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If f is a continuous map of an interval, the type of a finite
(exactly) invariant set f(S) =S = {p1 < p2 < ... < pa} is the
permutation 6 defined by f(p;) = py(j)-

We write P, for the permutations on {1,2,...,n} and C, for the
subset of cyclic ones, corresponding to single periodic orbits.

The entropy h(6) of a type 6 is the topological entropy it forces a
continuous map to have:

h(8) := inf{h(f)|f has an invariant set of type 6}.
Define

H(Py) = max h(9), H(C,) = max h(6).

Question: What can be said about H(P,) and H(C,), and the
permutations and cycles achieving the maximum?



Theorem
(Misiurewicz and Nitecki 1991)

1 1
lim —expH(P,) = lim =—exp H(C,) = 2/7.
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In other words, the maximum entropy of n-permutations or of
n-cycles grows like log(2n/7).



They gave explicit bounds for cycles, which serve also for
permutations:

Theorem
(Misiurewicz-Nitecki 1991)

(2] b= ()

)

The goal here is to sharpen these bounds, at least slightly, in light

of subsequent developments.



For n odd, define / := |(n—1)/4| so that n =4/ +1 or
n = 4/ + 3. Define the (generalized) Misiurewicz-Nitecki orbit
type 6, of period n by

n—2l—j if 1<j<n—2/ andj odd;
Jj—n+2l+1 if n—2/<j<n andjodd;
n—2l+j—1 if 1<;<2/ andj even;
n+2l—j+2 if 2l <j<n andjeven.

For example, 05 = (12453),0;,=(1473265), and
611 =(1611528934107).

It is easy to check that 6, is a cycle of period n.

Misiurewicz and Nitecki used these for n = 4/ + 1 in the proof of
their lower bound.



In fact, they turn out to be entropy maximizers:

Theorem
(G-Tolosa 1992) For n odd, the Misiurewicz-Nitecki orbit types 6,

have maximum entropy among all n-permutations:
h(6,) = H(P,) = H(Cy).
Theorem

(G-Weiss 1993) For n odd, the Misiurewicz-Nitecki orbit types 0,
are (essentially) uniquely maximal.



There are analogues of these permutations in the even case, but
they are not cyclic.

Theorem

(King 1997, G-Zhang 1998, King 2000) For n even, there are
essentially unique permutations 0, (noncyclic for n > 4) having
maximum entropy among all n-permutations:

h(6,) = H(Pn) > H(C,).



The even cyclic case is harder, with the maximality part (minus
uniqueness) of the following filling an entire AMS Memoir.

Theorem

(King-Strantzen 2001,2003) For n = 41, there are essentially unique
cyclic permutations v, having maximum entropy among all
n-cycles:

h(vn) = H(Gy).

The remaining even case, n = 4/ + 2, is still unresolved for cycles.
However, there is a family of essentially unique cycles which are
conjectured to achieve the maximum (Alseda-Juher-King, 2008).



For cycles, we have the following bounds:

Theorem
If n is odd then

(D) -] 3o (-2 o]

If n is even then

2 1
<1—g> [E— ! ]glepo(Cn)§—+—.
n T




For permutations with n odd, the bounds for n-cycles just stated
apply. For permutations with n even, the following sharper lower
bounds hold:

Theorem
If n = 4l is a multiple of 4 then

1 2 1 /n— 2 1
_ = Z_ - <Z 4 -
(1 n> [77 Wi n—1] epo(P,,)_W—i- =
If n =41+ 2 then
(1—l> [E—l n- ]_—epo(Pn)ﬁg—i-i.
n T 2 n-—1 T n



Given a permutation 6 € P,, let fy be the piecewise linear
interpolation of the graph of # on the interval [1, n].

The induced matrix M(#) is the (n — 1) x (n — 1) matrix whose
(i,j)th entry is 1 if fy([i, i + 1] contains [j,j + 1] and 0 otherwise.

Then
h(6) = h(fy) = log A,
where A = p(M(6)) is the spectral radius of M(6).
Induced matrices of permutations cannot have more than two 1’s in

the first or last column, four in the second or penultimate column,
etc.



For example, the induced matrix of the Misiurewicz-Nitecki orbit
type 07 =(14732605)is

O~ = OO O
O R = = = O
== === O
e e e i
OO R = OO

O O R = = =

This is essentially a rotated, digitized graph of the piecewise linear
function f,,.



Similarly, 611 = (1 6 11 528 9 3 4 10 7) has induced matrix

M(611) =

cCcookrRrHRHROOOOO
cCcoOoOkrRREERERELROOO
OFR R R KFHRKRROOO
O R R R KHRKRRKERKRO
P e T = S e e )
R S e T =
C O R B EFBEEFBR B OO
OCocoocookrRrEROOOO

O O FH M= M= = = ==
OO OO~ MFMFMFMEMFEH OO

To study the asymptotic shape and spectral radius of, for example,
the M(6,), we embed the matrices into the bounded linear
operators on L2[0,1], where their limit lives.



Embed R™ into L2[0,1] via step functions:

Let
Jm: R™ — 12[0,1]

be given by u = Jn(r), where r = (n,...,rm) € R™ and u(t) =r;
if (i—1)/m<t<i/m.

So u is an m-step function on the unit interval whose i-th step is r;.
Note that

o = [ R o= Z/ (e ot
rdt = (1/m r?2 = (1/m)||r||?,
;/H_n/m, b=/ )Z (1/m)llr|

so ||u]| = (1/+/m)||r|| where ||r]|| is the Euclidean norm.



Let B(R™) be the linear operators on R™ with the operator norm
Al = sup{[|Ar[[/[Ir[| - r € RT,r #0},

for any A € B(R™). We identify B(R™) with the space of m x m
real matrices, using the standard basis.

Let B(L2[0,1]) be the bounded linear operators on L?[0, 1], writing
|| - || for the operator norm

1T = sup{|| Tul|/llull = u € L?[0,1], u # 0},

T € B(L?]0,1]).



We will be concerned with the subspace of B(L?[0,1]) consisting of
integral operators derived from L2 kernels. If x € L2]0,1]? is a
square-integrable function on the unit square with norm

1 1
Il = ( / / (s, £) ds de)!/2,
0 0

we call it an L2 kernel.

There is an integral operator K € B(L?[0,1]) naturally asociated to
K via

1
(Ku)(s) :/0 (s, )u(t) dt for v € 12[0,1], s < [0, 1].

The norm of the operator is bounded by that of the kernel:

K| < []]]-



If A€ B(R™), define the kernel x4 : [0,1]> — R by
ka(s, t) = maj

if (1 —1)/m<s<i/mand (j —1)/m <t <j/m, where A= (aj)
relative to the standard basis.

For a 0-1 m x m matrix A, k is the characteristic function of the
region in the unit square corresponding to the nonzero entries of A,
scaled by a factor of m. This construction is closely related to the
notion of the inflation of a matrix (Halmos and Sunder 1978).



We now put the preceding steps together to obtain an embedding
of B(R™) into B(L?[0,1]).

The embedding Jm : BR™) — B(L?[0,1]) is defined by
Jm(A) = A, where A = (aj) and

R 1
(Au)(s) = /0 ka(s, t)u(t) dt for u € L2[0,1].

So A is the bounded linear operator associated to the kernel derived
from A.

Then AJm = JnA, and ||A|| = ||A]], i.e. the embedding Jp, is an
isometry.



If A€ B(R™), we denote the spectral radius of A by p(A). If Ais
symmetric, then p(A) = ||A]].

Similarly, if T € B(L2[0,1]) is a bounded linear operator we write
its spectral radius as p(T), and note that if T is self-adjoint then

p(T) =TIl

Define the symmetric core A of a 0-1 square matrix A = (ajj) by
Aj; = min(aj, aji), so A is symmetric and A; < Aj;.

Similarly, the symmetric envelope z_of A, defined by

Ajj = max(ajj, aji), is symmetric and A; > Aj;.

Then the spectral radii satisfy

p(A) < p(A) < p(A).



Define the kernel 6 : [0,1]> — R by

1 if|s—1/2|+|t—1/2| <1/2
0 otherwise

o(s, t) = {

d is the characteristic function of a diamond-shaped region ¢ in the
square. Clearly § € L2[0,1]2. Let D € B(L?[0,1]) be the associated
kernel operator.

Misiurewicz and Nitecki showed that

p(D) =2/

by checking that u(t) = sin7t is a positive eigenfunction for D
with eigenvalue 2/7.



Define the deficiency d = d(A) of a 0-1 m x m matrix A = (ajj)
as m? times the area inside the central diamond ¢ C [0, 1]? where
the kernel « of the operator A vanishes.

d(A) can be thought of as the (fractional) number of zero entries
of A inside its ‘central diamond’. For example, the deficiency of the
zero matrix is m?/2.

The excess e = e(A) is similarly defined as m? times the area
outside the central diamond ¢ C [0, 1]? where the kernel a of A is
nonzero.



Proposition
If A is a symmetric 0-1 m x m matrix with deficiency d and excess
e then

D)~ Y < Loy < o) + L2
Since p(D) = 2/m, we have
SCPEMPEN



The Aztec diamond 2, has 2; ones centered in columns j and
2k +1 —j for i < k. (It isn't the induced matrix of a permutation.)

(0 0 0 O 0 0 0 07

0 00 11 0 00

00 1111 00

0 111111 0
Zio = 11111111
11111111

0 111111 0

0 0 1111 00

0 0O 11 0 0O

L0 0 0 O 0 0 0 0.

The Aztec diamond has excess e(Zpx) = 2k. These matrices are
the key to all the upper bounds, together with a Perron-Frobenius
argument that no matrix satisfying the bound on column sums can
have larger spectral radius.



The odd cycle #1; = (1 6 11528 9 34 10 7) has induced matrix

70 0 0 0 100 07
000 11 000
00 1111 10
0 111111 0
11111111
MOw =1, 71111111
1 111111 0
00 1111 00
00 1 11 000
L0 0 0 000 O]

For n odd, the induced matrix of the Misiurewicz-Nitecki cycle 8,
has deficiency (n — 1)/4. This is used for the lower bounds for
cycles.



For n = 4/, the maximum entropy permutation 6, has symmetric
matrix M(6,).

0000 0000

000 1 000

00 111 00

0 11111 0
1111111

M(612) = 111111111
111111

0 11111 0

00 111 00

000 1 000

0000 0000

For n = 4/ , the induced matrix of the maximum entropy
permutation 6, has deficiency (n — 2)/8. This is used for the lower
bounds for 4/-permutations.



For n = 4/ + 2, the maximum entropy permutation 6, has matrix

M(6,) which is not symmetric.

[0 0 0 01 1 0 0 07

001111000
001111110
111111110
111111111
011111111
011111100
000111100
0 0011O0O0O0T0

M(610)



We take its symmetric core.

[0 0 0 1 0 0 0]

00 111 0 0

0 11111 0
1111111

M@p)=|111111111
1111111

0 11111 0

00 111 00

L0 00 1 00 0]

For n = 4/ + 2, the symmetric core M(6,) has deficiency (n — 2)/4.
This is used for the lower bound on such n-permutations.



