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Let (X ,Σ, µ) be a probability space, T : X → X a
measure-preserving transformation and P a finite measurable
partition of X .

For a finite subset F ⊂ N we will write

PF =
∨
n∈F

T−n(P).

Then the dynamical entropy of the process generated by P
under the action of T is defined as

h(T ,P) = lim
n

1
n

H(P [0,n−1])

(the limit exists by subadditivity and equals the infimum).
The Kolmogorov–Sinai entropy of T is defined as

h(T ) = sup
P

h(T ,P).
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Now suppose, we have a topological dynamical system (X ,T )
(X compact space and T : X → X continuous).

The topological entropy of an open cover U is defined as

htop(T ,U) = lim
n

1
n

Htop(U [0,n−1]),

(where Htop(U) = log N(U))
(the limit exists by subadditivity and equals the infimum).
The topological entropy of T is defined as
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In both definitions we are using

1
|F |

H(PF ) or
1
|F |

Htop(UF ),

where F has the special form of an interval. Intervals refer to
the order structure of the group or to the group being
amenable.
If we deal with the action of a countable amenable group G,
then the analogous formulas take the form

h(G,P) = lim
n

1
|Fn|

H(PFn )

and
htop(G,U) = lim

n

1
|Fn|

Htop(UFn ),

where (Fn) is the special sequence of finite sets called a
Følner sequence.
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The purpose of my talk is to replace the (conceptually
complicated) limit over a special sequence of finite subsets of G

by the (conceptually much simpler) infimum over all finite
subsets of G.
I.e., to study the expressions

h∗(G,P) = inf
F

1
|F |

H(PF )

and
h∗top(G,U) = inf

F

1
|F |

Htop(UF ),

and the resulting notions

h∗(G) = sup
P

h∗(G,P)

and
h∗top(G) = sup

U
h∗top(G,U).
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Theorem 1 (B. Weiss)

If G is countable amenable, then

h∗(G,P) = h(G,P)

for every finite partition P (and hence h∗(G) = h(G)).

Theorem 2 (B. Frej, D., in progress)

If G is countable amenable, then

h∗top(G) = htop(G)

Theorem 3 (D.)

If G is countable amenable, and (X ,U) is a clopen partition
(hence a disjoint open cover), then

h∗top(G,U) = htop(G,U).
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Ingredients in the proof of Theorem 1.

The function F 7→ H(F ) = H(PF ) satisfies:
strong subadditivity

H(F ∪G) ≤ H(F ) + H(G)− H(F ∩G),

which, letting

H(F |G) := H(F ∪G)− H(G)

is equivalent to
conditional subadditivity

H(F ∪G|H) ≤ H(F |H) + H(G|H)

or monotonicity wrt. condition

G ⊂ H =⇒ H(F |G) ≥ H(F |H).
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Interestingly, the topological entropy F 7→ H(F ) = log N(UF ) is
not strongly subadditive!

EXAMPLE:
Consider the golden mean shift: X ⊂ {0,1}Z, X ∩ [11] = ∅,
U = {[0], [1]} and F = {−1,0} ⊂ Z, G = {0,1} ⊂ Z
Then N(UF ) = N(UG) = 3,
N(UF∪G) = N(U [−1,0,1]) = 5
and N(UF∩G) = N(U [0]) = 2.

Unfortunately,

log 5 6≤ log 3 + log 3− log 2 (because 10 6≤ 9).

Nevertheless, Theorems 2 and 3 hold for topological entropy.
The tool to prove them is the variational principle.
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ADAVANTAGES OF h∗ and h∗top.

They show that if we detect a relation between any (remote)
coordinates, then this relation affects the entropy with its full
strength.

EXAMPLE:
Suppose g ∈ G is of infinite order, and that g does not alter the
partition P, i.e., g(P) = P.
Then h(G,P) = 0, no matter how complicated the group.
Proof: consider F = {g,g2, . . . ,gn}. Then 1

|F |H(PF ) = 1
n H(P).

(This is not so obvious when looking at Følner sets.)
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ADAVANTAGES OF h∗ and h∗top.

They are defined without referring to any special sets, hence
can be defined for any group.
And they will always satisfy the Bernoulli shift postulate (resp.
full shift postulate):
If P is an independent generator then h∗(G,P) = H(P).
(resp. h∗top(G,P) = log(#P))

Unfortunately, for non-amenable groups, h∗ does not satisfy the
isomorphism postulate:
If P and Q generate the same sigma-algebra then
h∗(G,P) = h∗(G,Q).
EXAMPLE: full {0,1}-shift on the free group F2(a,b),
P = {[0], [1]}, Q = P{e,a,b}.
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CANDIDATE NOTION

h∗∗(G) = inf
P

h∗(G,P).

This notion certainly satisfies the isomorphism postulate...
but it is not clear whether it satisfies the Bernoulli shifts
postulate.

B. Weiss can prove the Bernoulli shifts postulate for sofic
groups.
Otherwise the problem is open.
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