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Basic definition

Fatou set and Julia set

Let f : C→ Ĉ be a transcendental meromorphic function or
let f : Ĉ→ Ĉ be a rational map of degree ≥ 2. Then

The Fatou set F (f ) is defined as usual using normal families:
a point z is in the Fatou set if and only in there is a
neighbourhood of z on which the iterates of f are well defined
and form a normal family.

The Julia set J(f ) := Ĉ \ F (f ).

Basic definition

Let S(f ) ⊂ Ĉ denote the set of singular values of f :

a point z is an element of Ĉ \ S(f ) if and only if there is a
neighbourhood of z on which all inverse branches are well -
defined, univalent maps. This set contains critical values and
asymptotic values.
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Basic definition

Definition

A point a ∈ Ĉ is called an asymptotic value if there is a path
γ : [0, 1)→ C such that:

limt→1− γ(t) =∞ and

limt→1− f (γ(t)) = a

Examples

1 f (z) = ez 6= 0, a1 = 0 = limx→−∞ ex

2 f (z) = tan(z) 6= ±i , a1 = i = limy→+∞ tan z , a2 = −i =
limy→−∞ tan z

Definition

P(f ) :=
⋃

n≥0 f
n(S(f ))− is called the post - singular set.

Janina Kotus, Warsaw University of Technology Metric entropy and stochastic laws of invariant measures for elliptic functions



I - Invariant measures

Theorem A (Urbański and Kotus)

Let f : C→ Ĉ be a transcendental meromorphic function
satisfying the following conditions:

J(f ) = Ĉ
m({z ∈ J(f ) : ω(z) is not contained in P(f )}) > 0
(i.e. P(f ) is not a metric attractor)

then there exists a σ-finite ergodic and conservative f invariant
measure µ equivalent with the Lebesgue measure m.

Remark

We applied M. Martens’ technique of construction of invariant
measures

Examples

(a) f (z) = 2πiez (b) f (z) = πitan(z)
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I - Probabilistic invariant measures

Theorem B (Świa̧tek and Kotus)

1 Let f : C→ C be a meromorphic function with finitely many
singular values. Suppose further that all poles of f have
multiplicities bounded by M.

2 Suppose also that J(f ) = C and P(f ) ∩ (Crit(f ) ∪ {∞}) = ∅.
3 for some r0 > 0 ∫ ∞

r0

m(r , a)

r1+
2
M

dr <∞,

for each asymptotic value a.

Then, f has a probabilistic ergodic and conservative invariant
measure which is absolutely continuous with respect to the
Lebesgue measure.

where m(r , a) =
∫ 2π
r0

log+ 1
dist(f (re it),a)

dr - proximity function
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I - Probabilistic invariant measures

Remarks

Theorem B does not apply to:

entire functions

meromomorphic funtions with finitely many poles

Examples

Hypotheses of Theorem B are satisfied by the functions

f (z) = kπi tan(z)
(Theorem A ⇒ invariant measure is σ-finite)

elliptic functions if J(f ) = Ĉ and P(f )∩ (Crit(f )∪{∞}) = ∅.

Remark

The necessity of the hypothesis (3)
∫∞
r0

m(r ,a)

r1+
2
M
dr <∞

Let f (z) = A e(z−a)2−1
e(z−a)2+1

. Then f does not satisfy (3) and f doesn’t

have finite invariant measure.
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I - Probabilistic invariant measures

Theorem - Dobbs (a converse to a theorem of Świa̧tek and Kotus)

1 Let f : C→ C be a meromorphic function such there exists a
positive Lebesgue measure set of points z ∈ J(f ) such that
ω(z) is not contained in P(f ).

2 Let A be a forward invariant, bounded set and suppose f
admits a pole of order M which is not an omitted value.

3 If the σ invariant measure given in Theorem A is finite, then∫
|z|>r0

dist(f (z),A)

|z |2+
2
M

dm <∞

for some r0, where integration is with respect to Euclidean
Lebesgue measure m.
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I - Probabilistic invariant measures

Remark

Suppose f admits an asymptotic value a whose orbit is bounded.
Let A := Orb+(a). Then∫

|z|>r0

dist(f (z),A)

|z |2+
2
M

dm <∞

implies ∫
|z|>r0

dist(f (z), a)

|z |2+
2
M

dm <∞.

One can rewrite the inequality as∫ ∞
r>r0

m(r , a)

|r |1+
2
M

dr <∞.

where m(r , a) =
∫ 2π
r0

log+ 1
dist(f (re it),a)

dr
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II- Elliptic functions

Definition

Let f : C→ C be a non-constant elliptic function. Every such
function is doubly periodic and meromorphic i.e. there exist two
vectors w1, w2, Im(w1

w2
) 6= 0, such that for every z ∈ C and

n,m ∈ Z, f (z) = f (z + mw1 + nw2).

Remark

Every elliptic function has a form R(℘, ℘′) where R is rational, ℘ is
a Weiestrass function.

℘(z) =
1

z2
+

1

z2
+
∞∑
k=1

[
1

(z − wk)2
− 1

w2
k

]
, wk = mw1 + nw2
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II - Elliptic functions

Definition

Let f : C→ Ĉ be an elliptic function and c ∈ Crit(f ). We say
that f is critically tame if the following conditions are satisfied:

if c ∈ F (f )- Fatou set, then there exists an attracting or
parabolic cycle of period p, O(z0) = {z0, f (z0), ..., f p−1(z0)}
such that ω limit set ω(c) = O(z0).

if c ∈ J(f ) - Julia set, then one of the following holds:

ω(c) is a compact subset of C such that c /∈ ω(c);
(i.e. non-recurrent property) but c ∈ ω(c ′) where
c ′ ∈ Crit(f ))

c is eventually mapped onto some pole;

limn→∞ f n(c) =∞
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III - The results

Theorem C - Urbański and Kotus

Let f be a non-constant elliptic function. Then
dimH(J(f )) > 2q

q+1 ≥ 1
where q is the maximal multiplicity of poles of f .

Theorem D -Urbański and Kotus

Let f : C→ C be a critically tame elliptic function.

If h = dimH(J(f )) = 2, then J(f ) = C.

If h < 2, then

1 h- dimensional Hausdorff measure Hh
s (J(f )) = 0.

2 h -dimensional packing measure Πh
s (J(f )) > 0.

3 Πh
s (J(f )) =∞ if and only if Ω(f ) 6= ∅, Ω(f ) is the set of

parabolic periodic points.

Janina Kotus, Warsaw University of Technology Metric entropy and stochastic laws of invariant measures for elliptic functions



III - The results

Theorem E- Urbański and Kotus

Suppose that f is critically tame elliptic function, denote
h = dimH(J(f )). Then there exist:

a unique atomless h-conformal measure m for
f : J(f ) \ {∞} → J(f ) where m is ergodic and m(Tr(f )) = 1;
Tr(f ) ⊂ J(f ) denotes the set of all transitive points of f

if f has no parabolic periodic points, then 0 < Πh
s (J(f )) <∞

and m and Πh
s are equivalent.

there exists a non-atomic, σ-finite, ergodic and invariant
measure µ for f , equivalent to the measure m. Additionally, µ
is unique up to a multiplicative constant and is supported on
J(f ).

the Jacobian Dµf = dµ◦f
dµ has a real analytic extension on

a neighborhood of J(f ) \ (PC(f ) ∪ f −1(∞)) in C.
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II - Basic properties of critically tame elliptic functions

Conformal measure

Fix t ≥ 0. Let G and H be non-empty open subsets of C. Let
f : G → H be a meromorphic map.

A pair (mG , mH) of Borel finite measures on G and H respectively
is called spherical t-conformal pair of measures for the map
f : G → H, if

mH(f (A)) =

∫
A
|f ∗|t dmG

for every Borel set A ⊂ G such that f |A is injective.

If both measures mG and mH are restrictions of the same Borel
finite measure m defined defined on G ∪ H, we refer to m as
t- conformal measure the map f : G → H.
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III - The results

Definitions

Let f : C→ C be critically tame elliptic functions

If f has no parabolic periodic points

and Crit∞(f ) = ∅ (no critical points diverge to infinity)

then f is called of finite character.

Proposition

If f : C→ C is a critically tame elliptic of finite character then

µh finite.

in particular if Julia set is equal to the entire complex plane C,
then there exists a unique Borel probability f -invariant
measure µ equivalent to the planar Lebesgue measure on C.
(as before in Theorem B)
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III - The new results

Theorem 1(a) - Decay of correlation - Urbański and Kotus

If f : C→ C is an elliptic function of finite character and if µ is
the probability f -invariant measure equivalent to the h-conformal
measure m, then for the dynamical system (f , µ) the following
holds.

Fix α ∈ (0, 1] and a bounded function g : J(f )→ R which is
Hölder continuous with respect to the Euclidean metric on J(f )
with the exponent α. Then for every bounded measurable function
ψ : J(f )→ R, we have that∣∣∣∣ ∫ ψ ◦ f n · gdµ−

∫
gdmu

∫
ψdµ

∣∣∣∣ = O(θn)

for some 0 < θ < 1 depending on α.
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III - The new results

Theorem 1(b) - The Central Limit Theorem - Urbański and
Kotus

The Central Limit Theorem holds for every Hölder continuous
function g : J(f )→ R that is not cohomologous to a constant in
L2(µ), i.e. for which there is no square integrable function η for
which g = const + η ◦ f − η. Precisely this means that there exists
σ > 0 such that

1√
n
Sng =

1√
n

n−1∑
j=0

g ◦ f j → N(0, σ)

in distribution, where N(0, σ) is here the normal (Gaussian)
distribution with 0 mean and variance σ. Equivalently for every
t ∈ R,

µ

(
{x ∈ X :

1√
n
Sng(x) ≤ t}

)
→ 1

σ
√

2π

∫ t

−∞
exp
(
−u2/2σ2

)
du.
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III - The new results

Theorem 1(c)-The Law of Iterated Logarithm- Urbański and
Kotus

The Law of Iterated Logarithm holds for every Hölder continuous
function g : J(f )→ R that is not cohomologous to a constant in
L2(µ). This means that there exists a real positive constant Ag

such that such that µφ almost everywhere

lim sup
n→∞

Sng − n
∫
gdµ√

n log log n
= Ag .

Theorem 2 - Urbański and Kotus

If f : C→ C is a critically tame map of finite type, µh is the
corresponding Borel probability f-invariant measure equivalent to
the h-conformal measure m,then a metric entropy

hµh(f ) < +∞.
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The main ingredients of the proof of Theorem 1

A) Thermodynamic formalism for graph directed Markov system

B) Nice sets for analytic maps

C) Young’s tower technique

D) Stochastic properties of the return map
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Idea of proof of stochastics laws

Part I - projection onto T

Let f : C→ C be a critically tame elliptic function

Let T = C/∼f (the torus generated by the lattice Λ of f ).

B(f ) = f −1(∞) ∪ (Crit(f ) ∩ J(f )) is infinite

Π : C→ T be the canonical projection, T̂ := Π(C \ f −1(∞))

C \ f −1(∞)
f
−→ C

Π
y yΠ

T̂
f̂
−→ T.

Then B(f̂ ) = Π(B(f )) is finite !!
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Idea of proof of stochastics laws

Part I - projection onto T
We construct Graph Directed Markow System such that its
vertices are in B(f̂ ) = Π(B(f )) ∈ T
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Idea of proof of stochastics laws

Part I - projection onto T
A Graph Directed Markov System consists of

a directed multigraph (E ,V ) with a countable set of edges E
and a finite set of vertices V ,

an incidence matrix A : E × E → {0, 1},

two functions i , t : E → V such that t(a) = i(b) whenever
Aab = 1.

a family of non-empty compact metric spaces {Xv}v∈V ,

a number β ∈ (0, 1), and for every e ∈ E , a 1-to-1 contraction
φe : Xt(e) → Xi(e) with a Lipschitz constant ≤ β.

The set S = {φe : Xt(e) → Xi(e)}e∈E is called a Graph
Directed Markov System (GDMS).

The set J = JS := π(E∞A ) is called the limit set of the Graph
Directed Markov System S = {φe}e∈E (GDMS).
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Idea of proof of stochastics laws

Part I - projection onto T

We prove:

Bowen formula i.e. Hausdorff dimension of the limit set JS of
Graph Directed Markov System S is equal
to zero of the topological pressure.

Graph Directed Markov System S corresponds to a subshift
(EN

A , σ) which has h- conformal measure m̃h

mh = m̃h ◦ Π−1 defines h- conformal measure on the limit set
J of Graph Directed Markov System.

Janina Kotus, Warsaw University of Technology Metric entropy and stochastic laws of invariant measures for elliptic functions



Idea of proof of stochastics laws

Part II - ’lift’ GDMS to C
For every c ∈ (Crit(f ) ∩ J(f )), f is elliptic function of finite
type, we define Iterated Function System by ’lifting’ some
branches of GDMS defined on T. So there is a limit set Jc
and a conformal measure mc defined on Jc .

we show that mc is comparable with restriction of conformal
measure m to Jc , where m was proved to exist for elliptic
functions in Theorem E,

we consider a return map F on a neighbourhood V of c in the
Julia set J(f ) and prove that the greatest common divisor of
all return time numbers is equal to 1.
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Idea of proof of stochastics laws

Part II - ’lift’ GDMS to C

we construct Young’s tower associated with V and return
time map F

we check that a return map satisfies the assumptions of L.S.
Young theorems concerning stochastic laws of invariant
measure, which implies the required properties of invariant
measure for critically tame elliptic functions
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IV - metric entropy of critically tame elliptic functions

Theorem 2

If f : C→ C is a critically tame map of finite type,

µh is the corresponding Borel probability f-invariant measure
equivalent to the h-conformal measure m,

then a metric entropy hµh(f ) < +∞.

Corollary

If f : C→ C is a critically tame elliptic function with
J(f ) = C and Crit∞(f ) = ∅,
µ is the (unique) Borel probability f –invariant measure on C
equivalent to the planar Lebesgue measure on C .

then hµ(f ) < +∞
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IV - metric entropy of critically tame elliptic functions

Theorem - Abramov

If T : X → X is an ergodic measure preserving transformation of a
probability space (X ,F , µ), then for every set K ∈ F with
0 < µ(K ) < +∞, we have that

hµK (F ) =
1

µ(K )
hµ(T ).

where

F (x) := T τK (x)(x) is an induced map

τK (x) := min{n ≥ 1 : T n(x) ∈ K}.

µK := µ|K (µ(K ))−1
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IV - metric entropy of critically tame elliptic functions

Krengel’s Entropy

If T : X → X is an conservative ergodic measure preserving
transformation of a measure space (X ,F , µ), then for all sets F
and G in F with 0 < µ(F ), µ(G ) < +∞, we have that
hµF (TF ) = hµG (TG ).

This common value is called the Krengel’ entropy of the map
T : X → X and is denoted simply by hµ(T ).

If µ is a probability measure, it coincides with the standard
entropy of T with respect to µ.
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IV - metric entropy of critically tame elliptic functions

The proof of Theorem 2

Abramov’s formula gives hµF (F ) = 1
µ(Jc )

hµ(f ), where f is
critically tame elliptic function

If S = {φe}e∈E is a finitely irreducible strongly regular
GDMS, then the metric entropy hµ̃h(σ) of the dynamical
system σ : EN

A → EN
A with respect to the σ-invariant measure

µ̃h is finite.

hµF (F ) = hµ̃h(σ) < +∞, so hµ(f ) = hµF (F ) · µ(Jc) < +∞.
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