New approach to entropy

Tomasz Downarowicz, Bartosz Frej

Institute of Mathematics Polish Academy of Science and Institute of Mathematics and Computer Science Wroclaw Univeristy of Technology

▲□▶▲□▶▲□▶▲□▶ □ のQ@

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For a finite subset $F \subset \mathbb{N}$ we will write

$$\mathcal{P}^F = \bigvee_{n \in F} T^{-n}(\mathcal{P}).$$

For a finite subset $F \subset \mathbb{N}$ we will write

$$\mathcal{P}^F = \bigvee_{n\in F} T^{-n}(\mathcal{P}).$$

Then the dynamical entropy of the process generated by \mathcal{P} under the action of T is defined as

$$h(T,\mathcal{P}) = \lim_{n} \frac{1}{n} H(\mathcal{P}^{[0,n-1]})$$

For a finite subset $F \subset \mathbb{N}$ we will write

$$\mathcal{P}^F = \bigvee_{n\in F} T^{-n}(\mathcal{P}).$$

Then the dynamical entropy of the process generated by \mathcal{P} under the action of T is defined as

$$h(T,\mathcal{P}) = \lim_{n} \frac{1}{n} H(\mathcal{P}^{[0,n-1]})$$

(日) (日) (日) (日) (日) (日) (日)

(the limit exists by subadditivity and equals the infimum).

For a finite subset $F \subset \mathbb{N}$ we will write

$$\mathcal{P}^F = \bigvee_{n \in F} T^{-n}(\mathcal{P}).$$

Then the dynamical entropy of the process generated by \mathcal{P} under the action of T is defined as

$$h(T,\mathcal{P}) = \lim_{n} \frac{1}{n} H(\mathcal{P}^{[0,n-1]})$$

(the limit exists by subadditivity and equals the infimum). The *Kolmogorov–Sinai entropy of T* is defined as

$$h(T) = \sup_{\mathcal{P}} h(T, \mathcal{P}).$$

The topological entropy of an open cover \mathcal{U} is defined as

$$h_{\text{top}}(T,\mathcal{U}) = \lim_{n} \frac{1}{n} H_{\text{top}}(\mathcal{U}^{[0,n-1]}),$$

The topological entropy of an open cover \mathcal{U} is defined as

$$h_{\text{top}}(T, \mathcal{U}) = \lim_{n} \frac{1}{n} H_{\text{top}}(\mathcal{U}^{[0, n-1]}),$$

(日) (日) (日) (日) (日) (日) (日)

(where $H_{top}(\mathcal{U}) = \log N(\mathcal{U})$)

The topological entropy of an open cover \mathcal{U} is defined as

$$h_{\text{top}}(T, \mathcal{U}) = \lim_{n} \frac{1}{n} H_{\text{top}}(\mathcal{U}^{[0, n-1]}),$$

(日) (日) (日) (日) (日) (日) (日)

(where $H_{top}(\mathcal{U}) = \log N(\mathcal{U})$)

(the limit exists by subadditivity and equals the infimum).

The topological entropy of an open cover \mathcal{U} is defined as

$$h_{\text{top}}(T, \mathcal{U}) = \lim_{n} \frac{1}{n} H_{\text{top}}(\mathcal{U}^{[0, n-1]}),$$

(where $H_{top}(\mathcal{U}) = \log N(\mathcal{U})$)

(the limit exists by subadditivity and equals the infimum).

The topological entropy of T is defined as

$$h_{\mathrm{top}}(T) = \sup_{\mathcal{U}} h_{\mathrm{top}}(T, \mathcal{U}).$$

A D F A 同 F A E F A E F A Q A

$$\frac{1}{|F|}H(\mathcal{P}^F) \quad \text{or} \quad \frac{1}{|F|}H_{\text{top}}(\mathcal{U}^F),$$

$$\frac{1}{|F|}H(\mathcal{P}^F) \quad \text{or} \quad \frac{1}{|F|}H_{\text{top}}(\mathcal{U}^F),$$

where F has the special form of an **interval**. Intervals refer to the order structure of the group or to the group being amenable.

$$\frac{1}{|F|}H(\mathcal{P}^F) \quad \text{or} \quad \frac{1}{|F|}H_{\text{top}}(\mathcal{U}^F),$$

where F has the special form of an **interval**. Intervals refer to the order structure of the group or to the group being amenable.

If we deal with the action of a countable amenable group $\mathcal{G},$ then the analogous formulas take the form

$$\frac{1}{|F|}H(\mathcal{P}^F) \quad \text{or} \quad \frac{1}{|F|}H_{\text{top}}(\mathcal{U}^F),$$

where F has the special form of an **interval**. Intervals refer to the order structure of the group or to the group being amenable.

If we deal with the action of a countable amenable group $\mathcal{G},$ then the analogous formulas take the form

$$h(\mathcal{G},\mathcal{P}) = \lim_{n} \frac{1}{|F_n|} H(\mathcal{P}^{F_n})$$

$$\frac{1}{|F|}H(\mathcal{P}^F) \quad \text{or} \quad \frac{1}{|F|}H_{\text{top}}(\mathcal{U}^F),$$

where F has the special form of an **interval**. Intervals refer to the order structure of the group or to the group being amenable.

If we deal with the action of a countable amenable group $\mathcal{G},$ then the analogous formulas take the form

$$h(\mathcal{G},\mathcal{P}) = \lim_{n} \frac{1}{|F_n|} H(\mathcal{P}^{F_n})$$

and

$$h_{\text{top}}(\mathcal{G},\mathcal{U}) = \lim_{n} \frac{1}{|F_n|} H_{\text{top}}(\mathcal{U}^{F_n}),$$

$$\frac{1}{|F|}H(\mathcal{P}^F) \quad \text{or} \quad \frac{1}{|F|}H_{\text{top}}(\mathcal{U}^F),$$

where F has the special form of an **interval**. Intervals refer to the order structure of the group or to the group being amenable.

If we deal with the action of a countable amenable group $\mathcal{G},$ then the analogous formulas take the form

$$h(\mathcal{G},\mathcal{P}) = \lim_{n} \frac{1}{|F_n|} H(\mathcal{P}^{F_n})$$

and

$$h_{\text{top}}(\mathcal{G},\mathcal{U}) = \lim_{n} \frac{1}{|F_n|} H_{\text{top}}(\mathcal{U}^{F_n}),$$

where (F_n) is the *special* sequence of finite sets called a *Følner sequence*.

The purpose of my talk is to replace the (conceptually complicated) *limit over a special sequence of finite subsets of* G

・ロト・日本・モト・モー ショー ショー

I.e., to study the expressions

$$h^*(\mathcal{G},\mathcal{P}) = \inf_F \frac{1}{|F|} H(\mathcal{P}^F)$$

I.e., to study the expressions

$$h^*(\mathcal{G},\mathcal{P}) = \inf_F \frac{1}{|F|} H(\mathcal{P}^F)$$

and

$$h^*_{top}(\mathcal{G}, \mathcal{U}) = \inf_{F} \frac{1}{|F|} H_{top}(\mathcal{U}^F),$$

I.e., to study the expressions

$$h^*(\mathcal{G},\mathcal{P}) = \inf_F \frac{1}{|F|} H(\mathcal{P}^F)$$

and

$$h_{top}^{*}(\mathcal{G},\mathcal{U}) = \inf_{F} \frac{1}{|F|} H_{top}(\mathcal{U}^{F}),$$

and the resulting notions

$$h^*(\mathcal{G}) = \sup_{\mathcal{P}} h^*(\mathcal{G}, \mathcal{P})$$

I.e., to study the expressions

$$h^*(\mathcal{G},\mathcal{P}) = \inf_F \frac{1}{|F|} H(\mathcal{P}^F)$$

and

$$h_{top}^*(\mathcal{G},\mathcal{U}) = \inf_F \frac{1}{|F|} H_{top}(\mathcal{U}^F),$$

and the resulting notions

$$h^*(\mathcal{G}) = \sup_{\mathcal{P}} h^*(\mathcal{G}, \mathcal{P})$$

and

$$h^*_{\operatorname{top}}(\mathcal{G}) = \sup_{\mathcal{U}} h^*_{\operatorname{top}}(\mathcal{G}, \mathcal{U}).$$

Theorem 1 (B. Weiss)

If \mathcal{G} is countable amenable, then

$$h^*(\mathcal{G},\mathcal{P}) = h(\mathcal{G},\mathcal{P})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

for every finite partition \mathcal{P} (and hence $h^*(\mathcal{G}) = h(\mathcal{G})$).

Theorem 1 (B. Weiss)

If \mathcal{G} is countable amenable, then

 $h^*(\mathcal{G},\mathcal{P}) = h(\mathcal{G},\mathcal{P})$

for every finite partition \mathcal{P} (and hence $h^*(\mathcal{G}) = h(\mathcal{G})$).

Theorem 2 (B. Frej, D., in progress)

If \mathcal{G} is countable amenable, then

 $h^*_{\mathrm{top}}(\mathcal{G}) = h_{\mathrm{top}}(\mathcal{G})$

Theorem 1 (B. Weiss)

If \mathcal{G} is countable amenable, then

 $h^*(\mathcal{G},\mathcal{P}) = h(\mathcal{G},\mathcal{P})$

for every finite partition \mathcal{P} (and hence $h^*(\mathcal{G}) = h(\mathcal{G})$).

Theorem 2 (B. Frej, D., in progress)

If \mathcal{G} is countable amenable, then

 $h^*_{top}(\mathcal{G}) = h_{top}(\mathcal{G})$

Theorem 3 (D.)

If G is countable amenable, and (X, U) is a *clopen partition* (hence a disjoint open cover), then

 $h^*_{top}(\mathcal{G},\mathcal{U}) = h_{top}(\mathcal{G},\mathcal{U}).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The function $F \mapsto H(F) = H(\mathcal{P}^F)$ satisfies:

The function $F \mapsto H(F) = H(\mathcal{P}^F)$ satisfies: *strong subadditivity*

$$\mathsf{H}(F \cup G) \leq \mathsf{H}(F) + \mathsf{H}(G) - \mathsf{H}(F \cap G),$$

The function $F \mapsto H(F) = H(\mathcal{P}^F)$ satisfies: *strong subadditivity*

$$\mathsf{H}(F \cup G) \leq \mathsf{H}(F) + \mathsf{H}(G) - \mathsf{H}(F \cap G),$$

which, letting

$$\mathsf{H}(F|G) := \mathsf{H}(F \cup G) - \mathsf{H}(G)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

is equivalent to

The function $F \mapsto H(F) = H(\mathcal{P}^F)$ satisfies: *strong subadditivity*

$$\mathsf{H}(F \cup G) \leq \mathsf{H}(F) + \mathsf{H}(G) - \mathsf{H}(F \cap G),$$

which, letting

$$\mathsf{H}(F|G) := \mathsf{H}(F \cup G) - \mathsf{H}(G)$$

is equivalent to conditional subadditivity

 $\mathsf{H}(F \cup G|H) \le \mathsf{H}(F|H) + \mathsf{H}(G|H)$

The function $F \mapsto H(F) = H(\mathcal{P}^F)$ satisfies: *strong subadditivity*

$$\mathsf{H}(F \cup G) \leq \mathsf{H}(F) + \mathsf{H}(G) - \mathsf{H}(F \cap G),$$

which, letting

$$\mathsf{H}(F|G) := \mathsf{H}(F \cup G) - \mathsf{H}(G)$$

is equivalent to conditional subadditivity

$$\mathsf{H}(F \cup G|H) \le \mathsf{H}(F|H) + \mathsf{H}(G|H)$$

or monotonicity wrt. condition

$$G \subset H \implies H(F|G) \ge H(F|H).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

EXAMPLE:

EXAMPLE:

Consider the golden mean shift: $X \subset \{0, 1\}^{\mathbb{Z}}, X \cap [11] = \emptyset$,

EXAMPLE:

Consider the golden mean shift: $X \subset \{0, 1\}^{\mathbb{Z}}, X \cap [11] = \emptyset$, $\mathcal{U} = \{[0], [1]\}$ and $F = \{-1, 0\} \subset \mathbb{Z}, G = \{0, 1\} \subset \mathbb{Z}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

EXAMPLE:

Consider the golden mean shift: $X \subset \{0, 1\}^{\mathbb{Z}}, X \cap [11] = \emptyset$, $\mathcal{U} = \{[0], [1]\}$ and $F = \{-1, 0\} \subset \mathbb{Z}, G = \{0, 1\} \subset \mathbb{Z}$ Then $N(\mathcal{U}^F) = N(\mathcal{U}^G) = 3$,

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

EXAMPLE:

Consider the golden mean shift: $X \subset \{0, 1\}^{\mathbb{Z}}, X \cap [11] = \emptyset$, $\mathcal{U} = \{[0], [1]\}$ and $F = \{-1, 0\} \subset \mathbb{Z}, G = \{0, 1\} \subset \mathbb{Z}$ Then $N(\mathcal{U}^F) = N(\mathcal{U}^G) = 3$, $N(\mathcal{U}^{F \cup G}) = N(\mathcal{U}^{[-1,0,1]}) = 5$

A D F A 同 F A E F A E F A Q A

EXAMPLE:

Consider the golden mean shift: $X \subset \{0, 1\}^{\mathbb{Z}}, X \cap [11] = \emptyset$, $\mathcal{U} = \{[0], [1]\}$ and $F = \{-1, 0\} \subset \mathbb{Z}, G = \{0, 1\} \subset \mathbb{Z}$ Then $N(\mathcal{U}^F) = N(\mathcal{U}^G) = 3$, $N(\mathcal{U}^{F \cup G}) = N(\mathcal{U}^{[-1,0,1]}) = 5$ and $N(\mathcal{U}^{F \cap G}) = N(\mathcal{U}^{[0]}) = 2$.

EXAMPLE:

Consider the golden mean shift: $X \subset \{0, 1\}^{\mathbb{Z}}, X \cap [11] = \emptyset$, $\mathcal{U} = \{[0], [1]\}$ and $F = \{-1, 0\} \subset \mathbb{Z}, G = \{0, 1\} \subset \mathbb{Z}$ Then $N(\mathcal{U}^F) = N(\mathcal{U}^G) = 3$, $N(\mathcal{U}^{F \cup G}) = N(\mathcal{U}^{[-1,0,1]}) = 5$ and $N(\mathcal{U}^{F \cap G}) = N(\mathcal{U}^{[0]}) = 2$.

Unfortunately,

 $\log 5 \leq \log 3 + \log 3 - \log 2$ (because $10 \leq 9$).

EXAMPLE:

Consider the golden mean shift: $X \subset \{0, 1\}^{\mathbb{Z}}, X \cap [11] = \emptyset$, $\mathcal{U} = \{[0], [1]\}$ and $F = \{-1, 0\} \subset \mathbb{Z}, G = \{0, 1\} \subset \mathbb{Z}$ Then $N(\mathcal{U}^F) = N(\mathcal{U}^G) = 3$, $N(\mathcal{U}^{F \cup G}) = N(\mathcal{U}^{[-1,0,1]}) = 5$ and $N(\mathcal{U}^{F \cap G}) = N(\mathcal{U}^{[0]}) = 2$.

Unfortunately,

 $\log 5 \leq \log 3 + \log 3 - \log 2$ (because $10 \leq 9$).

Nevertheless, Theorems 2 and 3 hold for topological entropy.

EXAMPLE:

Consider the golden mean shift: $X \subset \{0, 1\}^{\mathbb{Z}}, X \cap [11] = \emptyset$, $\mathcal{U} = \{[0], [1]\}$ and $F = \{-1, 0\} \subset \mathbb{Z}, G = \{0, 1\} \subset \mathbb{Z}$ Then $N(\mathcal{U}^F) = N(\mathcal{U}^G) = 3$, $N(\mathcal{U}^{F \cup G}) = N(\mathcal{U}^{[-1,0,1]}) = 5$ and $N(\mathcal{U}^{F \cap G}) = N(\mathcal{U}^{[0]}) = 2$.

Unfortunately,

 $\log 5 \leq \log 3 + \log 3 - \log 2$ (because $10 \leq 9$).

Nevertheless, Theorems 2 and 3 hold for topological entropy. The tool to prove them is the *variational principle*.

They show that if we detect a relation between any (remote) coordinates, then this relation affects the entropy with its *full strength*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

They show that if we detect a relation between any (remote) coordinates, then this relation affects the entropy with its *full strength*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

EXAMPLE:

They show that if we detect a relation between any (remote) coordinates, then this relation affects the entropy with its *full strength*.

EXAMPLE:

Suppose $g \in \mathcal{G}$ is of infinite order, and that g does not alter the partition \mathcal{P} , i.e., $g(\mathcal{P}) = \mathcal{P}$.

They show that if we detect a relation between any (remote) coordinates, then this relation affects the entropy with its *full strength*.

EXAMPLE:

Suppose $g \in \mathcal{G}$ is of infinite order, and that g does not alter the partition \mathcal{P} , i.e., $g(\mathcal{P}) = \mathcal{P}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Then $h(\mathcal{G}, \mathcal{P}) = 0$, no matter how complicated the group.

They show that if we detect a relation between any (remote) coordinates, then this relation affects the entropy with its *full strength*.

EXAMPLE:

Suppose $g \in \mathcal{G}$ is of infinite order, and that g does not alter the partition \mathcal{P} , i.e., $g(\mathcal{P}) = \mathcal{P}$.

Then $h(\mathcal{G}, \mathcal{P}) = 0$, no matter how complicated the group. Proof: consider $F = \{g, g^2, \dots, g^n\}$. Then $\frac{1}{|F|}H(\mathcal{P}^F) = \frac{1}{n}H(\mathcal{P})$.

A D F A 同 F A E F A E F A Q A

They show that if we detect a relation between any (remote) coordinates, then this relation affects the entropy with its *full strength*.

EXAMPLE:

Suppose $g \in \mathcal{G}$ is of infinite order, and that g does not alter the partition \mathcal{P} , i.e., $g(\mathcal{P}) = \mathcal{P}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Then $h(\mathcal{G}, \mathcal{P}) = 0$, no matter how complicated the group. Proof: consider $F = \{g, g^2, \dots, g^n\}$. Then $\frac{1}{|F|}H(\mathcal{P}^F) = \frac{1}{n}H(\mathcal{P})$.

(This is not so obvious when looking at Følner sets.)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

They are defined without referring to any *special sets*, hence can be defined for **any** group.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

They are defined without referring to any *special sets*, hence can be defined for **any** group.

And they will always satisfy the *Bernoulli shift postulate* (resp. *full shift postulate*):

They are defined without referring to any *special sets*, hence can be defined for **any** group.

And they will always satisfy the *Bernoulli shift postulate* (resp. *full shift postulate*):

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

If \mathcal{P} is an *independent generator* then $h^*(\mathcal{G}, \mathcal{P}) = H(\mathcal{P})$.

They are defined without referring to any *special sets*, hence can be defined for **any** group.

And they will always satisfy the *Bernoulli shift postulate* (resp. *full shift postulate*):

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

If \mathcal{P} is an *independent generator* then $h^*(\mathcal{G}, \mathcal{P}) = H(\mathcal{P})$. (resp. $h^*_{top}(\mathcal{G}, \mathcal{P}) = \log(\#\mathcal{P})$)

They are defined without referring to any *special sets*, hence can be defined for **any** group.

And they will always satisfy the *Bernoulli shift postulate* (resp. *full shift postulate*):

If \mathcal{P} is an *independent generator* then $h^*(\mathcal{G}, \mathcal{P}) = H(\mathcal{P})$. (resp. $h^*_{top}(\mathcal{G}, \mathcal{P}) = \log(\#\mathcal{P})$)

Unfortunately, for non-amenable groups, h^* does not satisfy the *isomorphism postulate*:

They are defined without referring to any *special sets*, hence can be defined for **any** group.

And they will always satisfy the *Bernoulli shift postulate* (resp. *full shift postulate*):

If \mathcal{P} is an *independent generator* then $h^*(\mathcal{G}, \mathcal{P}) = H(\mathcal{P})$. (resp. $h^*_{top}(\mathcal{G}, \mathcal{P}) = \log(\#\mathcal{P})$)

Unfortunately, for non-amenable groups, h^* does not satisfy the *isomorphism postulate*:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

If \mathcal{P} and \mathcal{Q} generate *the same sigma-algebra* then $h^*(\mathcal{G}, \mathcal{P}) = h^*(\mathcal{G}, \mathcal{Q}).$

They are defined without referring to any *special sets*, hence can be defined for **any** group.

And they will always satisfy the *Bernoulli shift postulate* (resp. *full shift postulate*):

If \mathcal{P} is an *independent generator* then $h^*(\mathcal{G}, \mathcal{P}) = H(\mathcal{P})$. (resp. $h^*_{top}(\mathcal{G}, \mathcal{P}) = \log(\#\mathcal{P})$)

Unfortunately, for non-amenable groups, h^* does not satisfy the *isomorphism postulate*:

If \mathcal{P} and \mathcal{Q} generate *the same sigma-algebra* then $h^*(\mathcal{G}, \mathcal{P}) = h^*(\mathcal{G}, \mathcal{Q}).$

EXAMPLE: full {0, 1}-shift on the free group $\mathcal{F}_2(a, b)$, $\mathcal{P} = \{[0], [1]\}, \mathcal{Q} = \mathcal{P}^{\{e, a, b\}}.$

$$h^{**}(\mathcal{G}) = \inf_{\mathcal{P}} h^*(\mathcal{G}, \mathcal{P}).$$

$$h^{**}(\mathcal{G}) = \inf_{\mathcal{P}} h^*(\mathcal{G}, \mathcal{P}).$$

This notion certainly satisfies the isomorphism postulate...

$$h^{**}(\mathcal{G}) = \inf_{\mathcal{P}} h^*(\mathcal{G}, \mathcal{P}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

This notion certainly satisfies the isomorphism postulate... but it is not clear whether it satisfies the Bernoulli shifts postulate.

$$h^{**}(\mathcal{G}) = \inf_{\mathcal{P}} h^*(\mathcal{G}, \mathcal{P}).$$

This notion certainly satisfies the isomorphism postulate... but it is not clear whether it satisfies the Bernoulli shifts postulate.

B. Weiss can prove the Bernoulli shifts postulate for *sofic groups*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

$$h^{**}(\mathcal{G}) = \inf_{\mathcal{P}} h^*(\mathcal{G}, \mathcal{P}).$$

This notion certainly satisfies the isomorphism postulate... but it is not clear whether it satisfies the Bernoulli shifts postulate.

B. Weiss can prove the Bernoulli shifts postulate for *sofic groups*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Otherwise the problem is open.

THANK YOU