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The Möbius function

Let n ∈ N = {1, 2, . . .}. For n ≥ 2 let 〈n〉 be the number of
distinct prime factors of n.

µ(n) =


1, if n = 1,

0, if n is not square-free,

(−1)〈n〉, if n is square-free.

Is the sequence (µ(n))∞n=1 random?



From sequences to dynamical systems

Given a sequence x = (xi )
∞
i=1 ∈ {0, 1}N we consider the shift space

X which is the closure of the orbit of x with respect to the shift
map σ, that is

X = {σn(x) : n ≥ 0}.

Definition
A square-free flow is a shift space generated as above by the
sequence η(n) = µ2(n).
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Which sequences are random?

A heuristic is: a sequence is random if it is orthogonal to a
deterministic one. Which sequences are deterministic? Those who
come from a zero entropy homeomorphisms.



Shift spaces

Definition
Let A = {0, 1, . . . , r − 1} be an alphabet.

The full r -shift is

AN = {x = (xi )
∞
i=1 : xi ∈ A for all i ∈ N}.

The shift map σ : AN 7→ AN maps x = (xi )
∞
i=1 to the sequence

σ(x) = (xi+1)∞i=1. A shift space is any closed σ-invariant subset of
AN.
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The language of a shift space

Definition
A block over A is a finite sequence of symbols from A. An n-block
stands for a block of length n.

The set of all blocks over A is
denoted by A∗. Let x = (xi )

∞
i=1 ∈ AN.

. . . xi−1 xi xi+1 . . . xj−1 xj︸ ︷︷ ︸
x[i ,j]

xj+1 . . .

A block w ∈ A∗ occurs in x if w = x[i ,j] for some 1 ≤ i ≤ j <∞.

Definition
A language of a shift space X is the set Bl(X ) of all blocks which
do occur in some sequence x ∈ X .

We write Bn(X ) for the set of
all n-blocks contained in B(X ).
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Topological entropy

Definition
The entropy of a shift space X is

h(X ) = lim
n→∞

1

n
log |Bn(X )| = inf

n≥1

1

n
log |Bn(X )|.
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Subordinate shift

Definition
A block w = w1 . . .wk ∈ A∗ (x ∈ AN) dominates a block
v = v1 . . . vk ∈ A∗ (y ∈ AN) if vi ≤ wi for i = 1, . . . , k (yi ≤ xi for
i ∈ N).

Definition
A subordinate of L ⊂ A∗ is the set L≤ of all v ∈ A∗ that are
dominated by some w ∈ L.

Definition
Given a point x ∈ AN, a subordinate shift of x , denoted by X≤x , is
a shift space given by the language B≤x , where Bx is the language
of x .

(Remark: Subordinate shifts are hereditary.)
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characteristic function are chaotic...
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Examples of independence sets

Example

Any subset of N is an independence set for the full shift.

Example

A subset of N is an independence set for the golden mean shift if
and only if it does not contain two consecutive integers.

Example

If J ⊂ N is an independence set for a shift space X , then so is
every subset of J.

Example

If X is a binary hereditary shift, then a J ⊂ N is an independence
set for X if and only if its characteristic function belongs to X .
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Densities

Definition
A set A ⊂ N has density α if the limit

d(A) = lim
n→∞

|A ∩ {1, 2, . . . , n}|
n

exists and is equal to α.

Definition
The Shnirelman density of a set A ⊂ N is

dSh(A) = inf
n≥1

{
|A ∩ {1, 2, . . . , n}|

n
: n ∈ N

}
.
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Main theorem

Theorem
Let X be a binary shift. Then the entropy of X is positive if and
only if X is independent over a set A whose density exists, is
positive, and is equal to its Shnirelman density.
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Limiting frequency

Definition
Let a ∈ A and w = w1 . . .wk ∈ A∗.

Define

||w ||a = |{1 ≤ j ≤ k : wj = a}|,
Ma

k(X ) = max {||w ||a : w ∈ Bk(X )} .

The sequence {Ma
k(X )}∞k=1 is subadditive, that is

0 ≤ Ma
m+n(X ) ≤ Ma

m(X ) + Ma
n(X ) n,m ∈ N.

We define the limiting frequency of a in X by

Fra(X ) = lim
k→∞

Ma
k(X )

k
= inf

k≥1

Ma
k(X )

k
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A topological consequence of maximal ergodic theorem

Definition
For a ∈ A and x ∈ X define the characteristic set χa(x) as the set
of positions at which a appears in x , that is,

χa(x) = {j ∈ N : xj = a}.

Theorem
Let X be a shift space over an alphabet A. Then for every symbol
a ∈ A there exists a point ωa ∈ X such that

dSh(χa(ωa)) = d(χa(ωa)) = Fra(X ).
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Definition
Let F be a (possibly empty) family of binary blocks of length
n ≥ 0.

We say that F is independent over a set J ⊂ N and J is an
independence set for F if for each map ϕ : J → {0, 1} there is a
block w ∈ F whose i-th symbol is ϕ(i) for every i ∈ J. We
denote the collection of all sets of independence for F by I(F). We
assume the convention that the empty set is a set of independence
for every (including empty) family of n-blocks.
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Sauer-Perles2-Shelah Lemma

Lemma (Sauer-Perles2-Shelah)

Let F ⊂ {0, 1}n be a family of binary blocks of length n ≥ 1. If for
some 1 ≤ k ≤ n we have

|F| >
k−1∑
j=0

(
n

j

)
,

then F is independent over some set of cardinality k .

Lemma (Pajor)

Let F be a family of binary blocks of length n ≥ 0. Then
| I(F)| ≥ |F|.
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Karpovsky-Milman

Lemma (Karpovsky-Milman)

Let X be a binary shift with positive topological entropy. Then
there is an ε > 0 such that for every n ≥ 1 there is a set
J ⊂ {1, . . . , n} with bεnc elements which is an independence set
for X .

Lemma (Calculus)

Let 0 < ε ≤ 1/2 and n ≥ 1. Then

bnεc∑
j=0

(
n

j

)
≤ 2n·H(ε),

where H(ε) = −ε log ε− (1− ε) log(1− ε).
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Entropy of subordinate shifts

Theorem
If X≤x is a subordinate shift of x , then

Fr1(x) ≤ h(X≤x) ≤ Fr1(x) + h(x).

In particular, if h(x) = 0, then h(X≤x) = Fr1(x).

Theorem
For every t ∈ [0, 1] there is a binary subordinate shift with entropy
t.



Intrinsic ergodicity of subordinate shifts

Let Mmax(X ) be the set of all measures of maximal entropy for X .

Theorem
If X≤x is a subordinate shift of x and h(x) = 0 then
Mmax(X ) = {µ : µ[1] = Fr1(x)}. In particular, if x is uniquely
ergodic, then X≤x is intrinsically ergodic.

Theorem
There is a mixing binary subordinate shift with uncountably many
measures of maximal entropy.








