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Definition

Dynamical systems (X ,T ) and (Y ,S) are Borel* isomorphic if
there exists an equivariant Borel-measurable bijection
Φ : X̃ → Ỹ between full invariant subsets X̃ ⊂ X and Ỹ ⊂ Y ,
such that the conjugate map Φ∗ : PT (X )→ PS(Y ),
Φ∗(µ) = µ ◦ Φ−1, is a (affine) homeomorphism with respect to
weak* topologies.

Theorem (Downarowicz, 2006)
If X is a metrizable, compact, zero-dimensional space
and T has no periodic points then (X ,T ) is Borel* isomorphic
to a minimal topological dynamical system.
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Φ : X̃ → Ỹ between full invariant subsets X̃ ⊂ X and Ỹ ⊂ Y ,
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2006—Kornfeld and Ormes “Topological realizations of families
of ergodic automorphisms, multitowers and orbit equivalence”

2008—F. and Kwaśnicka “Minimal models for Zd actions”

Theorem (F. and Huczek, 2014)
If X is a metrizable, compact, zero-dimensional space and an
amenable group G acts freely on X
then (X ,G) is Borel* isomorphic to some minimal dynamical
system (Y ,G).
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Actions of amenable groups
Banach density
Array representation
Marker lemma

G —a countable amenable group

There exists a sequence of finite sets Fn ⊂ G (Følner sets) s.t.

∀g∈G lim
n→∞

|gFn4Fn|
|Fn|

= 0,

where gF = {gf : f ∈ F}

1 Fn ⊂ Fn+1 for all n,
2 e ∈ Fn for all n
3

⋃
n Fn = G,

4 Fn = F−1
n .
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Banach density
Array representation
Marker lemma

x 7→ gx —a homeomorphism

The action of G is:
free if gx = x for any g ∈ G and x ∈ X implies that g is the
neutral element
minimal if for any x ∈ X we have {gx : g ∈ G} = X ;
equivalently, there are no non-trivial closed G-invariant
subsets of X .

PG(X ) —set of all G-invariant Borel probability measures on X
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Definition
The set S ⊂ G is syndetic if there is a finite F ⊂ G s.t. SF = G.

Definition
For S ⊂ G and a finite F ⊂ G define lower Banach density by

DF (S) = inf
g∈G

|S ∩ Fg|
|F |

D(S) = sup{DF (S) : F ⊂ G, |F | <∞}

Proposition

1 If (Fn) is a Følner sequence then D(S) = limn→∞DFn (S).
2 S is syndetic if and only if D(S) > 0.
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Λ = (X ∪ {0,1, ∗})Z

d(x , y) =

{
dX (x , y) for x , y ∈ X
diam(X ) if x /∈ X or y /∈ X

x =


...

x0

x1

...

 ,y =


...

y0

y1

...

 ∈ Λ =⇒ dΛ(x,y) =
∞∑

i=−∞

d(x i , y i)

2|i|
.

ΛG with (gy) (h) = y(hg) —“a multidimensional shift space”
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Actions of amenable groups
Banach density
Array representation
Marker lemma

An array representation X̂ of X is the range of a map
X 3 x 7→ x̂ ∈ ΛG defined by

x̂(g)n =

{
gx if n = 0
0 otherwise

.

X̂ is compact and G-invariant and x 7→ x̂ is a topological
conjugacy.

A block in ΛG is a map B : F → Λ, where F is finite.

A distance between blocks B1, B2 on a common domain F is

D(B1,B2) = sup
g∈F

dΛ(B1(g),B2(g))
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Array representation
Marker lemma

Lemma (Marker lemma)

For every finite H ⊂ G there exists a clopen set V such that:
1 g(V ) are disjoint for each g ∈ H,
2

⋃
g∈F g(V ) = X for some Følner set F .

Corollary (Hooks corollary)

For every x ∈ X and a finite T ⊂ G there is a set C(x) ⊂ G s.t.
1 Tg ∩ Tg′ = ∅ for each pair g,g′ ∈ C(x), g 6= g′,
2 (∃F )(∀x ∈ X )(∀g ∈ G)(C(x) ∩ Fg 6= ∅).

Also, (∀g ∈ G)(C(gx)g = C(x)) and x 7→ C(x) is continuous.
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Minimality
The model

Theorem (F. and Huczek, 2014)
If X is a metrizable, compact, zero-dimensional space and an
amenable group G acts freely on X
then (X ,G) is Borel* isomorphic to some minimal dynamical
system (Y ,G).
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Lemma
Let:

1 Y ⊂ ΛG be an array system
2 BY be the collection of all blocks occuring in Y
3 B′Y ⊂ BY be such that:

for every ε > 0 and every B ∈ BY there exists B′ ∈ B′Y such
that D(B,B′′) < ε for some subblock B′′ of B′.

If there exist a dense subset Y ′ of Y consisting of elements y in
which every B ∈ B′Y occurs syndetically then the system (Y ,G)
is minimal.
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Step 1
1 T0 = {e}

2 B1 = (B1
1 ,B

1
2 , . . . ,B

1
N1

) —ε1-dense set of blocks with
domain T0 occurring in X̂ (εk—fixed summable sequence).

3 C′1(x) —a set of positive lower Banach density

4 Fm1 —a Følner set s.t. Fm1g contains at least N1 elements
c ∈ C′1(x) for each g and ε1 |Fm1 | > N1

5 C1(x) —a set of “hooks” for copies of Fm1

Bartosz Frej (joint work with Dawid Huczek) Minimal models for actions of amenable groups



Main theorem
Setup
Proof

Minimality
The model

6 (dc
1 , . . . ,d

c
N1

) —a subset of Fm1c ∩ C′1(x)

Φ1(x)n,dc
j

=


∗ if n = −1
B1

j (0) if n = 0
x0,dc

j
if n = 1

7 X1 = Φ1(X̂ )

8 There exists a set E ⊂ G such that Eg ∩ C1(x) is
nonempty for every g ∈ G.
Put T1 = Fm1E . Every block from B1 occurs in Φ1(x) inside
T1g for each g.
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Lemma (Window lemma)
Let e ∈ F ⊂ G, l ∈ N. There is H ⊃ F s.t. if A ⊂ G, g ∈ G and
FA ⊂ E ⊂ F lA then Fh ⊂ Hg ∩ E or Fh ⊂ Hg \ E for some h.

9 Choose H1 using window lemma for F = T1. The set H1
will replace T1 in the role of being a “syndeticity constant”
for occurrence of elements of B1.
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Step 2
1 B2 = (B2

1 ,B
2
2 , . . . ,B

2
N2

) —ε2-dense set of blocks with
domain T1 occurring in X1

2 C′2(x) —obtained from “hooks” corollary for the set H−1
1 T1.

For distinct c, c′ ∈ C′2(x) each set H1g (g ∈ G) intersects at
most one of T1c, T1c′

3 Fm2 —a Følner set s.t. Fm2g contains at least N2 elements
c ∈ C′2(x) such that T1c ⊂ Fm2g and N2 |T1|2 < ε2 |Fm2 |.

4 C2(x) —obtained from “hooks” corollary for the set Fm2
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5 (dc
1 , . . . ,d

c
N2

) ⊂ Fm2c ∩ C′2(x), Dj(x) =
{

dc
j : c ∈ C2(x)

}

Ψ2(x)n,g =



∗ if n = −2 and g ∈ Dj(x)

1 for n = −2,g ∈ T1d ,d ∈ Dj(x),

but g 6∈ Dj(x),

xN,g for n = 2, g ∈ T1d ,d ∈ Dj(x),

where N = max{i : xi,g 6= 0}
B2

j (gd−1)(n) for n = −1,0,1 and g as above

Φ2 = Ψ2 ◦ Φ1, X2 = Ψ2(X1) = Φ2(X )
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6 Syndetic occurrence of B2:
There is a set E ⊂ G such that Eg ∩ C2(x) is nonempty for
every g ∈ G.
Put T2 = Fm2E—then T2g contains some Fm2c, c ∈ C2(x),
for every g ∈ G.

7 Syndetic occurrence of B1:
By the choice of H1 there exists some h such that T1h is a
subset of H1g that is either disjoint from all T1c or is a
subset of T1C′2(x).
But the set H1g (g ∈ G) intersects at most one T1c for
c ∈ C′2(x), so in the second case it must be one of T1c.
Anyway, the block x(T1h) is a block occurring in X1.

8 Choose H2 using window lemma for an appropriate F .
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X̃ e
k —a subset of X on which Φk+1(x)e 6= Φk (x)e.

µ(X̃ e
k ) = O(εk+1) for each G-invariant ergodic measure µ.

Therefore, X̃ = X \
⋃

g∈G
⋂∞

k=1
⋃∞

j=k g(X̃ e
j ) is a full set.

Φ(x) = lim
k→∞

Φk (x)

Proposition

Let Y = Φ(X̃ ) in ΛG.
1 Φ(X̃ ) is a full subset of Y .
2 Φ is an equivariant Borel-measurable bijection onto a full

set.
3 Φ∗ is an affine homeomorphism between simplices of

invariant measures on X and Y .
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Thank you for your attention!
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