for the set of all n-blocks contained in $B(X)$.

Definition
A language of a shift space X is the set $\mathcal{B}(X)$ of all blocks which do occur in some sequence $x \in X$.

We write $B_n(X)$ for the set of all n-blocks contained in $B(X)$.

The language of a shift space

Definition
A block over \mathcal{A} is a finite sequence of symbols from \mathcal{A}. An n-block stands for a block of length n. The set of all blocks over \mathcal{A} is denoted by \mathcal{A}^*.
The language of a shift space

Definition

A block over \mathcal{A} is a finite sequence of symbols from \mathcal{A}. An n-block stands for a block of length n. The set of all blocks over \mathcal{A} is denoted by \mathcal{A}^*. Let $x = (x_i)_{i=1}^{\infty} \in \mathcal{A}^\mathbb{N}$.

$$
\cdots x_{i-1} \quad \framebox{\begin{array}{c} x_i \ x_{i+1} \cdots x_{j-1} \ x_j \\ x[i,j] \end{array}} \ x_{j+1} \cdots
$$

A block $w \in \mathcal{A}^*$ occurs in x if $w = x[i,j]$ for some $1 \leq i \leq j < \infty$.

Definition

A language of a shift space X is the set $Bl(X)$ of all blocks which do occur in some sequence $x \in X$. We write $B_n(X)$ for the set of all n-blocks contained in $B(X)$.
The language of a shift space

Definition
A block over \mathcal{A} is a finite sequence of symbols from \mathcal{A}. An n-block stands for a block of length n. The set of all blocks over \mathcal{A} is denoted by \mathcal{A}^*. Let $x = (x_i)_{i=1}^\infty \in \mathcal{A}^\mathbb{N}$.

\[
\cdots x_{i-1} \underbrace{x_i \ x_{i+1} \cdots x_{j-1} \ x_j}_{x[i,j]} \ x_{j+1} \cdots
\]

A block $w \in A^*$ occurs in x if $w = x[i,j]$ for some $1 \leq i \leq j < \infty$.
The language of a shift space

Definition
A block over \mathcal{A} is a finite sequence of symbols from \mathcal{A}. An n-block stands for a block of length n. The set of all blocks over \mathcal{A} is denoted by \mathcal{A}^*. Let $x = (x_i)_{i=1}^{\infty} \in \mathcal{A}^\mathbb{N}$.

$$\cdots x_{i-1} \framebox{$x_i x_{i+1} \cdots x_{j-1} x_j$} x_{j+1} \cdots$$

$x[i,j]$\[x[i,j]\]

A block $w \in \mathcal{A}^*$ occurs in x if $w = x[i,j]$ for some $1 \leq i \leq j < \infty$.

Definition
A language of a shift space X is the set $Bl(X)$ of all blocks which do occur in some sequence $x \in X$.
The language of a shift space

Definition
A block over \mathcal{A} is a finite sequence of symbols from \mathcal{A}. An n-block stands for a block of length n. The set of all blocks over \mathcal{A} is denoted by \mathcal{A}^*. Let $x = (x_i)_{i=1}^{\infty} \in \mathcal{A}^\mathbb{N}$.

... $x_{i-1} \quad x_i \quad x_{i+1} \ldots \quad x_{j-1} \quad x_j \quad x_{j+1} \ldots$

A block $w \in \mathcal{A}^*$ occurs in x if $w = x[i,j]$ for some $1 \leq i \leq j < \infty$.

Definition
A language of a shift space X is the set $Bl(X)$ of all blocks which do occur in some sequence $x \in X$. We write $\mathcal{B}_n(X)$ for the set of all n-blocks contained in $\mathcal{B}(X)$.
Topological entropy
Definition
The entropy of a shift space X is

$$h(X) = \lim_{n \to \infty} \frac{1}{n} \log |\mathcal{B}_n(X)| = \inf_{n \geq 1} \frac{1}{n} \log |\mathcal{B}_n(X)|.$$
Subordinate shift

Definition
A block \(w = w_1 \ldots w_k \in A^* \) dominates a block \(v = v_1 \ldots v_k \in A^* \) if \(v_i \leq w_i \) for \(i = 1, \ldots, k \) (\(y_i \leq x_i \) for \(i \in N \)).

Definition
A subordinate of \(L \subset A^* \) is the set \(L \leq \) of all \(v \in A^* \) that are dominated by some \(w \in L \).

Definition
Given a point \(x \in A^N \), a subordinate shift of \(x \), denoted by \(X \leq x \), is a shift space given by the language \(B \leq x \), where \(B_x \) is the language of \(x \). (Remark: Subordinate shifts are hereditary.)
Subordinate shift

Definition
A block \(w = w_1 \ldots w_k \in \mathcal{A}^* \) \((x \in \mathcal{A}^N)\) dominates a block \(v = v_1 \ldots v_k \in \mathcal{A}^* \) \((y \in \mathcal{A}^N)\) if \(v_i \leq w_i \) for \(i = 1, \ldots, k \) \((y_i \leq x_i \) for \(i \in \mathbb{N})\).
Subordinate shift

Definition
A block $w = w_1 \ldots w_k \in A^*$ ($x \in A^N$) dominates a block $v = v_1 \ldots v_k \in A^*$ ($y \in A^N$) if $v_i \leq w_i$ for $i = 1, \ldots, k$ ($y_i \leq x_i$ for $i \in \mathbb{N}$).
Subordinate shift

Definition
A block \(w = w_1 \ldots w_k \in A^* \) \((x \in A^\mathbb{N})\) dominates a block \(v = v_1 \ldots v_k \in A^* \) \((y \in A^\mathbb{N})\) if \(v_i \leq w_i \) for \(i = 1, \ldots, k \) \((y_i \leq x_i \text{ for } i \in \mathbb{N})\).

Definition
A subordinate of \(L \subset A^* \) is the set \(L \leq \) of all \(v \in A^* \) that are dominated by some \(w \in L \).

(Remark: Subordinate shifts are hereditary.)
Definition
A block \(w = w_1 \ldots w_k \in \mathcal{A}^* \) \((x \in \mathcal{A}^\mathbb{N})\) dominates a block \(v = v_1 \ldots v_k \in \mathcal{A}^* \) \((y \in \mathcal{A}^\mathbb{N})\) if \(v_i \leq w_i \) for \(i = 1, \ldots, k \) \((y_i \leq x_i \) for \(i \in \mathbb{N}\)).

Definition
A subordinate of \(\mathcal{L} \subset \mathcal{A}^* \) is the set \(\mathcal{L}^\leq \) of all \(v \in \mathcal{A}^* \) that are dominated by some \(w \in \mathcal{L} \).
Definition
A block $w = w_1 \ldots w_k \in \mathcal{A}^*$ ($x \in \mathcal{A}^\mathbb{N}$) dominates a block $v = v_1 \ldots v_k \in \mathcal{A}^*$ ($y \in \mathcal{A}^\mathbb{N}$) if $v_i \leq w_i$ for $i = 1, \ldots, k$ ($y_i \leq x_i$ for $i \in \mathbb{N}$).

Definition
A subordinate of $L \subset \mathcal{A}^*$ is the set L^\leq of all $v \in \mathcal{A}^*$ that are dominated by some $w \in L$.

Definition
Given a point $x \in \mathcal{A}^\mathbb{N}$, a subordinate shift of x, denoted by $X^\leq x$, is a shift space given by the language B^\leq_x, where B_x is the language of x. (Remark: Subordinate shifts are hereditary.)
Subordinate shift

Definition
A block \(w = w_1 \ldots w_k \in \mathcal{A}^* \) \((x \in \mathcal{A}^\mathbb{N})\) dominates a block \(v = v_1 \ldots v_k \in \mathcal{A}^* \) \((y \in \mathcal{A}^\mathbb{N})\) if \(v_i \leq w_i \) for \(i = 1, \ldots, k \) \((y_i \leq x_i \) for \(i \in \mathbb{N})\).

Definition
A subordinate of \(\mathcal{L} \subset \mathcal{A}^* \) is the set \(\mathcal{L} \leq \) of all \(v \in \mathcal{A}^* \) that are dominated by some \(w \in \mathcal{L} \).

Definition
Given a point \(x \in \mathcal{A}^\mathbb{N} \), a subordinate shift of \(x \), denoted by \(X \leq x \), is a shift space given by the language \(\mathcal{B} \leq x \), where \(\mathcal{B}_x \) is the language of \(x \).

(Remark: Subordinate shifts are *hereditary*.)
Examples

Lemma

Square-free flow is a subordinate shift. As a consequence the combinatorial patterns appearing in its characteristic function are chaotic...
Examples

Lemma

\textit{Square-free flow is a subordinate shift.}
Examples

Lemma

Square-free flow is a subordinate shift.

As a consequence the combinatorial patterns appearing in its characteristic function are chaotic...
Independence set for a shift space

Definition

We say that a set $J \subset \mathbb{N}$ is an independence set for a shift space $X \subset A^\mathbb{N}$ if for every function $\phi : J \rightarrow A$ there is a point $x = \{x_j\}_{j=1}^\infty \in X$ such that $x_j = \phi(j)$ for every $j \in J$.
Independence set for a shift space

Definition

We say that a set $J \subset \mathbb{N}$ is an independence set for a shift space $X \subset \mathcal{A}^\mathbb{N}$ if for every function $\varphi : J \rightarrow \mathcal{A}$ there is a point $x = \{x_j\}_{j=1}^\infty \in X$ such that $x_j = \varphi(j)$ for every $j \in J$.
Examples of independence sets

Example
Any subset of \(\mathbb{N} \) is an independence set for the full shift.

Example
A subset of \(\mathbb{N} \) is an independence set for the golden mean shift if and only if it does not contain two consecutive integers.

Example
If \(J \subset \mathbb{N} \) is an independence set for a shift space \(X \), then so is every subset of \(J \).

Example
If \(X \) is a binary hereditary shift, then a \(J \subset \mathbb{N} \) is an independence set for \(X \) if and only if its characteristic function belongs to \(X \).
Examples of independence sets

Example
Any subset of \mathbb{N} is an independence set for the full shift.
Examples of independence sets

Example
Any subset of \mathbb{N} is an independence set for the full shift.

Example
A subset of \mathbb{N} is an independence set for the golden mean shift if and only if it does not contain two consecutive integers.
Examples of independence sets

Example
Any subset of \mathbb{N} is an independence set for the full shift.

Example
A subset of \mathbb{N} is an independence set for the golden mean shift if and only if it does not contain two consecutive integers.

Example
If $J \subset \mathbb{N}$ is an independence set for a shift space X, then so is every subset of J.
Examples of independence sets

Example
Any subset of \mathbb{N} is an independence set for the full shift.

Example
A subset of \mathbb{N} is an independence set for the golden mean shift if and only if it does not contain two consecutive integers.

Example
If $J \subset \mathbb{N}$ is an independence set for a shift space X, then so is every subset of J.

Example
If X is a binary hereditary shift, then a $J \subset \mathbb{N}$ is an independence set for X if and only if its characteristic function belongs to X.
Densities

Definition
A set $A \subset \mathbb{N}$ has density α if the limit $d(A) = \lim_{n \to \infty} \frac{|A \cap \{1, 2, \ldots, n\}|}{n}$ exists and is equal to α.

Definition
The Shnirelman density of a set $A \subset \mathbb{N}$ is $d_{Sh}(A) = \inf_{n \geq 1} \left\{ \frac{|A \cap \{1, 2, \ldots, n\}|}{n} : n \in \mathbb{N} \right\}$.
Densities

Definition

A set $A \subseteq \mathbb{N}$ has density α if the limit

$$d(A) = \lim_{n \to \infty} \frac{|A \cap \{1, 2, \ldots, n\}|}{n}$$

exists and is equal to α.
Densities

Definition

A set $A \subset \mathbb{N}$ has density α if the limit

$$d(A) = \lim_{n \to \infty} \frac{|A \cap \{1, 2, \ldots, n\}|}{n}$$

exists and is equal to α.

Definition

The Shnirelman density of a set $A \subset \mathbb{N}$ is

$$d_{Sh}(A) = \inf_{n \geq 1} \left\{ \frac{|A \cap \{1, 2, \ldots, n\}|}{n} : n \in \mathbb{N} \right\}.$$
Main theorem

Theorem

Let X be a binary shift. Then the entropy of X is positive if and only if X is independent over a set A whose density exists, is positive, and is equal to its Shnirelman density.
Main theorem

Theorem

Let X be a binary shift. Then the entropy of X is positive if and only if X is independent over a set A whose density exists, is positive, and is equal to its Shnirelman density.
Limiting frequency

Let $a \in \mathbb{A}$ and $w=w_1...w_k \in \mathbb{A}^*$. Define $||w||_a = |\{1 \leq j \leq k : w_j = a\}|$, $M_{a^k}(X) = \max\{||w||_a : w \in B_{a^k}(X)\}$. The sequence $\{M_{a^k}(X)\}_{k=1}^{\infty}$ is subadditive, that is $0 \leq M_{a^m+n}(X) \leq M_{a^m}(X) + M_{a^n}(X)$, $m \in \mathbb{N}$. We define the limiting frequency of a in X by $\text{Fr}_a(X) = \lim_{k \to \infty} M_{a^k}(X)$.
Limiting frequency

Definition
Let $a \in \mathcal{A}$ and $w = w_1 \ldots w_k \in \mathcal{A}^*$.
Limiting frequency

Definition
Let \(a \in \mathcal{A} \) and \(w = w_1 \ldots w_k \in \mathcal{A}^* \). Define

\[
||w||_a = |\{1 \leq j \leq k : w_j = a\}|
\]
Limiting frequency

Definition
Let $a \in \mathcal{A}$ and $w = w_1 \ldots w_k \in \mathcal{A}^*$. Define

$$||w||_a = |\{1 \leq j \leq k : w_j = a\}|,$$

$$M^a_k(X) = \max \{||w||_a : w \in \mathcal{B}_k(X)\}.$$
Limiting frequency

Definition

Let $a \in A$ and $w = w_1 \ldots w_k \in A^*$. Define

$$||w||_a = |\{1 \leq j \leq k : w_j = a\}|,$$

$$M_k^a(X) = \max \{||w||_a : w \in B_k(X)\}.$$

The sequence $\{M_k^a(X)\}_{k=1}^{\infty}$ is subadditive, that is

$$0 \leq M_{m+n}^a(X) \leq M_m^a(X) + M_n^a(X) \quad n, m \in \mathbb{N}.$$
Limiting frequency

Definition

Let $a \in \mathcal{A}$ and $w = w_1 \ldots w_k \in \mathcal{A}^*$. Define

$$||w||_a = |\{1 \leq j \leq k : w_j = a\}|,$$

$$M^a_k(X) = \max \{||w||_a : w \in \mathcal{B}_k(X)\}.$$

The sequence $\{M^a_k(X)\}_{k=1}^\infty$ is subadditive, that is

$$0 \leq M^a_{m+n}(X) \leq M^a_m(X) + M^a_n(X) \quad n, m \in \mathbb{N}.$$

We define the limiting frequency of a in X by

$$\text{Fr}_a(X) = \lim_{k \to \infty} \frac{M^a_k(X)}{k} = \inf_{k \geq 1} \frac{M^a_k(X)}{k}.$$
A topological consequence of maximal ergodic theorem

Definition
For $a \in A$ and $x \in X$ define the characteristic set $\chi_a(x)$ as the set of positions at which a appears in x, that is, $\chi_a(x) = \{ j \in \mathbb{N} : x_j = a \}$.

Theorem
Let X be a shift space over an alphabet A. Then for every symbol $a \in A$ there exists a point $\omega_a \in X$ such that $d_{Sh}(\chi_a(\omega_a)) = d(\chi_a(\omega_a)) = Fr_a(X)$.
A topological consequence of maximal ergodic theorem

Definition
For $a \in A$ and $x \in X$ define the characteristic set $\chi_a(x)$ as the set of positions at which a appears in x, that is,

$$\chi_a(x) = \{j \in \mathbb{N} : x_j = a\}.$$
A topological consequence of maximal ergodic theorem

Definition

For $a \in \mathcal{A}$ and $x \in X$ define the characteristic set $\chi_a(x)$ as the set of positions at which a appears in x, that is,

$$
\chi_a(x) = \{ j \in \mathbb{N} : x_j = a \}.
$$

Theorem

Let X be a shift space over an alphabet \mathcal{A}. Then for every symbol $a \in \mathcal{A}$ there exists a point $\omega_a \in X$ such that

$$
d_{Sh}(\chi_a(\omega_a)) = d(\chi_a(\omega_a)) = \text{Fr}_a(X).
$$
Independence sets for blocks

Definition

Let F be a (possibly empty) family of binary blocks of length $n \geq 0$. We say that F is independent over a set $J \subset \mathbb{N}$ and J is an independence set for F if for each map $\phi: J \to \{0, 1\}$ there is a block $w \in F$ whose i-th symbol is $\phi(i)$ for every $i \in J$.

We denote the collection of all sets of independence for F by $I(F)$. We assume the convention that the empty set is a set of independence for every (including empty) family of n-blocks.
Independence sets for blocks

Definition
Let \mathcal{F} be a (possibly empty) family of binary blocks of length $n \geq 0$. We say that \mathcal{F} is independent over a set $J \subset \mathbb{N}$ and J is an independence set for \mathcal{F} if for each map $\phi : J \to \{0, 1\}$ there is a block $w \in \mathcal{F}$ whose i-th symbol is $\phi(i)$ for every $i \in J$. We denote the collection of all sets of independence for \mathcal{F} by $I(\mathcal{F})$. We assume the convention that the empty set is a set of independence for every (including empty) family of n-blocks.
Independence sets for blocks

Definition
Let \mathcal{F} be a (possibly empty) family of binary blocks of length $n \geq 0$. We say that \mathcal{F} is independent over a set $J \subset \mathbb{N}$ and J is an independence set for \mathcal{F} if for each map $\varphi: J \to \{0, 1\}$ there is a block $w \in \mathcal{F}$ whose i-th symbol is $\varphi(i)$ for every $i \in J$.

We denote the collection of all sets of independence for \mathcal{F} by $I(\mathcal{F})$. We assume the convention that the empty set is a set of independence for every (including empty) family of n-blocks.
Independence sets for blocks

Definition

Let \mathcal{F} be a (possibly empty) family of binary blocks of length $n \geq 0$. We say that \mathcal{F} is independent over a set $J \subset \mathbb{N}$ and J is an **independence set** for \mathcal{F} if for each map $\varphi : J \to \{0, 1\}$ there is a block $w \in \mathcal{F}$ whose i-th symbol is $\varphi(i)$ for every $i \in J$.

Definition
Let \mathcal{F} be a (possibly empty) family of binary blocks of length $n \geq 0$. We say that \mathcal{F} is independent over a set $J \subset \mathbb{N}$ and J is an independence set for \mathcal{F} if for each map $\varphi: J \rightarrow \{0, 1\}$ there is a block $w \in \mathcal{F}$ whose i-th symbol is $\varphi(i)$ for every $i \in J$. We denote the collection of all sets of independence for \mathcal{F} by $\mathcal{I}(\mathcal{F})$.
Independence sets for blocks

Definition
Let \mathcal{F} be a (possibly empty) family of binary blocks of length $n \geq 0$. We say that \mathcal{F} is independent over a set $J \subset \mathbb{N}$ and J is an independence set for \mathcal{F} if for each map $\varphi: J \rightarrow \{0, 1\}$ there is a block $w \in \mathcal{F}$ whose i-th symbol is $\varphi(i)$ for every $i \in J$. We denote the collection of all sets of independence for \mathcal{F} by $I(\mathcal{F})$. We assume the convention that the empty set is a set of independence for every (including empty) family of n-blocks.
Sauer-Perles2-Shelah Lemma

Let $F \subset \{0,1\}^n$ be a family of binary blocks of length $n \geq 1$. If for some $1 \leq k \leq n$ we have $|F| > k - 1 \sum_{j=0}^{\infty} \binom{n}{j}$, then F is independent over some set of cardinality k.

Lemma (Pajor)

Let F be a family of binary blocks of length $n \geq 0$. Then $|I(F)| \geq |F|$.
Lemma (Sauer-Perles2-Shelah)

Let $\mathcal{F} \subset \{0, 1\}^n$ be a family of binary blocks of length $n \geq 1$. If for some $1 \leq k \leq n$ we have

$$|\mathcal{F}| > \sum_{j=0}^{k-1} \binom{n}{j},$$

then \mathcal{F} is independent over some set of cardinality k.
Sauer-Perles2-Shelah Lemma

Lemma (Sauer-Perles2-Shelah)

Let $\mathcal{F} \subset \{0, 1\}^n$ be a family of binary blocks of length $n \geq 1$. If for some $1 \leq k \leq n$ we have

$$|\mathcal{F}| > \sum_{j=0}^{k-1} \binom{n}{j},$$

then \mathcal{F} is independent over some set of cardinality k.

Lemma (Pajor)

Let \mathcal{F} be a family of binary blocks of length $n \geq 0$. Then $|\mathcal{I}(\mathcal{F})| \geq |\mathcal{F}|$.
Lemma (Calculus)

Let $0 < \varepsilon \leq 1/2$ and $n \geq 1$. Then

$$\sum_{j=0}^{\lfloor n\varepsilon \rfloor} \binom{n}{j} \leq 2^{n\cdot H(\varepsilon)},$$

where $H(\varepsilon) = -\varepsilon \log \varepsilon - (1 - \varepsilon) \log(1 - \varepsilon)$.
Karpovsky-Milman

Lemma (Karpovsky-Milman)

Let X be a binary shift with positive topological entropy. Then there is an $\varepsilon > 0$ such that for every $n \geq 1$ there is a set $J \subset \{1, \ldots, n\}$ with $\lfloor \varepsilon n \rfloor$ elements which is an independence set for X.

Lemma (Calculus)

Let $0 < \varepsilon \leq 1/2$ and $n \geq 1$. Then

$$\sum_{j=0}^{\lfloor n\varepsilon \rfloor} \binom{n}{j} \leq 2^{n \cdot H(\varepsilon)},$$

where $H(\varepsilon) = -\varepsilon \log \varepsilon - (1 - \varepsilon) \log(1 - \varepsilon)$.
Theorem

If $X \preceq x$ is a subordinate shift of x, then

$$\text{Fr}_1(x) \leq h(X \preceq x) \leq \text{Fr}_1(x) + h(x).$$

In particular, if $h(x) = 0$, then $h(X \preceq x) = \text{Fr}_1(x)$.

Theorem

For every $t \in [0, 1]$ there is a binary subordinate shift with entropy t.
Let $\mathcal{M}^\text{max}(X)$ be the set of all measures of maximal entropy for X.

Theorem

If $X \leq x$ is a subordinate shift of x and $h(x) = 0$ then
$\mathcal{M}^\text{max}(X) = \{\mu : \mu[1] = \text{Fr}_1(x)\}$. In particular, if x is uniquely ergodic, then $X \leq x$ is intrinsically ergodic.

Theorem

There is a mixing binary subordinate shift with uncountably many measures of maximal entropy.