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Introduction

We study homoclinic orbits to saddle fixed points in
area-preserving maps
These orbits are of great interest, since they imply
complicated dynamics
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Bifurcations of homoclinic tangencies in
area-preserving maps (APMs)

2D symplectic maps with quadratic homoclinic tangencies
(conservative Hénon maps appear)

Non-orientable APMs with quadratic homoclinic tangencies
(conservative non-orientable Hénon maps appear)

APMs with cubic homoclinic tangencies (conservative
cubic Hénon maps appear)
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Bifurcations of homoclinic tangencies in APMs

Goal:

To study the behavior of orbits near a nontransversal
homoclinic trajectory to a saddle fixed point in APMs.

Question: What happens to periodic orbits near the homoclinic
orbit?
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We consider a family fε with fε|ε=0 ≡ f0
We study bifurcations of single-round periodic orbits, i.e.
periodic orbits which entirely lie in a neighborhood of the
homoclinic orbit and pass close to it only once

Method: to construct first return maps Tk = T k
0 T1

local map:
T k

0 (ε) : Π
+ → Π−

global map:
T1(ε) : Π

− → Π+

The fixed points of Tk ⇒ single-
round periodic orbits of fε
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Homoclinic tangencies: Background

Dissipative case: Gavrilov and Shilnikov (1972, 1973)

Bifurcations of single-round periodic orbits in
diffeomorphisms with quadratic homoclinic tangencies
Theorem on cascade of periodic sinks (sources)

homoclinic tangencies lead to the appearance of
asymptotically stable (if σ < 1) or completely unstable (if
σ > 1) periodic orbits
such orbits are observed at values of the splitting parameter
µ belonging to an infinite sequence (cascade) of intervals
these intervals do not intersect and accumulate to µ = 0

MARINA GONCHENKO APMs with homoclinic tangencies 6 / 39



Homoclinic tangencies: Background

Conservative case:

Newhouse (1977): homoclinic tangencies lead to the
appearance of elliptic periodic orbits

Biragov and Shilnikov (1989): the appearance of generic
elliptic periodic orbits under bifurcations of a homoclinic
loop of a saddle-focus

Mora-Romero (1997): the appearance of generic elliptic
periodic orbits under bifurcations of 2D symplectic maps
with quadratic tangencies

But bifurcation diagrams were not done, since the coexistence
of elliptic periodic orbits of arbitrarily large periods was not
considered.
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Bifurcations of homoclinic tangencies in area-preserving maps
(APMs)

Bifurcations of quadratic homoclinic tangencies for 2D
symplectic maps

Dynamics and bifurcations of non-orientable APMs with
quadratic homoclinic tangencies

Bifurcations of cubic homoclinic tangencies in APMs
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Bifurcations of quadratic homoclinic tangencies for 2D
symplectic maps

We consider a Cr -smooth (r ≥ 3) symplectic map f0 satisfying
the conditions

f0 has a saddle fixed point O with multipliers λ and λ−1

(|λ| < 1)

f0 has a homoclinic orbit Γ0 at whose points W s(O) and
W u(O) have a quadratic tangency

We consider a family fµ of symplectic maps close to f0, where µ
is the splitting parameter of the homoclinic tangency.
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First return maps

We construct first return maps Tk = T k
0 T1.

T k
0 (ε) : (x0, y0) →

(xk , yk )

T1(ε) : (xk , yk ) → (x̄ , ȳ)
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Local map T0 is the saddle map

x̄ = λx + h1(x , y , ε)x , ȳ = λ−1y + h2(x , y , ε)y .

Lemma (nth-order normal form of T0)

There is a canonical change of coordinates, of class Cr for
n = 1 or Cr−2n for n ≥ 2, that brings T0 to the form

x̄ = λx (1 + β1 · xy + · · ·+ βn · (xy)n) + h.o.t .

ȳ = λ−1y
(

1 + β̂1 · xy + · · ·+ β̂n · (xy)n
)

+ h.o.t
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T k
0 : (x0, y0) → (xk , yk )

Lemma (k th iteration of T0)

The map T k
0 is written, for any integer k, as follows

xk = λkx0 · R(k)
n (x0yk , ε) + λ(n+1)k P(k)

n (x0, yk , ε),

y0 = λkyk · R(k)
n (x0yk , ε) + λ(n+1)k Q(k)

n (x0, yk , ε),

where

R(k)
n ≡ 1 + β̃1(k)λk x0yk + · · ·+ β̃n(k)λnk (x0yk )

n,

β̃i(k) are polynomials of degree i

the functions P(k)
n ,Q(k)

n = o
(

xn
0 yn

k

)

are uniformly bounded
in k
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Global map T1

x − x+ = F (x , y − y−, ε), y = G(x , y − y−, ε),

where

F (0) = G(0) = 0, Gy(0) = 0,Gyy (0) = 2d 6= 0.

F (x , y − y−, ε) = ax + b(y − y−) + e20x2 + e11x(y − y−)

+e02(y − y−)2 + h.o.t .
G(x , y − y−, ε) = µ+ cx + d(y − y−)2 + f20x2 + f11x(y − y−)

+f30x3 + f21x2(y − y−) + f12x(y − y−)2

+f03(y − y−)3 + h.o.t . ,

µ = ε1 ≡ G(0,0, ε) is the splitting parameter

J(T1) = −bc ≡ 1, since T1 is symplectic
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Rescaling Lemma

Lemma

For every sufficiently large k the map Tk can be brought to the
form

X̄ = Y + kλ2kε1
k ,

Ȳ = M − X − Y 2 +
f03

d2λ
kY 3 + kλ2kε2

k ,

ε1,2
k (X ,Y ,M) are uniformly bounded in k

M = −d(1 + ν1
k )λ

−2k (µ+ λky−(sign(c)|λ|−τ − 1)(1 +
kβ1λ

kx+y−))− s0 + ν2
k

s0 = dx+(ac + f20x+)− f11x+(1 − 1
4 f11x+)

ν1
k = O(λk ), ν2

k = O(kλk )

τ = − 1
ln |λ| ln

∣

∣

∣

cx+

y−

∣

∣

∣

MARINA GONCHENKO APMs with homoclinic tangencies 14 / 39



Limit form of Tk is the conservative Hénon map*

x̄ = y , ȳ = M − x − y2.

M ∈ (−1;3): generic elliptic fixed point (except for M = 0
and M = 5/4)

M = 5/4: non-degenerate 1 : 3 resonance

M = 0: degenerate 1 : 4 resonance

M = −1: parabolic fixed point with multipliers ν1 = ν2 = +1

M = 3: parabolic fixed point with multipliers ν1 = ν2 = −1

*Recall that the Hénon map [Hénon; 1976] is x̄ = y , ȳ = 1 − bx + ay2. In
the coordinates xnew = −ax , ynew = −ay , the map is written in the form
x̄ = y , ȳ = M1 − M2x − y2 with M1 = −a and M2 = b. For M2 = b = 1 it is
conservative.
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In the refined map

x̄ = y , ȳ = M − x − y2 +
f03

d2λ
ky3,

with f03 6= 0, the resonance 1 : 4 becomes non-degenerate
[Biragov; 87], [MGonchenko; 2005].

f03λ
k > 0:

f03λ
k < 0:
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Families fµ

We express µ in terms of M (see equations for M in the
Rescaling Lemma)

M ∈ (−1;3) is translated into intervals δk of parameter µ
with boundaries µ±

k for fµ:
µ+

k = −λky−(sign(c)|λ|−τ − 1)(1 + kβ1λ
kx+y−)− 1

d (−1 + s0 +
ρ̂k )λ

2k

µ−
k = −λky−(sign(c)|λ|−τ−1)(1+kβ1λ

kx+y−)− 1
d (3+s0+ρ̂k)λ

2k

Thus, we get bifurcation scenarios for single-round periodic
orbits in one parameter family fµ
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Main result I (symplectic case)

Theorem (On one parameter cascade of elliptic points for fµ)

1 In any segment [−µ0, µ0] of values of µ, ∃ infinitely many
open intervals δk , for k = k̄ , k̄ + 1, . . . , such that the map fµ
has a single-round periodic elliptic orbit at µ ∈ δk ;

2 At the border points µ = µ+
k and µ = µ−

k of δk , fµ has a
single-round parabolic periodic orbit with double multipliers
+1 or −1, respectively;

3 The elliptic orbit is generic (KAM-stable) for µ ∈ δk , except
for two values corresponding to the 1 : 3 and 1 : 4
resonances;

4 In the cases c < 0 and c > 0 with τ 6= 0, the intervals δi

and δj do not intersect for i 6= j .

Item 4 is new and important in describing of bifurcation
diagrams.
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Homoclinic invariant of f0

τ is a homoclinic invariant of f0 responsible for the
presence of the chaotic dynamics:

τ > 0: f0 has infinitely many Smale horseshoes
τ < 0: dynamics of f0 is trivial

At τ = 0 and some values of s0, all intervals δk (for
k = k̄ , k̄ + 1, . . .) contain µ = 0, i.e. the map f0 has infinitely
many coexisting elliptic periodic points of all successive
periods k = k̄ , k̄ + 1, . . . (global resonance)

The case τ = 0, µ = 0 requires to consider two parameter
family fµ,τ

MARINA GONCHENKO APMs with homoclinic tangencies 19 / 39



Theorem (On two parameter cascades of elliptic points for fµ,τ )

1 In any neighborhood of the origin in the (τ, µ)-plane, ∃
infinitely many open domains ∆k , for k = k̄ , k̄ + 1, . . . , such
that fµ,τ has a single-round periodic elliptic orbit in ∆k ;

2 The domains ∆k accumulate to the axis µ = 0 as k → ∞;
3 The boundaries of ∆k are two curves L+

k and L−
k where fµ,τ

has a parabolic single-round orbit with double multipliers
+1 at and −1;

4 The elliptic orbit is generic (KAM-stable) for (τ, µ) ∈ ∆k ,
except for (τ, µ) ∈ Lπ/2

k (1:4 resonance) and (τ, µ) ∈ L2π/3
k

(1:3 resonance)
5 In the case c < 0, ∆i and ∆j do not intersect for i 6= j
6 In the case c > 0, ∆i and ∆j are crossed and they

intersect the axis µ = 0; Moreover, for −3 < s0 < 1, ∆k

contains the origin (τ = 0, µ = 0).
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Bifurcations of homoclinic tangencies in area-preserving maps

Bifurcations of quadratic homoclinic tangencies for 2D
symplectic maps

Dynamics and bifurcations of non-orientable APMs with
quadratic homoclinic tangencies

Bifurcations of cubic homoclinic tangencies in APMs
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Non-orientable APMs

We consider a Cr -smooth (r ≥ 3) non-orientable
area-preserving map f0 satisfying the conditions

f0 has a saddle fixed point O with multipliers λ and γ
(0 < |λ| < 1 < |γ|) and |λγ| = 1

f0 has a homoclinic orbit Γ0 at whose points W s(O) and
W u(O) have a quadratic tangency

We divide such APMs into 2 groups:

the globally non-orientable maps with an orientable saddle
(λγ = 1) on a non-orientable surface (Möbius strip, Klein
bottle, etc)

the locally non-orientable maps with non-orientable
saddles (λγ = −1)
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A globally non-orientable APM
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First return maps

Limit form of Tk is the conservative Hénon map

x̄ = y , ȳ = M − νx − y2.

Globally non-orientable case: ν = −1 (non-orientable
conservative Hénon map)

Locally non-orientable case: ν = 1 for even k ; ν = −1 for
odd k .
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Non-orientable conservative Hénon map

ν = −1:
x̄ = y , ȳ = M + x − y2.

The map has NO elliptic fixed points!!

M < 0: no fixed points

M = 0: a fixed point with multipliers (1, -1)

M > 0: two saddle fixed points

M ∈ (0,1): elliptic 2-periodic point

M = 1: the period-doubling bifurcation occurs
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Main result I (non-orientable case)

Theorem (One parameter cascades of elliptic points in APMs)

For any interval (−µ0, µ0), ∃ a positive integer k̄ such that the following holds:

1 (a). In the globally non-orientable case, fµ has no single-round elliptic
periodic orbits, while ∃ infinitely many intervals e2

k , k = k̄ , k̄ + 1, . . . ,
where fµ has a double-round elliptic orbit.
(b). In the locally non-orientable case, ∃ infinitely many intervals e2m

and e2
2m+1 such that fµ has a single-round elliptic periodic orbit at

µ ∈ e2m and a double-round elliptic periodic orbit at µ ∈ e2
2m+1.

2 The intervals ek as well as e2
k accumulate to µ = 0 as k → ∞ and do

not intersect for sufficiently large and different integer k if α 6= 0 and
α̂ 6= 0.

3 Interval ek has border points µ = µ
+
k and µ = µ

−

k where the map fµ has
a single-round periodic orbit with multipliers (1,1) and with multiplier
(−1,−1). e2

k has border points µ = µ
2+
k and µ = µ

2−
k where the map fµ

has a single-round periodic orbit with multipliers (1,−1) at and a
double-round periodic orbit with multipliers (−1,−1).

4 The elliptic orbit is generic (KAM-stable) in ek and e2
k , except for strong

resonances 1:3 and 1:4.
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Homoclinic invariants

The homoclinic invariants of f0

α =
cx+

y−
− 1 and α̂ =

cx+

y−
+ 1

are responsible for the presence of chaotic dynamics.

The cases µ = 0, α = 0 and µ = 0, α̂ = 0 require to
consider fµ,α and fµ,α̂.

Globally non-orientable APMs: fµ,α
Locally non-orientable APMs: fµ,α if c > 0 and fµ,α̂ if c < 0.
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Main result II (non-orientable case)

Theorem (For two parameter families fµ,α and fµ,α̂)

∃ infinitely many open domains E2
k in the globally non-orientable case and domains

E2m and E2
2m+1 in the locally non-orientable case, such that

1 The map fµ,α and fµ,α̂ have a single-round periodic elliptic orbit in Ek , and have
a double-round elliptic periodic orbit in E2

k ;

2 The domains Ek and E2
k accumulate to the axis µ = 0 as k → ∞;

3 Domain Ek has two boundaries, curves L+
k and L−

k , corresponding to a
single-round parabolic periodic orbit with multipliers (1, 1)0 and (−1,−1);

4 Domain E2
k has two boundaries, curves L2+

k and L2−
k , corresponding to a

single-round parabolic periodic orbit with multipliers (1,−1) and a double-round
parabolic periodic orbit with multipliers (−1,−1);

5 In the globally non-orientable case: the domains E2
i and E2

j with sufficiently large
i 6= j are crossed in the (µ, α)-plane and they intersect the axis µ = 0.

6 In the locally non-orientable case: in the (µ, α)-plane, the domains E2i and E2j

are crossed for sufficiently large i 6= j and intersect all domains E2
2m+1 as well as

the axis µ = 0, but the domains E2
2i+1 and E2

2j+1 do not intersect for i 6= j .

In the (µ, α̂)-plane, the domains E2
2i+1 and E2

2j+1 are crossed and they intersect
all domains E2m as well as the axis µ = 0, but the domains E2i and E2j do not
intersect for i 6= j .
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Domains Ek and E2
k
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Bifurcations of homoclinic tangencies in
area-preserving maps

Bifurcations of quadratic homoclinic tangencies for 2D
symplectic maps

Dynamics and bifurcations of non-orientable APMs with
quadratic homoclinic tangencies

Bifurcations of cubic homoclinic tangencies in APMs
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Cubic homoclinic tangencies

We consider 2D symplectic maps f0 with a homoclinic orbit
Γ0 along which the stable and unstable invariant manifolds
have a cubic homoclinic tangency.
We distinguish two types of cubic homoclinic tangencies:
“incoming from above” and “incoming from below”.

MARINA GONCHENKO APMs with homoclinic tangencies 32 / 39



Bifurcation curve B0

Bifurcations of cubic homoclinic tangencies are codim 2
bifurcations and, thus, we consider a family fµ1,µ2 .

There is a curve B0 where fµ1,µ2 has a quadratic homoclinic
tangency with a transverse homoclinic orbit.
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Lemma (Rescaling Lemma for cubic homoclinic tangencies)

For every sufficiently large k the first return map Tk can be
brought, by a linear transformation of coordinates and
parameters, to the following form

x̄ = y + O(λk ),

ȳ = M1 − x + M2y + νy3 + O(λk ),
(1)

where
ν = sign (dλk ), (2)

M1 =
√

|d |λ−3k/2
(

µ1 − λk (y− − cx+) + O
(

kλ2k
))

,

M2 = λ−k
(

µ2 + f11λ
kx+ + O

(

kλ2k
))

(3)

and f11 = Gxy (0).

The limit form of Tk are conservative cubic Hénon maps

x̄ = y , ȳ = M1 − x + M2y + νy3
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ν = 1:
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ν = −1
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Main result (cubic homoclinic tangencies)

Theorem (On the structure of the bifurcational diagram in fµ1,µ2)

1) In any neighborhood of the origin in the (µ1, µ2)-plane, there
exist infinitely many bifurcation curves L+

k and L−
k as well as

Ck+
1,2 and Ck−

1,2 that accumulate to the curve B0 as k → ∞. The
map fµ1,µ2 has a parabolic single-round periodic orbit with
multipliers ν1 = ν2 = +1 (respectively, ν1 = ν2 = −1) at µ ∈ L+

k
(respectively, µ ∈ L−

k ), a double-round periodic orbit with
multipliers ν1 = ν2 = +1 (respectively, ν1 = ν2 = −1) at
µ ∈ Ck+

1,2 (respectively, µ ∈ Ck−
1,2 ).

2) For any sufficiently large k, in the (µ1, µ2)-plane there is a
domain Ek between the curves L+

k and L−
k where the map fµ1,µ2

has a single-round elliptic periodic orbit at µ ∈ Ek . This point is
generic (KAM-stable) for all µ, except for the ones
corresponding to resonances 1 : 3 and 1 : 4.
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Illustration
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Thank you for your attention

and

Moltíssimes felicitats, Lluís!!
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