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Outline

Let me start talking a bit on the origins of this presentation.

In 2001, Lluis Alsedà and Amadeu Delshams started some sort of joint
project, involving the main spanish groups on dynamical systems.

To try to enforce the scientific interaction between groups, they propose to
study Strange Non-Chaotic Attractors (SNAs). It seemed that all the
groups had, in one way or another, a contact point with SNAs so they
could be a sort of meeting point to start collaborations.

I confess that, in 2001, I was unsure of the success of the project.

In any case, I (as many others) joined them on this.
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Outline

Moreover, they were looking for some sort or organization scheme, to
combine the groups to create a sort of spanish super-group on dynamical
systems.

I was even more unsure on this part of the project but I joined anyway.

In 2003 we had our first scientifical meeting in Salou. One of the main
themes of discussion was SNAs.

The organization scheme turned out to take the form of a network, the
DANCE network, that includes (almost) every spanish researcher on
dynamical systems.
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Outline

The name of the network includes the acronym ANCE, which means SNA
in spanish. As the scientific interests cover all areas of dynamical systems,
the meaning of the acronym had to be modified to cover them.

The DANCE network is the more active network in Spain on mathematics.

Since 2003, the network has organized 6 meetings, 11 winter schools and
some small workshops.
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Introduction

Introduction

Consider
x̄ = fµ(x , θ),
θ̄ = θ + ω,

}
where x ∈ R, θ ∈ T1, µ ∈ R is a parameter, ω ∈ (0, 2π) \ 2πQ and fµ is
smooth enough.
Assume that, for a given µ0, there is an attracting invariant curve, xµ0(θ)
with rotation number ω,

fµ0(xµ0(θ), θ) = xµ0(θ + ω), ∀ θ ∈ T1.

We want to study the continuation (and the bifurcations) of xµ0 with
respect to the parameter µ.
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Introduction

Example: the quasiperiodically forced logistic map

.
x̄ = α(1 + ε cos(θ))x(1− x),
θ̄ = θ + ω,

}
with ω = π(

√
5− 1) and ε = 0.5.

Left: α = 2.65, Λ ≈ −0.03884. Right: α = 2.665, Λ ≈ −0.00845.

7 / 53



Introduction

In this talk we consider the fractalization process as a bifurcation.

We are interested in characterizing the bifurcation point, in terms of
computable information.

Note that to detect the bifurcation point by means of direct numerical
simulation is a very difficult problem (see, for instance, the previous
examples).

One of the goals of this talk is to show how misleading the numerical
simulations can be...
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Continuation of invariant curves

Continuation of invariant curves

Assume that
x̄ = fµ(x , θ),
θ̄ = θ + ω,

}
has a C r (r ≥ 0) invariant curve x = u0(θ) for µ = 0.
This curve satisfies the functional equation F (u0, 0) = 0, where
F : C r (T1,R)× R→ C r (T1,R) and, if (u, µ) ∈ C r (T1,R)× R,

F (u, µ)(θ) = fµ(u(θ), θ)− u(θ + ω).

To apply the Implicit Function Theorem, the linear map DuF (u0, 0) needs
to be a linear bounded operator with bounded inverse.
The action of DuF (u, µ) on an element v ∈ C r (T1,R) is given by

[DuF (u, µ)v ](θ) = Dx fµ(u(θ), θ)v(θ)− v(θ + ω).
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Continuation of invariant curves

As f0(u0(θ) + h, θ) = f0(u0(θ), θ) + Dx f0(u0(θ), θ)h + · · · , the linearized
dynamics around u0(θ) is given by

x̄ = a(θ)x ,
θ̄ = θ + ω,

}
(1)

where a(θ) = Dx f0(u0(θ), θ).
In what follows, we will assume that a(θ) 6≡ 0.

Definition

(1) is called reducible iff there exists a linear change of variables x = c(θ)y
such that (1) becomes

ȳ = by ,
θ̄ = θ + ω,

}
where b does not depend on θ.
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Continuation of invariant curves

The bifurcations of reducible curves can be studied by means of normal
form techniques.

Proposition

Assume that ω satisfies a Diophantine condition,

|qω − 2πp| ≥ γ

|q|τ
, for all (p, q) ∈ Z× (Z \ {0}),

and that a is C∞. Then, (1) is reducible iff a has no zeros.

This result also holds if a ∈ C r , for r big enough but, due to the effect of
the small divisors, the reducing transformation does not need to belong to
C r .
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Continuation of invariant curves

The Lyapunov exponent of (1) at θ is

λ(θ) = lim sup
n→∞

1

n
ln

∣∣∣∣∣∣
n−1∏
j=0

a(θ + jω)

∣∣∣∣∣∣ .
We define

Λ =
1

2π

∫ 2π

0
ln |a(θ)| dθ.

If Λ is finite, then the Birkhoff ergodic theorem implies that

λ(θ) = Λ, for Lebesgue-a.e. θ ∈ T1.

The value Λ is usually known as the Lyapunov exponent of the skew
product.

Proposition

If a(θ) is C 0 and the skew product is reducible, then the Lyapunov
exponent at θ, λ(θ), does not depend on θ.
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Continuation of invariant curves

Theorem

Let us consider a one-parametric family of linear skew-products

x̄ = a(θ, µ)x ,
θ̄ = θ + ω,

}
where ω is Diophantine and µ belongs to an open subset of R. a is a C∞

function of θ and µ. We assume that:

1 For each µ, a(·, µ) has finitely many zeros, each of them are simple
except maybe one of multiplicity 2.
Let us call M the (open) set of values of µ for which all the zeros of
a(·, µ) are simple.

2 If a(·, µ) has a zero of multiplicity 2 at θ = θ0 for µ = µ0, then

∂a

∂µ
(θ0, µ0) 6= 0.
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Continuation of invariant curves

Then, the Lyapunov exponent Λ(µ) depends continuously on µ, and

1 Λ is C∞ on M.
2 If µ0 /∈ M, then

1 if the number of zeros of a(·, µ) increases at µ0, then

lim
µ→µ−

0

Λ′(µ) = −∞, and lim
µ→µ+

0

Λ′(µ) exists and is finite

2 if the number of zeros of a(·, µ) decreases at µ0, then

lim
µ→µ−

0

Λ′(µ) exists and is finite, and lim
µ→µ+

0

Λ′(µ) = +∞.

Moreover, for µ→ µ−0 in (a) and for µ→ µ+0 in (b), we have

Λ(µ) = Λ(µ0) + A
√
|µ− µ0|+ O(|µ− µ0|). (A > 0).
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Continuation of invariant curves

Definition

If a ∈ C r (T1,R), the transfer operator L : C r → C r is defined as

(Lψ)(θ) = a(θ − ω)ψ(θ − ω) ∀ θ ∈ T1. (2)

It is easy to check that we can apply the IFT if and only if 1 does not
belong to the spectrum of the transfer operator.
The reducibility depends on the existence of eigenfunctions for L.
Regardless of the reducibility, the spectrum of L is invariant by rotations
(Mather, 1968).
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Continuation of invariant curves

Proposition

Let L : C 0 → C 0 and Λ denote, respectively, the transfer operator and the
Lyapunov exponent of (1). Then,

ρ(L) = exp(Λ).

If a is C r , L can be defined acting on any C s , 0 ≤ s ≤ r . It can be shown
(A. Haro & R. de la Llave, 2005) that its spectrum does not depend on s.

Proposition

If a has zeros (this implies that the skew product is not reducible), then

Spec (L) = {z ∈ C such that |z | ≤ exp(Λ)}.
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Affine systems

Affine systems

x̄ = α a(θ)x + b(θ),
θ̄ = θ + ω,

}
(3)

where a and b are C r functions and α is a real positive parameter.
It is clear that, for any invariant curve of (3), its linearized normal
behaviour is described by

x̄ = α a(θ)x ,
θ̄ = θ + ω.

}
(4)

In what follows, we will assume that (4) is not reducible.
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Affine systems

The Lyapunov exponent is given by

Λ = lnα +
1

2π

∫ 2π

0
ln |a(θ)| dθ.

If the integral above exists (and it is finite), then the Lyapunov exponent is
negative for sufficiently small values of α, namely,

α < α0 = exp

(
− 1

2π

∫ 2π

0
ln |a(θ)| dθ

)
.

In particular this implies that, for α < α0, any invariant curve of

x̄ = α a(θ)x + b(θ),
θ̄ = θ + ω,

}
is attracting and, therefore, it must be unique.
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Affine systems

Let us focus on the formal expression

x(θ) = b(θ − ω) + α a(θ − ω)b(θ − 2ω)

+α2 a(θ − ω) a(θ − 2ω)b(θ − 3ω)

+α3 a(θ − ω) a(θ − 2ω) a(θ − 3ω)b(θ − 4ω) + · · ·

= b(θ − ω) +
∞∑
n=1

αn

 n∏
j=1

a(θ − jω)

 b(θ − (n + 1)ω).

A simple calculation shows that this formal expression satisfies
x(θ + ω) = αa(θ)x(θ) + b(θ), so it is clear that if it defines a curve, it will
be an invariant curve.

Proposition

If a and b are of class C r and α < α0, then this series converges to the
unique attracting invariant curve of class C r of (3).
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Affine systems

Fractalization
As we are dealing with an affine system and the sup norm of a curve does
not need to be bounded, we will say that a curve is fractalizing when its
C 1 norm –taken on any closed nontrivial interval for θ– goes to infinity
much faster than its C 0 norm, that is, when

lim sup
α→α0

‖x ′α‖I ,∞
‖xα‖∞

= +∞,

where ‖ · ‖I ,∞ denotes the sup norm on a nontrivial closed interval I .
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Affine systems

Theorem

Assume that a, b ∈ C 1(T,R) and that (4) is not reducible. Then,

a) If lim sup
α→α−

0

‖xα‖∞ < +∞,

and b ∈ D1 (D1 is a suitable residual set), we have

lim sup
α→α−

0

‖x ′α‖I ,∞ = +∞,

for any nontrivial closed interval I ⊂ T.

b) If lim sup
α→α−

0

‖xα‖∞ = +∞,

then, for any nontrivial closed interval I ⊂ T, we have

lim sup
α→α−

0

‖xα‖I ,∞ = +∞, and lim sup
α→α−

0

‖x ′α‖I ,∞
‖xα‖∞

= +∞.
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Affine systems

On repelling continuous curves
Now we assume that α > α0 which implies that the origin of is a repellor.
As before, we are assuming that the skew product is not reducible and we
are interested in the existence of a repelling invariant curve.

Proposition

Assume, for all θ ∈ T1, that a(θ) ≥ 0. Then the operator

x(θ) 7→ x(θ + ω)− αa(θ)x(θ),

defined on C 0(T1,R), is not surjective. In particular, there is no
x ∈ C 0(T1,R) such that x(θ + ω) = αa(θ)x(θ) + 1.

Proposition

Assume, in the hypothesis of Proposition 6, that a(θ) is not always
positive. Then, there exists b ∈ C 0(T1,R) for which there is no
x ∈ C 0(T1,R) such that x(θ + ω) = αa(θ)x(θ) + b(θ).
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Affine systems

In this section we focus on the fractalization phenomena for the affine
system (3), but assuming that a is a positive function with at least a zero
(so that the skew product is not reducible).

Proposition

Assume, in (3), that a, b ∈ C 1(T,R), a(θ) ≥ 0 for all θ ∈ T1 and there
exists a value θ0 such that a(θ0) = 0. We also assume that b never
vanishes. Then,

a) If a, b ∈ C r (T,R), r ≥ 1, then xα ∈ C r (T,R) for 0 < α < α0.

b) For any nontrivial closed interval I ⊂ T, we have

lim
α→α−

0

‖xα‖I ,∞ = +∞, and lim
α→α−

0

‖x ′α‖I ,∞
‖xα‖∞

= +∞.

c) For α > α0, there is no x ∈ C 0(T,R) such that
x(θ + ω) = αa(θ)x(θ) + b(θ).
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Affine systems

Some numerical examples

x̄ = α (1 + cos θ)x + 1,
θ̄ = θ + ω,

}
where ω is the golden mean. We note that 1 + cos θ ≥ 0 so we are in the
hypotheses of the last proposition.
The Lyapunov exponent of the linear skew product is Λ = lnα− ln 2 and,
therefore, the critical value α0 is 2.
Then, there exists a unique invariant attracting curve for 0 < α < 2, that
undergoes a fractalization process when α→ 2−.
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Affine systems
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Affine systems

Another example.

x̄ = α cos(θ) x + 1,
θ̄ = θ + ω,

}
being α a positive parameter.
It is easy to see that its Lyapunov exponent is lnα− ln 2.
If α < 2, the Lyapunov exponent is negative. Therefore, we must have a
unique and global attracting set.
Next slides show the attractor for several values α < 2.
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Affine systems
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Affine systems
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Affine systems

The quasiperiodically forced logistic map.

x̄ = α(1 + ε cos(θ))x(1− x),
θ̄ = θ + ω,

}
with ω = π(

√
5− 1).

Let x(θ) be a continuous invariant curve of this map; if h denotes an
infinitesimal displacement w.r.t. the curve then

h̄ = Dx fα,ε(x , θ)h = α(1 + ε cos θ)(1− 2x(θ))h,
θ̄ = θ + ω.

}
It is clear that |ε| ≥ 1 or x(θ0) = 1

2 for some θ0 imply non-reducibility. On
the other hand, if |ε| < 1, x(θ) 6= 1

2 (for all θ) and x(θ) is smooth, the
curve is reducible.
Let us select ε = 0.5.
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Affine systems

Left: α = 1.3. Right: α = 2.0.
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Affine systems

Left: α = 2.65, Λ ≈ −0.03884. Right: α = 2.665, Λ ≈ −0.00845.
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Affine systems

To give more numerical evidence that these “irregular” attracting sets are
smooth curves, let us consider the following dynamical system,

x̄ = f (x , θ),
ȳ = Dx f (x , θ)y + Dθf (x , θ),
θ̄ = θ + ω.

 (5)

Note that, if x = x(θ) is a smooth invariant curve, then
(x , y) = (x(θ), x ′(θ)) is an invariant curve of the system above. This curve
is attracting set of (5) iff x = x(θ) is an attracting set of the initial system.
Now we will repeat the computations of the attracting sets but on the
system (5), to estimate the shape of the derivative of the curve, if there is
one. In all the cases we will use the initial condition y0 = 1 for the second
equation in (5).
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Affine systems

Attracting sets for the variational flow of the quasi-periodically forced
logistic map for α = 2.65 and 2.665. The horizontal axis refers to θ and
the vertical axis refers to y (see (5)). In the last plot we show |y | in a log
scale.
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Affine systems

To check whether the attractor for α = 2.665 is a curve or not, we have
performed several magnifications. If the attracting set is a curve, the
values of y in (5) once we are on the attracting set can be used to
estimate the maximum of the absolute value of the derivative. This
quantity gives the amount of magnification needed to see the attractor as
a smooth curve.
After a transient of 106 iterates, we take the maximum of the derivative
for 107 extra iterates, to obtain a value of −6.9× 109 near
θ0 = 0.43748252111775532.
This process is very sensitive to roundoff error, especially from the
modulus 2π needed for the variable θ this point later on).
In all our tests the maximum of the derivative is of the order of 1010.
These estimates imply that to resolve a neighborhood of θ0 we need
magnifications of the order of 1010, at least.
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Affine systems

We will take the mesh θj = θ0 + j
m10−10 for j ranging from −m to m. We

have used several values of m between 100 and 1000. Then, we have
computed the values θ̂j = θj − nω( mod 2π) for a large n (the concrete

values are specified below) and we have iterated forward the points θ = θ̂j ,
x = 0.4, n times, to obtain the values θ̃j .
These values should coincide with the initial values θj but, due to the
roundoff errors (mainly in the operation mod 2π) they are slightly
different. For instance, for n = 105, the differences θj − θ̃j are close to
2.5× 10−12.
To be sure that the results do not depend on the roundoff errors, we have
repeated these computations with quadruple precision. Now, for n = 105

the differences θj − θ̃j are close to 1.7× 10−23.

35 / 53



Affine systems

To estimate the effect of the transient in these computations, we have
repeated them for n = 2× 105 with no visible differences in the plots. We
have also performed this zoom for other values of θ0 with similar results.
The results are shown below, where we have displayed the index j vs. the
corresponding value of x .
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Affine systems

Conclusions (I)

Any continuous invariant curve with negative maximal Lyapunov
exponent is smooth and locally persistent (because it is normally
hyperbolic).
There are simple examples where the process of fractalization consists
of the increase of the lenght of the invariant curve, but the
smoothness is preserved until the Lyapunov exponent is zero.
This could be the case of the forced logistic map, as numerical
computations seem to confirm.
From the point of view of operator theory, it seems that this process
of fractalization is related to the ‘failure’ of the IFT when 0 becomes
a spectral value that is not an eigenvalue.
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Affine systems

Another situation

Let us consider the map

x̄ =
1

arctan(a)
arctan(ax) + b sin θ,

θ̄ = θ + ω,


where a = 10, and ω the golden mean. For b = 0, there are 3 fixed points:

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

atan(10*x)/atan(10)
x
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Affine systems

When b 6= 0 (but small), the three fixed points become three invariant
curves, two of them are attracting and the third one is repelling.

Note that, in this example, any invariant curve is reducible:

∂

∂x

(
1

arctan(a)
arctan(ax) + b sin θ

)
=

1

arctan a
× a

1 + (ax)2
,

which is always different from zero.

When b increases, the three curves merge in an attracting curve.

If a is small, this merging is a pitchfork bifurcation.

If a is large (say a = 10), the merging has a different aspect...
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Affine systems

b = 1.214
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Affine systems

b = 1.232
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Affine systems

b = 1.238
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Affine systems

b = 1.250
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Affine systems

b = 1.274
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Affine systems

b = 1.340
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Affine systems

T. Jäger (2003) has proved the existence of SNAs in this model.

Still, it is difficult to tell from the numerical simulations where the SNA is.

The goal is to explain how a model like this could affect the reliability of
the simulations.

The relevant point is that the invariant curves of this map visit places
where they are strongly repelling and places where they are strongly
attracting.

Let us cook a very simple example.
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Affine systems

A non-smooth example

x̄ = a(θ)x + cos(θ + ω)− a(θ) cos θ,
θ̄ = θ + ω,

}
where ω is the golden mean, and

a(θ) =

{
a1 if θ ≤ α,
a2 if θ > α.

This example has the invariant curve x(θ) = cos θ for all the values of the
parameters.

The Lyapunov exponent of this curve can be obtained by hand:

Λ =
1

2π
(α ln(a1) + (2π − α) ln(a2)).
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Affine systems

Let us select values such that the invariant curve is attracting.
For instance a1 = 2, a2 = 10−3, α = 0.9× 2π.
This implies Λ = −0.06698690.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6

’dico.res’ u 1:2
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Affine systems

Let us select the parameters a1 = 5, a2 = 0.4× 10−6, α = 0.9× 2π.
This implies Λ = −0.02468919.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6

’dico.res’ u 1:2
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Affine systems

Let us select the parameters a1 = 10, a2 = 0.3× 10−9, α = 0.9× 2π.
This implies Λ = −0.12039728.
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-1

-0.5

 0

 0.5

 1

 1.5
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 0  1  2  3  4  5  6

’dico.res’ u 1:2
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Affine systems

Let us select the parameters a1 = 107, a2 = 10−7, α = 0.48× 2π.
This implies Λ = −0.64472670.
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Affine systems

Conclusions (II)

One of the scenarios where SNAs appear is the existence of highly
expansive and highly compressive regions, and invariant curves visiting
them.

This situation can affect brute force numerical simulations. The only
way to overcome this difficulty is to use extended precision arithmetic.
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Affine systems

Non-reducibility in higher dimensions

Reducibility becomes a much more difficult questions for linear systems

x̄ = A(θ)x ,
θ̄ = θ + ω,

}
where x ∈ Rn (n ≥ 2).

In the poster by M. Jorba it is shown how the lack of reducibility can
produce pathological behaviours in affine systems for n = 2.
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