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Introduction

@ We study homoclinic orbits to saddle fixed points in
area-preserving maps

@ These orbits are of great interest, since they imply
complicated dynamics

K

a) homoclinic connection b) transverse homoclinic orbit  ¢) nontransversal homoclinic orbit

(separatrix) (homoclinic tangency)
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Bifurcations of homoclinic tangencies in

area-preserving maps (APMs)

@ 2D symplectic maps with quadratic homoclinic tangencies
(conservative Hénon maps appear)

@ Non-orientable APMs with quadratic homoclinic tangencies
(conservative non-orientable Hénon maps appear)

@ APMs with cubic homoclinic tangencies (conservative
cubic Hénon maps appear)
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Bifurcations of homoclinic tangencies in APMs

To study the behavior of orbits near a nontransversal
homoclinic trajectory to a saddle fixed point in APMs.
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Question: What happens to periodic orbits near the homoclinic
orbit?
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@ We consider a family f. with f.|__, = fo

@ We study bifurcations of single-round periodic orbits, i.e.
periodic orbits which entirely lie in a neighborhood of the
homoclinic orbit and pass close to it only once

@ Method: to construct first return maps Ty = Tc'le

1

@ local map:
5, <T@, Té(e):M* =~
) @ global map:
Z Tl(i\i v Ti(e) : M~ — N+
‘\ Tl(le)\W% The fixed points of Ty = single-
T 0 - - .

)\ \{ RN/ round periodic orbits of f.
- e X7 ]
0

Y T (W) o
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Homoclinic tangencies: Background

Dissipative case: Gavrilov and Shilnikov (1972, 1973)

@ Bifurcations of single-round periodic orbits in
diffeomorphisms with quadratic homoclinic tangencies

@ Theorem on cascade of periodic sinks (sources)
@ homoclinic tangencies lead to the appearance of
asymptotically stable (if o < 1) or completely unstable (if
o > 1) periodic orbits
@ such orbits are observed at values of the splitting parameter
1 belonging to an infinite sequence (cascade) of intervals
o these intervals do not intersect and accumulate to . = 0
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Homoclinic tangencies: Background

Conservative case:

@ Newhouse (1977): homoclinic tangencies lead to the
appearance of elliptic periodic orbits

@ Biragov and Shilnikov (1989): the appearance of generic
elliptic periodic orbits under bifurcations of a homoclinic
loop of a saddle-focus

@ Mora-Romero (1997): the appearance of generic elliptic
periodic orbits under bifurcations of 2D symplectic maps
with quadratic tangencies

But bifurcation diagrams were not done, since the coexistence
of elliptic periodic orbits of arbitrarily large periods was not
considered.
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Bifurcations of homoclinic tangencies in area-preserving maps
(APMs)

@ Bifurcations of quadratic homoclinic tangencies for 2D
symplectic maps

® Dynamics and bifurcations of non-orientable APMs with
guadratic homoclinic tangencies

@ Bifurcations of cubic homoclinic tangencies in APMs
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Bifurcations of quadratic homoclinic tangencies for 2D

symplectic maps

We consider a C"-smooth (r > 3) symplectic map fy satisfying
the conditions

@ fy has a saddle fixed point O with multipliers A and \~1
(Al <1)

@ fy has a homoclinic orbit 'y at whose points W*(O) and
W!(O) have a quadratic tangency

We consider a family f, of symplectic maps close to fy, where p
is the splitting parameter of the homoclinic tangency.
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First return maps

We construct first return maps Ty = T(')‘Tl.

MARINA GONCHENKO

® TX(e) : (X0, Yo) —
(X, Yk)
@ Ti(e) : (X, yx) — (X,¥)
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Local map Tg is the saddle map

X = AX + hl(X,y,E)X ) y = )‘_1y + h2(x7y75)y'

Lemma (nth-order normal form of Ty)

There is a canonical change of coordinates, of class C' for
n=1or C'=2" for n > 2, that brings Ty to the form

X=M(14+p1-Xy +---+ bn-(xy)") +h.o.t.
y =\ y(1+ﬁ1 Xy + - +Bn-(xy)”)+h.o.t
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T&: (X0, Y0) = (X, Yk)

Lemma (kth iteration of Tg)

The map T(')‘ is written, for any integer k, as follows

= %0 - RE) (xoyi, £) + A+ (xo e e),
y = Ay - R (XoYk, €) + AOTDRQIY (xg, i, ),

where
® R{Y =1+ F1(K)AXoyi + - + Ba(K)A™ (xoyk )",
@ (k) are polynomials of degree i

o the functions P, Q) = o (xJy?) are uniformly bounded
in k
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Global map Ty

X —xt = F(va _y_?g)v )_/: G(X?y —y_’g),

where
® F(0) =G(0) =0, Gy(0) =0,Gyy(0) =2d # 0.
°

F(x,y —y~,e) = ax+b(y —y~)+exx*+eux(y —y)
+ep2(y —y~7)?+h.o.t.

G(x,y —y~,e) = p+ox+d(y —y)?+fox® +fux(y —y~)
+f30%3 + f21x2(y —y ) 4 frox(y —y )2
+fos(y —y~)® +h.ot.,

@ u=¢e; =G(0,0,¢) is the splitting parameter
® J(T,) = —bc = 1, since T; is symplectic

MARINA GONCHENKO APMs with homoclinic tangencies 13/39



Rescaling Lemma

Lemma

For every sufficiently large k the map Ty can be brought to the
form

Xi

= Y + kA%et,
fos \k K
= M—X—Y2+d—2)\ Y3 4+ ka%e |

<

° si’z(X,Y, M) are uniformly bounded in k

o M= —d(1+ )N H(u+ Xy~ (sign(c)[A7T — 1)(1 +
kB Xy ™)) — so 4 1f2

@ sp = dx*t(ac + fox*) — frax (1 — Ff11xF)

o vt =0(\), 12 = O(kA¥)

_ 1
QT = m In

cxt
y=
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Limit form of Ty is the conservative Hénon map”

X=y, §=M-x—y2

@ M € (-1, 3): generic elliptic fixed point (except for M =0
and M = 5/4)

@ M = 5/4: non-degenerate 1 : 3 resonance

@ M = 0: degenerate 1 : 4 resonance

@ M = —1: parabolic fixed point with multipliers v; = v, = +1

@ M = 3: parabolic fixed point with multipliers v, = v, = -1

"Recall that the Hénon map [Hénon; 1976]is X =y, ¥ = 1 — bx + ay?. In
the coordinates Xnew = —ax, Ynew = —ay, the map is written in the form
X =Y,y =M —Myx—y?withM; = —aand M, =b. ForM, = b = 1itis
conservative.
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In the refined map
X=Y,y=M-x-y“+ -5
with foz # 0, the resonance 1 : 4 becomes non-degenerate

[Biragov; 87], [MGonchenko; 2005].

fog)\k > 0:

fog)\k < 0:

MARINA GONCHENKO APMs with homoclinic tangencies



Families f,

@ We express u in terms of M (see equations for M in the
Rescaling Lemma)

@ M € (-1, 3) is translated into intervals Jy of parameter
with boundaries ;- for f,,:
it = —)\k%(—(sign(c)|)\|—7 — 1)1+ kB AKX Ty ) — 2(—1+ 0 +
Pr)A

pye = =y (sign(C) Al 7T = 1)(1+KBINXFY )~ G (3+S0+ ) A

Thus, we get bifurcation scenarios for single-round periodic
orbits in one parameter family f,

MARINA GONCHENKO
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Main result | (symplectic case)

Theorem (On one parameter cascade of elliptic points for f,)

© In any segment [ o, po] of values of p, 3 infinitely many
open intervals éy, fork = k,k +1,..., such that the map f,
has a single-round periodic elliptic orbit at u € d;

@ At the border points p = ,u,;' and p = p, of o, f, has a
single-round parabolic periodic orbit with double multipliers
+1 or —1, respectively;

© The elliptic orbit is generic (KAM-stable) for 1 € 6y, except
for two values correspondingtothe1:3and 1: 4
resonances;

@ Inthe cases ¢ < 0 and ¢ > 0 with 7 # 0, the intervals 6
and ¢; do not intersect for i # j.

Item 4 is new and important in describing of bifurcation
diagrams.
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Homoclinic invariant of f,

@ 7 is a homaoclinic invariant of fy responsible for the
presence of the chaotic dynamics:

o 7 > 0: fy has infinitely many Smale horseshoes
@ 7 < 0: dynamics of fy is trivial

@ At 7 = 0 and some values of sy, all intervals § (for
k =k,k +1,...) contain 1 = 0, i.e. the map fy has infinitely
many coexisting elliptic periodic points of all successive
periods k = k,k + 1,... (global resonance)

@ The case 7 = 0, u = 0 requires to consider two parameter
family f,
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Theorem (On two parameter cascades of elliptic points for f,, )

© In any neighborhood of the origin in the (7, u)-plane, 3
infinitely many open domains Ay, fork = k,k +1,..., such
that f, ; has a single-round periodic elliptic orbit in Ay;

@ The domains Ay accumulate to the axis = 0 as k — oo;

© The boundaries of A are two curves L, and L, where f, -
has a parabolic single-round orbit with double multipliers
+1 atand —1;

@ The elliptic orbit is generic (KAM-stable) for (7, u) € Ay,
except for (7, ) € LE/Z (1:4 resonance) and (7, ) € Li”/e’
(1:3 resonance)

© Inthe case c < 0, Aj and A; do not intersect for i # j

O Inthe case c > 0, Aj and A; are crossed and they
intersect the axis u = 0; Moreover, for —3 < sg < 1, Ak
contains the origin (7 = 0, u = 0).

-
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Case I: ¢c<0 Case II: ¢>0
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Bifurcations of homoclinic tangencies in area-preserving maps J

@ Bifurcations of quadratic homoclinic tangencies for 2D
symplectic maps

@ Dynamics and bifurcations of non-orientable APMs with
guadratic homaoclinic tangencies

@ Bifurcations of cubic homoclinic tangencies in APMs
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Non-orientable APMs

We consider a C"-smooth (r > 3) non-orientable
area-preserving map fy satisfying the conditions
@ fy has a saddle fixed point O with multipliers A and ~
O< A <l<py)and Ay =1
@ fy has a homoclinic orbit 'y at whose points W*(O) and
W!(O) have a quadratic tangency
We divide such APMs into 2 groups:

@ the globally non-orientable maps with an orientable saddle
(Ay = 1) on a non-orientable surface (Mobius strip, Klein
bottle, etc)

@ the locally non-orientable maps with non-orientable
saddles (\y = —1)
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A globally non-orientable APM
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First return maps

Limit form of Ty is the conservative Hénon map

X=y,y=M-—uvx—y2

@ Globally non-orientable case: v = —1 (non-orientable
conservative Hénon map)

@ Locally non-orientable case: v = 1 for even k; v = —1 for
odd k.

MARINA GONCHENKO APMs with homoclinic tangencies 25/39



Non-orientable conservative Hénon map

v=-1:
X=Yy,y=M+x—y?
The map has NO elliptic fixed points!!
@ M < 0: no fixed points
@ M = 0: a fixed point with multipliers (1, -1)
@ M > 0: two saddle fixed points
@ M € (0,1): elliptic 2-periodic point
@ M = 1: the period-doubling bifurcation occurs
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Main result | (non-orientable case)

Theorem (One parameter cascades of elliptic points in APMs)

For any interval (—uo, 10), 3 a positive integer k such that the following holds:

9 (8. In the globally non-orientable case, f,, has no single-round elliptic
periodic orbits, while 3 infinitely many intervals e?, k =k, k +1,. ..,
where f, has a double-round elliptic orbit.

(b). In the locally non-orientable case, 3 infinitely many intervals ezn,
and e3,,,, such that f, has a single-round elliptic periodic orbit at
1 € exm and a double-round elliptic periodic orbit at u € egmﬂ.

@ The intervals e, as well as e2 accumulate to ;. = 0 as k — oo and do
not intersect for sufficiently large and different integer k if & # 0 and
& # 0.

Q Interval e, has border points . = 1 and o = p where the map f, has
a single-round periodic orbit with multipliers (1, 1) and with multiplier
(—1,-1). e has border points u = 2" and . = pZ~ where the map f,,
has a single-round periodic orbit with multipliers (1, —1) at and a
double-round periodic orbit with multipliers (-1, —1).

Q The elliptic orbit is generic (KAM-stable) in ex and e2, except for strong
resonances 1:3 and 1:4.
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Homoclinic invariants

@ The homaoclinic invariants of fy

+ +
o= _1anda=2 11
y y

are responsible for the presence of chaotic dynamics.

® Thecases u =0,a=0and = 0,& = 0 require to
consider f, , and f,, 5.

@ Globally non-orientable APMs: f, .,

@ Locally non-orientable APMs: f, , ifc > 0andf, 4 ifc <O.
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Main result Il (non-orientable case)

Theorem (For two parameter families f,, o and f,, )

3 infinitely many open domains Elf in the globally non-orientable case and domains
Eom and E22m+1 in the locally non-orientable case, such that

9 The map f, o and f, 5 have a single-round periodic elliptic orbit in Ey, and have
a double-round elliptic periodic orbit in E2;

@ The domains E and E2 accumulate to the axis = 0 as k — oo;

@ Domain Ey has two boundaries, curves L: and L, corresponding to a
single-round parabolic periodic orbit with multipliers (1,1)0 and (—1, —1);

Q Domain Ef has two boundaries, curves Li+ and Lﬁ’, corresponding to a
single-round parabolic periodic orbit with multipliers (1, —1) and a double-round
parabolic periodic orbit with multipliers (—1, —1);

@ In the globally non-orientable case: the domains Ei2 and EJ.2 with sufficiently large
i # | are crossed in the (u, «)-plane and they intersect the axis y = 0.

Q In the locally non-orientable case: in the (u, a)-plane, the domains E; and E;

- S . : 2
are crossed for sufficiently large i # j and intersect all domains E5 _; as well as

the axis p = 0, but the domains EZ_, ; and EZZJ.+1 do not intersect for i # j.
In the (u, &)-plane, the domains E22i+1 and E22j+1 are crossed and they intersect
all domains E,, as well as the axis u = 0, but the domains Ey; and Ej; do not
intersect for i # j.

MARINA GONCHENKO APMs with homoclinic tangencies 29/39




Domains Ex and E?

L2+
k+1

—

u
L> 2
2m+t
= 2m+1
2mil 2
2m+3
A
o
+ 2m+2
2m+2 LZm
E"m
7= 2
2m
(b) for locally non-orientable fu, o (c) for locally non-orientable ]:1 4
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Bifurcations of homoclinic tangencies in
area-preserving maps

@ Bifurcations of quadratic homoclinic tangencies for 2D
symplectic maps

® Dynamics and bifurcations of non-orientable APMs with
guadratic homoclinic tangencies

@ Bifurcations of cubic homoclinic tangencies in APMs
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Cubic homoclinic tangencies

@ We consider 2D symplectic maps fo with a homoclinic orbit
o along which the stable and unstable invariant manifolds
have a cubic homaoclinic tangency.

@ We distinguish two types of cubic homoclinic tangencies:
“incoming from above” and “incoming from below”.

./ «incoming
from below» |

«incoming
from above»
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Bifurcation curve By

@ Bifurcations of cubic homoclinic tangencies are codim 2
bifurcations and, thus, we consider a family f,, ..

@ There is a curve Bg where f,, ,,, has a quadratic homoclinic
tangency with a transverse homoclinic orbit.

APMs with homoclinic tangencies
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Lemma (Rescaling Lemma for cubic homoclinic tangencies)

For every sufficiently large k the first return map Ty can be
brought, by a linear transformation of coordinates and
parameters, to the following form

=y +0(\),

1
= Ml—X—i-sz—l-VyS—i-O()\k), ()

< X
|

where
v = sign (dXX), 2)

My = /]d[A—3/2 (ul Xy~ —ex)+0 (k>\2k>> @
Mz = A7 (2 + fra AKX 4 O (kAZK))

The limit form of T, are conservative cubic HEnon maps
X =y, ¥ =M—x+My+uvy?
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E (a) Main elements of the bifurcation diagram i (b) Main symmetric bifurcations (M =0) !

! MzA

cusp bifurcation’

saddle-plus (fixed) -
2 saddles (fixed) + el\lpt\c (fixed)

period doubling:
elliptic (fixed) -=----: > N
. saddle (fixed) + elliptic (period2) -

cusp (period 2) :

elliptic (period 2) -----
\2 ellpiic(period?) + saddle(pench)

— (D
second period-doubling
(with both elliptic period2 points )

A T ) =
1 :
C . 1
: (c) some non-symmetric bifurcations |
: 1
1 :
1 1
! fold bifurcation:  birth of saddle and period doubling :
elliptic. fixed points (of elliptic fixed point) :
! D=0 Pl fxedp ;
>
1

7/ . -
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(b) main symmetric bifurcations (for M =0)

saddle-minus (fixed) ----->
saddle (period2) + ellptic (fixed)

> Y\
cusp bifurcation jl N

eliptic (fixed) ~—----->
L sadde (ied) + 2 eliptc (fxed)
2
double .
period-doubling \\‘ ®
————es 1 «

two elliptic (fixed) ------>

2 saddle (fxed) + 2 eliptic (period2) @ //@

*\ ,double second e Y ’

period-doubling
with both ellptc (period2)

(c) some non-symmetric fold bifurcations

fold bifurcation: birth of saddle and -
@ = @or@) el poimsof perioa 2 fold bifurcation:  birh of saadle S, and
E
etiptc B fxed points
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Main result (cubic homoclinic tangencies)

Theorem (On the structure of the bifurcational diagram in f,,, ,,,)

1) In any neighborhood of the origin in the (1, u2)-plane, there
exist infinitely many bifurcation curves L, and L, as well as
C1?3 and CY; that accumulate to the curve By as k — . The
map f,, ,, has a parabolic single-round periodic orbit with
multipliers v, = v, = +1 (respectively, v; = v, = —1) at u € L:
(respectively, . € L, ), a double-round periodic orbit with
multipliers v, = v, = +1 (respectively, v; = v, = —1) at

p € C15 (respectively, u € C17).

2) For any sufficiently large k, in the (u1, u2)-plane there is a
domain Ey between the curves L, and L, where the map f,,, ,,,
has a single-round elliptic periodic orbit at u € Ex. This point is
generic (KAM-stable) for all i, except for the ones
corresponding to resonances 1:3and 1 : 4.
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Thank you for your attention
and

Moltissimes felicitats, Lluis!!
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