Euclidean tilings

Invariant measures

Asymptotic Thurston norm

F. Gautero

Université de Nice - Sophia Antipolis

J-R. Chazottes
J-M. Gambaudo

Polytechnique, Paris Université de Nice - Sophia Antipolis

Tilings of \mathbb{R}^2

Prototiles: $\mathcal{P} = \{p_1, \dots, p_n\}$ is a finite set of polygons with colored edges.

Definition

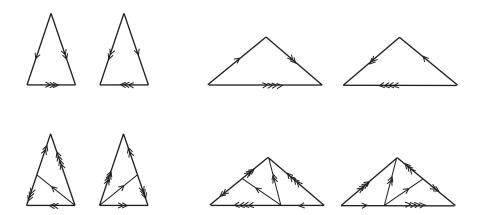
A \mathcal{P} -tiling of \mathbb{R}^2 is a collection of polygons with colored edges (t_i) (tiles) such that:

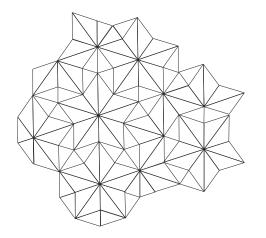
- 1. $\mathbb{R}^2 = \bigcup_i t_i$.
- 2. The tiles t_i have disjoint interiors.
- 3. If two tiles t_i , t_j meet, they meet along edges whose colors match.
- 4. Each tile t_i is a translate of some prototile $p_i \in \mathcal{P}$.

 $\Omega_{\mathcal{P}}$ is the set of all \mathcal{P} -tilings.

Remark

 $\Omega_{\mathcal{P}}$ might be empty: this is an undecidable problem.



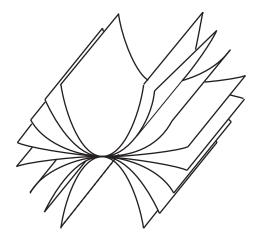


Definition

- 1. The 2-cells are the prototiles p_i .
- 2. Two 2-cells are glued along the edges e_i , e_j if and only if there is a translation which carries e_i to e_j and the colors match.

Definition

- 1. The 2-cells are the prototiles p_j .
- 2. Two 2-cells are glued along the edges e_i , e_j if and only if there is a translation which carries e_i to e_j and the colors match. Orient the 2-cells with the orientation of the plane and choose an orientation for the edges.
- Each edge has two sides: the collection of 2-cells where it appears with a + sign in the boundary and the collection of 2-cells where it appears with a - sign.
 - ⇒ Structure of Branched Surface



Homology and surfaces

$$H_2(\mathcal{A}_{\mathcal{P}};\mathbb{R}) = Ker(\partial \colon C_2(\mathcal{A}_{\mathcal{P}};\mathbb{R}) \to C_1(\mathcal{A}_{\mathcal{P}};\mathbb{R})).$$

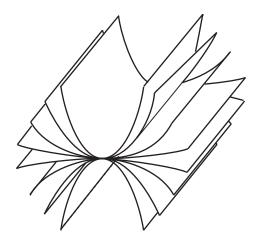
Equivalent to look at the switch equations.

Lemma

Any non-negative integer 2-cycle $c \in H_2^+(\mathcal{A}_{\mathcal{P}}; \mathbb{Z})$ is represented by a closed (i.e. with no boundary) compact surface S, denoted by [S] = c.

This surface S is not necessarily unique up to homeomorphism.

Homology and surfaces



Homology and surfaces

$$H_2(\mathcal{A}_{\mathcal{P}};\mathbb{R}) = Ker(\partial \colon C_2(\mathcal{A}_{\mathcal{P}};\mathbb{R}) \to C_1(\mathcal{A}_{\mathcal{P}};\mathbb{R})).$$

Equivalent to look at the switch equations.

Lemma

Any non-negative integer 2-cycle $c \in H_2^+(\mathcal{A}_{\mathcal{P}}; \mathbb{Z})$ is represented by a closed (i.e. with no boundary) compact surface S, denoted by [S] = c.

This surface S is not necessarily unique up to homeomorphism.

Thurston semi-norm

 $c \in H_2^+(\mathcal{A}_{\mathcal{P}}; \mathbb{Z}).$

If S is a closed compact surface, $\chi(S)$ is the Euler characteristic of S.

Thurston semi-norm

 $c \in H_2^+(\mathcal{A}_{\mathcal{P}}; \mathbb{Z}).$

If S is a closed compact surface, $\chi(S)$ is the Euler characteristic of S.

Definition

$$||c|| = \min_{[S]=c} |\chi(S)|$$

Thurston semi-norm

 $c \in H_2^+(\mathcal{A}_{\mathcal{P}}; \mathbb{Z}).$

If S is a closed compact surface, $\chi(S)$ is the Euler characteristic of S.

Definition

$$||c|| = \min_{[S]=c} |\chi(S)|$$

Lemma

- 1. ||c|| = 0 if and only if there is a torus representing c.
- 2. $||c_1+c_2|| \leq ||c_1|| + ||c_2||$.
- 3. $||nc|| \leq |n|||c||$.

It might happen ||nc|| < |n|||c||.

Definition

$$|||c||| = \lim_{n \to +\infty} \frac{||nc||}{n}$$

Well-defined for rational classes.

Definition

$$|||c||| = \lim_{n \to +\infty} \frac{||nc||}{n}$$

Well-defined for rational classes.

- 1. $|||c_1 + c_2||| \le |||c_1||| + |||c_2|||$.
- 2. |||nc||| = |n||||c|||.

Definition

$$|||c||| = \lim_{n \to +\infty} \frac{||nc||}{n}$$

Well-defined for rational classes.

- 1. $|||c_1 + c_2||| \le |||c_1||| + |||c_2|||$.
- 2. |||nc||| = |n||||c|||.

Lemma

The asymptotic Thurston norm is uniformly continuous.

Definition

$$|||c||| = \lim_{n \to +\infty} \frac{||nc||}{n}$$

Well-defined for rational classes.

- 1. $|||c_1 + c_2||| \le |||c_1||| + |||c_2|||$.
- 2. |||nc||| = |n||||c|||.

Lemma

The asymptotic Thurston norm is uniformly continuous.

Lemma

The asymptotic Thurston norm is well-defined on $H_2^+(\mathcal{A}_{\mathcal{P}}; \mathbb{R})$.

Definition

$$|||c||| = \lim_{n \to +\infty} \frac{||nc||}{n}$$

Well-defined for rational classes.

- 1. $|||c_1 + c_2||| \le |||c_1||| + |||c_2|||$.
- 2. |||nc||| = |n||||c|||.

Lemma

The asymptotic Thurston norm is uniformly continuous.

Lemma

The asymptotic Thurston norm is well-defined on $H_2^+(\mathcal{A}_{\mathcal{P}}; \mathbb{R})$.

Remark

|||c||| = 0 does not imply that there is a torus representing c.

A geometric interpretation of the tiling problem

Theorem (Chazottes-Gambaudo-G)

 $\Omega_{\mathcal{P}}$ is non-empty (which is equivalent to \mathcal{P} tiles the plane) if and only if the asymptotic Thurston norm vanishes on some non-trivial class $c \in H_2^+(\mathcal{A}_{\mathcal{P}};\mathbb{R})$.

 $T, T' \in \Omega_{\mathcal{P}}$. $B_{\epsilon}(0)$: open ball of radius ϵ around the origin.

$$\mathcal{A} = \{\epsilon \in (0,1) \text{ s.t. there exists } u \in \mathbb{R}^2 \text{ with } ||u|| < \epsilon \text{ and }$$

$$(T+u)\cap B_{1/\epsilon}(0)=T'\cap B_{1/\epsilon}(0)\}$$

 $T, T' \in \Omega_{\mathcal{P}}$. $B_{\epsilon}(0)$: open ball of radius ϵ around the origin.

 $\mathcal{A} = \{\epsilon \in (0,1) \text{ s.t. there exists } u \in \mathbb{R}^2 \text{ with } ||u|| < \epsilon \text{ and }$

$$(T+u)\cap B_{1/\epsilon}(0)=T'\cap B_{1/\epsilon}(0)\}$$

 $\delta(T, T') = inf(A)$ if A is non-empty and 1 otherwise.

Lemma

 $(\Omega_{\mathcal{P}}, \delta)$ is a compact metric space, together with a continuous action of \mathbb{R}^2 .

 $T, T' \in \Omega_{\mathcal{P}}$. $B_{\epsilon}(0)$: open ball of radius ϵ around the origin.

 $\mathcal{A} = \{\epsilon \in (0,1) \text{ s.t. there exists } u \in \mathbb{R}^2 \text{ with } ||u|| < \epsilon \text{ and }$

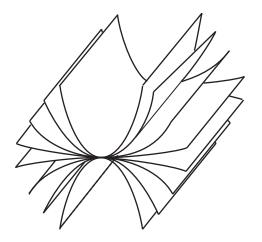
$$(T+u)\cap B_{1/\epsilon}(0)=T'\cap B_{1/\epsilon}(0)\}$$

 $\delta(T, T') = inf(A)$ if A is non-empty and 1 otherwise.

Lemma

 $(\Omega_{\mathcal{P}}, \delta)$ is a compact metric space, together with a continuous action of \mathbb{R}^2 .

 \mathbb{R}^2 amenable \Rightarrow Existence of an invariant measure \Rightarrow Existence of a non-negative real 2-cycle in $H_2^+(\mathcal{A}_{\mathcal{P}}; \mathbb{R})$.



 $T, T' \in \Omega_{\mathcal{P}}$. $B_{\epsilon}(0)$: open ball of radius ϵ around the origin.

 $A = \{\epsilon \in (0,1) \text{ s.t. there exists } u \in \mathbb{R}^2 \text{ with } ||u|| < \epsilon \text{ and }$

$$(T+u)\cap B_{1/\epsilon}(0)=T'\cap B_{1/\epsilon}(0)\}$$

 $\delta(T, T') = inf(A)$ if A is non-empty and 1 otherwise.

Lemma

 $(\Omega_{\mathcal{P}}, \delta)$ is a compact metric space, together with a continuous action of \mathbb{R}^2 .

 \mathbb{R}^2 amenable \Rightarrow Existence of an invariant measure \Rightarrow Existence of a non-negative real 2-cycle in $H_2^+(\mathcal{A}_{\mathcal{P}}; \mathbb{R})$.

Asymptotic Thurston norm and invariant measures

 $\mathcal{M}(\Omega_{\mathcal{P}})$ set of invariant measures on $\Omega_{\mathcal{P}}.$

Projection $\pi \colon \mathcal{M}(\Omega_{\mathcal{P}}) \to H_2^+(\mathcal{A}_{\mathcal{P}}; \mathbb{R})$

Asymptotic Thurston norm and invariant measures

 $\mathcal{M}(\Omega_{\mathcal{P}})$ set of invariant measures on $\Omega_{\mathcal{P}}$.

Projection
$$\pi \colon \mathcal{M}(\Omega_{\mathcal{P}}) \to H_2^+(\mathcal{A}_{\mathcal{P}}; \mathbb{R})$$

Theorem (Chazottes-Gambaudo-G)

Let $c \in H_2^+(\mathcal{A}_{\mathcal{P}}; \mathbb{R})$. There exists $\mu \in \mathcal{M}(\Omega_{\mathcal{P}})$ such that $c = \pi(\mu)$ if and only if the asymptotic Thurston norm of c vanishes.

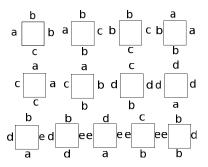
Wang tilings

A Wang tiling is (a tiling made from) a finite collection of unit squares with sides parallel to the axis of \mathbb{R}^2 and colored edges.

Theorem (Sadun-Williams)

For any finite collection of polygons \mathcal{P} there is a Wang tiling \mathcal{W} such that $(\Omega_{\mathcal{P}}, \mathbb{R}^2)$ and $(\Omega_{\mathcal{W}}, \mathbb{R}^2)$ are topologically equivalent.

Wang tilings



Wang tilings

A Wang tiling is (a tiling made from) a finite collection of unit squares with sides parallel to the axis of \mathbb{R}^2 and colored edges.

Theorem (Sadun-Williams)

For any finite collection of polygons \mathcal{P} there is a Wang tiling \mathcal{W} such that $(\Omega_{\mathcal{P}}, \mathbb{R}^2)$ and $(\Omega_{\mathcal{W}}, \mathbb{R}^2)$ are topologically equivalent.

Proposition

It is sufficient to prove our theorem for Wang tilings.

 $c=\pi(\mu)\Rightarrow |||c|||=0$: Forget the colors to obtain a new Wang tiling $\widehat{\mathcal{W}}$ and a new Anderson-Putnam complex $\mathcal{A}_{\widehat{\mathcal{W}}}$. The system $(\Omega_{\mathcal{W}},\mathbb{R}^2)$ is a sub-system of $(\Omega_{\widehat{\mathcal{W}}},\mathbb{R}^2)$.

 $c=\pi(\mu)\Rightarrow |||c|||=0$: Forget the colors to obtain a new Wang tiling $\widehat{\mathcal{W}}$ and a new Anderson-Putnam complex $\mathcal{A}_{\widehat{\mathcal{W}}}$. The system $(\Omega_{\mathcal{W}},\mathbb{R}^2)$ is a sub-system of $(\Omega_{\widehat{\mathcal{W}}},\mathbb{R}^2)$.

Periodic orbits of \mathbb{R}^2 (tori) are dense in $(\Omega_{\widehat{\mathcal{W}}}, \mathbb{R}^2)$. Any invariant measure in $\mathcal{M}(\Omega_{\mathcal{W}})$ is an invariant measure in $\mathcal{M}(\Omega_{\widehat{\mathcal{W}}})$.

 $c=\pi(\mu)\Rightarrow |||c|||=0$: Forget the colors to obtain a new Wang tiling $\widehat{\mathcal{W}}$ and a new Anderson-Putnam complex $\mathcal{A}_{\widehat{\mathcal{W}}}$. The system $(\Omega_{\mathcal{W}},\mathbb{R}^2)$ is a sub-system of $(\Omega_{\widehat{\mathcal{W}}},\mathbb{R}^2)$.

Periodic orbits of \mathbb{R}^2 (tori) are dense in $(\Omega_{\widehat{\mathcal{W}}}, \mathbb{R}^2)$. Any invariant measure in $\mathcal{M}(\Omega_{\mathcal{W}})$ is an invariant measure in $\mathcal{M}(\Omega_{\widehat{\mathcal{W}}})$.

 $c=\pi(\mu)$ in $H_2^+(\mathcal{A}_{\mathcal{P}};\mathbb{R})$ is approximated by a sequence of 2-cycles (c_i) in $H_2^+(\mathcal{A}_{\widehat{\mathcal{W}}};\mathbb{R})$ such that $|||c_i|||=0$.

 $c=\pi(\mu)\Rightarrow |||c|||=0$: Forget the colors to obtain a new Wang tiling $\widehat{\mathcal{W}}$ and a new Anderson-Putnam complex $\mathcal{A}_{\widehat{\mathcal{W}}}$. The system $(\Omega_{\mathcal{W}},\mathbb{R}^2)$ is a sub-system of $(\Omega_{\widehat{\mathcal{W}}},\mathbb{R}^2)$.

Periodic orbits of \mathbb{R}^2 (tori) are dense in $(\Omega_{\widehat{\mathcal{W}}}, \mathbb{R}^2)$. Any invariant measure in $\mathcal{M}(\Omega_{\mathcal{W}})$ is an invariant measure in $\mathcal{M}(\Omega_{\widehat{\mathcal{W}}})$.

 $c=\pi(\mu)$ in $H_2^+(\mathcal{A}_{\mathcal{P}};\mathbb{R})$ is approximated by a sequence of 2-cycles (c_i) in $H_2^+(\mathcal{A}_{\widehat{\mathcal{W}}};\mathbb{R})$ such that $|||c_i|||=0$.

By continuity |||c||| = 0.

The reverse implication

 $|||c|||=0 \Rightarrow c=\pi(\mu)$: Inverse limit of branched surfaces $\mathcal{A}^p_{\mathcal{W}}$ which approximate $\Omega_{\mathcal{W}}$ made by squares of area p^2 . Let (c_i) sequence of rational cycles c_i with $\lim_{i\to\infty}c_i=c$. By continuity $|||c_i|||\to 0 \Rightarrow$ existence of surfaces S_i and integers n_i s.t. $\lim_{i\to\infty}\frac{|\chi(S_i)|}{n_i}=0$. Fix p>0 and consider for each i the subsurface (with boundary) formed by squares of area p^2 with associated chain $c_{i,p}$. Non-empty for i sufficiently large.

$$|c_{i,p}-n_ic_i|\leq K\chi(S_i)p^2$$

 $c_{i,p}$ image of a chain $c_{i,p}^p$ for $\mathcal{A}_{\mathcal{W}}^p$. Let c^p normalized accumulation point. Since

$$|\partial c_{i,p}^p| \le K\chi(S_i)p^2$$

 c^p is a 2-cycle for $\mathcal{A}^p_{\mathcal{W}}$ which projects to c. True for any p>0. Since $\bigcap H_2^+(\mathcal{A}^p_{\mathcal{W}},\mathbb{R})=\mathcal{M}(\Omega_{\mathcal{W}}),\ c=\pi(\mu)$.

