Metric entropy and stochastic laws of invariant measures for elliptic functions

Janina Kotus, Warsaw University of Technology

2/10/2014

Janina Kotus, Warsaw University of Technology Metric entropy and stochastic laws of invariant measures for elli

Plan of the talk

- Invariant measures for transcendental meromorphic functions
- Basic properties of 'critically tame' elliptic functions
- The results
- Idea of the proofs (the main ingredients of the proofs)
 - thermodynamic formalism for conformal graph directed Markov systems
 - nice sets for holomorphic maps of the Riemann surfaces
 - L.S. Young's tower
 - stochastic properties of the return map
 - metric entropy

Fatou set and Julia set

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be a transcendental meromorphic function or let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational map of degree ≥ 2 . Then

- The Fatou set F(f) is defined as usual using normal families: a point z is in the Fatou set if and only in there is a neighbourhood of z on which the iterates of f are well defined and form a normal family.
- The Julia set $J(f) := \hat{\mathbb{C}} \setminus F(f)$.

Basic definition

Let $S(f) \subset \hat{\mathbb{C}}$ denote the set of singular values of f:

 a point z is an element of Ĉ \ S(f) if and only if there is a neighbourhood of z on which all inverse branches are well defined, univalent maps. This set contains critical values and asymptotic values.

Definition

A point $a \in \hat{\mathbb{C}}$ is called an asymptotic value if there is a path $\gamma : [0, 1) \to \mathbb{C}$ such that:

• $\lim_{t \to 1^{-}} \gamma(t) = \infty$ and

•
$$\lim_{t \to 1^{-}} f(\gamma(t)) = a$$

Examples

•
$$f(z) = e^z \neq 0, \quad a_1 = 0 = \lim_{x \to -\infty} e^x$$

$$f(z) = \tan(z) \neq \pm i, \quad a_1 = i = \lim_{y \to +\infty} \tan z, \quad a_2 = -i = \lim_{y \to -\infty} \tan z$$

Definition

$$\mathcal{P}(f) := \overline{\bigcup_{n \ge 0} f^n(S(f))}$$
 - is called the post - singular set.

Metric entropy and stochastic laws of invariant measures for elli

Theorem A (Urbański and Kotus)

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be a transcendental meromorphic function satisfying the following conditions:

- $J(f) = \hat{\mathbb{C}}$
- m({z ∈ J(f): ω(z) is not contained in P(f)}) > 0 (i.e. P(f) is not a metric attractor)

then there exists a σ -finite ergodic and conservative f invariant measure μ equivalent with the Lebesgue measure m.

Remark

We applied M. Martens' technique of construction of invariant measures

Examples

(a)
$$f(z) = 2\pi i e^z$$
 (b) $f(z) = \pi i tan(z)$

Metric entropy and stochastic laws of invariant measures for elli

I - Probabilistic invariant measures

Theorem B (Świątek and Kotus)

- Let f : C → C be a meromorphic function with finitely many singular values. Suppose further that all poles of f have multiplicities bounded by M.
- Suppose also that $J(f) = \overline{C}$ and $\mathcal{P}(f) \cap (Crit(f) \cup \{\infty\}) = \emptyset$.

• for some
$$r_0 > 0$$

$$\int_{r_0}^{\infty} \frac{m(r,a)}{r^{1+\frac{2}{M}}} dr < \infty.$$

for each asymptotic value a.

Then, f has a probabilistic ergodic and conservative invariant measure which is absolutely continuous with respect to the Lebesgue measure.

where
$$m(r,a) = \int_{r_0}^{2\pi} \log^+ rac{1}{\operatorname{dist}(f(re^{it}),a)} dr$$
- proximity function

I - Probabilistic invariant measures

Remarks

Theorem B does not apply to:

- entire functions
- meromomorphic funtions with finitely many poles

Examples

Hypotheses of Theorem B are satisfied by the functions

•
$$f(z) = k\pi i \tan(z)$$

(Theorem A \Rightarrow invariant measure is σ -finite

• elliptic functions if $J(f) = \hat{\mathbb{C}}$ and $\mathcal{P}(f) \cap (\operatorname{Crit}(f) \cup \{\infty\}) = \emptyset$.

Remark

The **necessity** of the hypothesis (3)
$$\int_{r_0}^{\infty} \frac{m(r,a)}{r^{1+\frac{2}{M}}} dr < \infty$$

Let $f(z) = A \frac{e^{(z-a)^2} - 1}{e^{(z-a)^2} + 1}$. Then f does not satisfy (3) and f doesn't have finite invariant measure.

Theorem - Dobbs (a converse to a theorem of Świątek and Kotus)

- Let f : C → C be a meromorphic function such there exists a positive Lebesgue measure set of points z ∈ J(f) such that ω(z) is not contained in P(f).
- Let A be a forward invariant, bounded set and suppose f admits a pole of order M which is not an omitted value.
- () If the σ invariant measure given in Theorem A is finite, then

$$\int_{|z|>r_0}\frac{\operatorname{dist}(f(z),A)}{|z|^{2+\frac{2}{M}}}dm<\infty$$

for some r_0 , where integration is with respect to Euclidean Lebesgue measure m.

I - Probabilistic invariant measures

Remark

Suppose f admits an asymptotic value a whose orbit is bounded. Let $A := Orb^+(a)$. Then

$$\int_{|z|>r_0}\frac{\operatorname{dist}(f(z),A)}{|z|^{2+\frac{2}{M}}}dm<\infty$$

implies

$$\int_{|z|>r_0}\frac{\operatorname{dist}(f(z),a)}{|z|^{2+\frac{2}{M}}}dm<\infty.$$

One can rewrite the inequality as

$$\int_{r>r_0}^{\infty}\frac{m(r,a)}{|r|^{1+\frac{2}{M}}}dr<\infty.$$

where $m(r, a) = \int_{r_0}^{2\pi} \log^+ \frac{1}{\operatorname{dist}(f(re^{it}), a)} dr$

Metric entropy and stochastic laws of invariant measures for elli

Definition

Let $f : \mathbb{C} \to \overline{\mathbb{C}}$ be a non-constant elliptic function. Every such function is doubly periodic and meromorphic i.e. there exist two vectors w_1 , w_2 , $\operatorname{Im}(\frac{w_1}{w_2}) \neq 0$, such that for every $z \in \mathbb{C}$ and $n, m \in \mathbb{Z}$, $f(z) = f(z + mw_1 + nw_2)$.

Remark

Every elliptic function has a form $R(\wp, \wp')$ where R is rational, \wp is a Weiestrass function.

$$\wp(z) = \frac{1}{z^2} + \frac{1}{z^2} + \sum_{k=1}^{\infty} \left[\frac{1}{(z-w_k)^2} - \frac{1}{w_k^2} \right], \quad w_k = mw_1 + nw_2$$

II - Elliptic functions

Definition

Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be an elliptic function and $c \in \operatorname{Crit}(f)$. We say that f is critically tame if the following conditions are satisfied:

- if c ∈ F(f)- Fatou set, then there exists an attracting or parabolic cycle of period p, O(z₀) = {z₀, f(z₀), ..., f^{p-1}(z₀)} such that ω limit set ω(c) = O(z₀).
- if $c \in J(f)$ Julia set, then one of the following holds:
 - ω(c) is a compact subset of C such that c ∉ ω(c);
 (i.e. non-recurrent property) but c ∈ ω(c') where c' ∈ Crit(f))
 - c is eventually mapped onto some pole;

•
$$\lim_{n\to\infty} f^n(c) = \infty$$

Janina Kotus, Warsaw University of Technology

Metric entropy and stochastic laws of invariant measures for elli

Theorem C - Urbański and Kotus

Let f be a non-constant elliptic function. Then $\dim_{H}(J(f)) > \frac{2q}{q+1} \ge 1$ where q is the maximal multiplicity of poles of f.

Theorem D -Urbański and Kotus

Let $f : \mathbb{C} \to \overline{\mathbb{C}}$ be a critically tame elliptic function.

- If $h = \dim_H(J(f)) = 2$, then $J(f) = \overline{\mathbb{C}}$.
- If *h* < 2, then
 - *h* dimensional Hausdorff measure $H_s^h(J(f)) = 0$.
 - (2) *h*-dimensional packing measure $\prod_{s=1}^{h} (J(f)) > 0$.
 - In ^h_s(J(f)) = ∞ if and only if Ω(f) ≠ Ø, Ω(f) is the set of parabolic periodic points.

Theorem E- Urbański and Kotus

Suppose that f is critically tame elliptic function, denote $h = \dim_H(J(f))$. Then there exist:

- a unique atomless *h*-conformal measure *m* for $f: J(f) \setminus \{\infty\} \to J(f)$ where m is ergodic and m(Tr(f)) = 1; $Tr(f) \subset J(f)$ denotes the set of all transitive points of f
- if f has no parabolic periodic points, then $0 < \prod_{c}^{h}(J(f)) < \infty$ and *m* and Π_{c}^{h} are equivalent.
- there exists a non-atomic, σ -finite, ergodic and invariant measure μ for f, equivalent to the measure m. Additionally, μ is unique up to a multiplicative constant and is supported on J(f).

• the Jacobian $D_{\mu}f = \frac{d\mu \circ f}{d\mu}$ has a real analytic extension on a neighborhood of $J(f) \setminus (\overline{\mathrm{PC}(f)} \cup f^{-1}(\infty))$ in \mathbb{C} .

-

Conformal measure

Fix $t \ge 0$. Let *G* and *H* be non-empty open subsets of $\overline{\mathbb{C}}$. Let $f: G \to H$ be a meromorphic map.

A pair (m_G, m_H) of Borel finite measures on G and H respectively is called spherical *t*-conformal pair of measures for the map $f: G \to H$, if

$$m_H(f(A)) = \int_A |f^*|^t \, dm_G$$

for every Borel set $A \subset G$ such that $f|_A$ is injective.

If both measures m_G and m_H are restrictions of the same Borel finite measure m defined defined on $G \cup H$, we refer to m as t- conformal measure the map $f : G \to H$.

Definitions

Let $f : \mathbb{C} \to \overline{\mathbb{C}}$ be critically tame elliptic functions

- If f has no parabolic periodic points
- and $\operatorname{Crit}_{\infty}(f) = \emptyset$ (no critical points diverge to infinity)

then f is called of finite character.

Proposition

If $f : \mathbb{C} \to \overline{\mathbb{C}}$ is a critically tame elliptic of finite character then

- μ_h finite.
- in particular if Julia set is equal to the entire complex plane C, then there exists a unique Borel probability *f*-invariant measure μ equivalent to the planar Lebesgue measure on C. (as before in Theorem B)

イロト 不得 とくほ とくほ とうほう

Theorem 1(a) - Decay of correlation - Urbański and Kotus

If $f : \mathbb{C} \to \overline{\mathbb{C}}$ is an elliptic function of finite character and if μ is the probability *f*-invariant measure equivalent to the *h*-conformal measure *m*, then for the dynamical system (f, μ) the following holds.

Fix $\alpha \in (0, 1]$ and a bounded function $g : J(f) \to \mathbb{R}$ which is Hölder continuous with respect to the Euclidean metric on J(f)with the exponent α . Then for every bounded measurable function $\psi : J(f) \to \mathbb{R}$, we have that

$$\left|\int\psi\circ f^{n}\cdot gd\mu-\int gdmu\int\psi d\mu
ight|=O(heta^{n})$$

for some $0 < \theta < 1$ depending on α .

III - The new results

Theorem 1(b) - The Central Limit Theorem - Urbański and Kotus

The Central Limit Theorem holds for every Hölder continuous function $g: J(f) \to \mathbb{R}$ that is not cohomologous to a constant in $L^2(\mu)$, i.e. for which there is no square integrable function η for which $g = \text{const} + \eta \circ f - \eta$. Precisely this means that there exists $\sigma > 0$ such that

$$\frac{1}{\sqrt{n}}S_ng = \frac{1}{\sqrt{n}}\sum_{j=0}^{n-1}g\circ f^j \to N(0,\sigma)$$

in distribution, where $N(0, \sigma)$ is here the normal (Gaussian) distribution with 0 mean and variance σ . Equivalently for every $t \in \mathbb{R}$,

$$\mu\left(\{x \in X : \frac{1}{\sqrt{n}}S_ng(x) \le t\}\right) \to \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^t \exp\left(-u^2/2\sigma^2\right) du.$$

Janina Kotus, Warsaw University of Technology

Metric entropy and stochastic laws of invariant measures for elli

III - The new results

Theorem 1(c)-The Law of Iterated Logarithm- Urbański and Kotus

The Law of Iterated Logarithm holds for every Hölder continuous function $g: J(f) \to \mathbb{R}$ that is not cohomologous to a constant in $L^2(\mu)$. This means that there exists a real positive constant A_g such that such that μ_{ϕ} almost everywhere

$$\limsup_{n\to\infty}\frac{S_ng-n\int gd\mu}{\sqrt{n\log\log n}}=A_g.$$

Theorem 2 - Urbański and Kotus

If $f : \mathbb{C} \to \overline{\mathbb{C}}$ is a critically tame map of finite type, μ_h is the corresponding Borel probability f-invariant measure equivalent to the h-conformal measure m, then a metric entropy

$$h_{\mu_h}(f) < +\infty.$$

- A) Thermodynamic formalism for graph directed Markov system
- B) Nice sets for analytic maps
- C) Young's tower technique
- D) Stochastic properties of the return map

Part I - projection onto \mathbb{T}

- Let $f: \mathbb{C} \to \overline{\mathbb{C}}$ be a critically tame elliptic function
- Let $\mathbb{T} = \mathbb{C}/{\sim_f}$ (the torus generated by the lattice Λ of f).
- $B(f) = f^{-1}(\infty) \cup (\operatorname{Crit}(f) \cap J(f))$ is infinite
- $\Pi:\mathbb{C}\to\mathbb{T}$ be the canonical projection, $\hat{\mathbb{T}}:=\Pi(\mathbb{C}\setminus f^{-1}(\infty))$

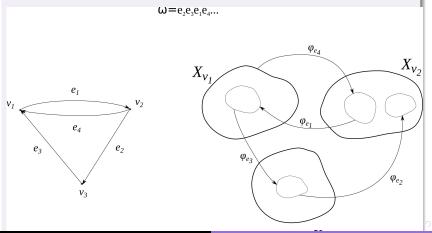
$$\begin{array}{ccc} \mathbb{C} \setminus f^{-1}(\infty) & \stackrel{f}{\longrightarrow} & \mathbb{C} \\ & \Pi & & & \downarrow \Pi \\ & & & & & \\ & \hat{\mathbb{T}} & \stackrel{\hat{f}}{\longrightarrow} & \mathbb{T}. \end{array}$$

• Then $B(\hat{f}) = \Pi(B(f))$ is finite !!

Idea of proof of stochastics laws

Part I - projection onto ${\mathbb T}$

We construct Graph Directed Markow System such that its vertices are in $B(\hat{f}) = \Pi(B(f)) \in \mathbb{T}$



Janina Kotus, Warsaw University of Technology Metric entropy and stochastic laws of invariant measures for elli

Idea of proof of stochastics laws

Part I - projection onto \mathbb{T}

A Graph Directed Markov System consists of

- a directed multigraph (E, V) with a countable set of edges E and a finite set of vertices V,
- an incidence matrix $A: E \times E \rightarrow \{0,1\}$,
- two functions $i, t : E \to V$ such that t(a) = i(b) whenever $A_{ab} = 1$.
- a family of non-empty compact metric spaces $\{X_v\}_{v \in V}$,
- a number $\beta \in (0, 1)$, and for every $e \in E$, a 1-to-1 contraction $\phi_e : X_{t(e)} \to X_{i(e)}$ with a Lipschitz constant $\leq \beta$.
- The set $S = \{\phi_e : X_{t(e)} \to X_{i(e)}\}_{e \in E}$ is called a Graph Directed Markov System (GDMS).
- The set J = J_S := π(E[∞]_A) is called the limit set of the Graph Directed Markov System S = {φ_e}_{e∈E} (GDMS).

Part I - projection onto $\mathbb T$

We prove:

- Bowen formula i.e. Hausdorff dimension of the limit set J_S of Graph Directed Markov System S is equal to zero of the topological pressure.
- Graph Directed Markov System S corresponds to a subshift $(E_A^{\mathbb{N}}, \sigma)$ which has *h* conformal measure \tilde{m}_h
- *m_h* = *m_h* Π⁻¹ defines *h* conformal measure on the limit set
 J of Graph Directed Markov System.

Part II - 'lift' GDMS to $\mathbb C$

- For every c ∈ (Crit(f) ∩ J(f)), f is elliptic function of finite type, we define Iterated Function System by 'lifting' some branches of GDMS defined on T. So there is a limit set J_c and a conformal measure m_c defined on J_c.
- we show that m_c is comparable with restriction of conformal measure m to J_c , where m was proved to exist for elliptic functions in Theorem E,
- we consider a return map F on a neighbourhood V of c in the Julia set J(f) and prove that the greatest common divisor of all return time numbers is equal to 1.

Part II - 'lift' GDMS to $\ensuremath{\mathbb{C}}$

- we construct Young's tower associated with V and return time map F
- we check that a return map satisfies the assumptions of L.S. Young theorems concerning stochastic laws of invariant measure, which implies the required properties of invariant measure for critically tame elliptic functions

IV - metric entropy of critically tame elliptic functions

- If $f : \mathbb{C} \to \overline{\mathbb{C}}$ is a critically tame map of finite type,
- μ_h is the corresponding Borel probability f-invariant measure equivalent to the h-conformal measure m,
- then a metric entropy $h_{\mu_h}(f) < +\infty$.

Corollary

- If $f : \mathbb{C} \to \overline{\mathbb{C}}$ is a critically tame elliptic function with $J(f) = \mathbb{C}$ and $\operatorname{Crit}_{\infty}(f) = \emptyset$,
- μ is the (unique) Borel probability $f-{\rm invariant}$ measure on $\mathbb C$ equivalent to the planar Lebesgue measure on $\mathbb C$.
- then $h_{\mu}(f) < +\infty$

Theorem - Abramov

If $T : X \to X$ is an ergodic measure preserving transformation of a probability space (X, \mathcal{F}, μ) , then for every set $K \in \mathcal{F}$ with $0 < \mu(K) < +\infty$, we have that

$$\mathsf{h}_{\mu_{K}}(F) = rac{1}{\mu(K)} h_{\mu}(T).$$

where

•
$$F(x) := T^{\tau_{\kappa}(x)}(x)$$
 is an induced map

•
$$\tau_{K}(x) := \min\{n \ge 1 : T^{n}(x) \in K\}.$$

•
$$\mu_{K} := \mu_{|K}(\mu(K))^{-1}$$

Krengel's Entropy

If $T : X \to X$ is an conservative ergodic measure preserving transformation of a measure space (X, \mathcal{F}, μ) , then for all sets F and G in \mathcal{F} with $0 < \mu(F), \mu(G) < +\infty$, we have that $h_{\mu_F}(T_F) = h_{\mu_G}(T_G)$.

- This common value is called the Krengel' entropy of the map $T: X \to X$ and is denoted simply by $h_{\mu}(T)$.
- If μ is a probability measure, it coincides with the standard entropy of T with respect to μ.

The proof of Theorem 2

- Abramov's formula gives $h_{\mu_F}(F) = \frac{1}{\mu(J_c)}h_{\mu}(f)$, where f is critically tame elliptic function
- If $S = \{\phi_e\}_{e \in E}$ is a finitely irreducible strongly regular GDMS, then the metric entropy $h_{\tilde{\mu}_h}(\sigma)$ of the dynamical system $\sigma : E_A^{\mathbb{N}} \to E_A^{\mathbb{N}}$ with respect to the σ -invariant measure $\tilde{\mu}_h$ is finite.

•
$$h_{\mu_F}(F) = h_{\tilde{\mu}_h}(\sigma) < +\infty$$
, so $h_{\mu}(f) = h_{\mu_F}(F) \cdot \mu(J_c) < +\infty$.