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1. Algebraic entropy of a rational map
Let f be a map of C2 with rational components. Rational maps are not
defined in the whole plane. There are some points in which some
denominator vanishes. And there some points where numerator and
denominator of a component of f both vanishes: points where f is
ill-defined.
We extend f to the projective space PC2, and we call F [x0 : x1 : x2] its
extension. Then the three components of F are homogeneous
polynomials of the same degree. We say that F is a minimal
representative of f if the three components of F have no a common
factor.
We define the degree of f as the degree of the polynomials of the
components of F , if F is a minimal representative of f , and we denote
by I(F ), the indeterminacy set of F as the points

I(F ) = {x ∈ PC2 : F1(x) = F2(x) = F3(x) = 0}.

Hence, F : PC2 \ I(F ) −→ PC2 and I(F ) is a finite set of points.
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1. Algebraic entropy of a rational map

Being F a minimal representative of f of degree d consider F ◦ F ,
which has as a components polynomials of degree d2.
But F ◦ F , is not necessarily a minimal representative of f 2 : it can
occur that

F ◦ F = [M · P1 : M · P2 : M · P3]

for some polynomials M,P1,P2,P3.
In this case, if M is the maximal degree with this property,
deg(f 2) = deg(f )2 − deg(M) and

F ({M = 0}) ⊂ I(F ).

We say that V = 0 is a degree lowering curve of F if

F k (V ) ⊂ I(F )

for some k .
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1. Algebraic entropy of a rational map

Hence we get that
deg(f n) ≤ deg(f )n

with equality holding if and only if F has no degree lowering curves.
Calling an = ln(deg(f n)), an+m ≤ an + am and hence the limit an/n
always exists. From this: the number

h(f ) = lim
n→∞

ln(deg(f n))

n

always exists and it is called the algebraic entropy of f and

δ(f ) = lim
n→∞

(deg(f n))
1
n

always exists and it is called the dynamical degree of f .
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2. Algebraic entropy for birational maps
A rational map F : PC2 → PC2 is birational if there exists another
rational map G and an algebraic curve V such that F ◦G = G ◦ F = id
on PC2 \ V .
The excepcional locus of F denoted by E(F ) is defined as follows

E(F ) = {x ∈ PC2 : Det(DF )x = 0}.

Proposition.
Let F be a birational map and let F−1 its inverse. Then:

Given any irreducible curve V ∈ E(F ) , F (V ) is a single point
in I(F−1). For any p ∈ I(F−1), the preimage of p for F is an
element of E(F ).

I(F ) ⊂ E(F ), and every irreducible element of E(F ) contains
a point of I(F ).

F : PC2 \ E(F )→ PC2 \ E(F−1) is a bimeromorphic map.
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2. Algebraic entropy for birational maps: Algebraically
stable maps

Proposition.
A birational map F has a degree lowering curve V for F if and
only if there exists an exceptional curve S ∈ E(F ) such that
F n(S) ∈ I(F ) for some n ∈ N.

Corollary.
If for all S ∈ E(F ) and for all n ∈ N, F n(S) /∈ I(F ) then
deg (f n) = (deg (f ))n and δ(f ) = degree (f ).

In this case F is called an algebraically stable map.
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2. Algebraic entropy for birational maps: The blow-up
technique

Given a point p ∈ C2, the blow-up of C2 at p is a pair (X , π) such that if
p = (0,0) (if not we do a translation) it is defined by

X = {((x , y), [u : v ]) ∈ C2 × P1 : xv = yu}

and π : X → C2 is the projection on the first component:
π ((x , y), [u : v ]) = (x , y). We notice that

π−1 p = π−1(0,0) = {((0,0), [u : v ])} := Ep ≈ P1

and if q = (x , y) 6= (0,0), then

π−1 q = π−1(x , y) = {((x , y), [x : y ])} ∈ X .
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2. Algebraic entropy for birational maps: algebraically
stable maps.

Let X be the manifold that we get after a finite number of blowing-up’s.

Let FX : X −→ X be the map induced by F on X .

As before, it is said that FX is algebraically stable if for every
C ∈ E(FX ) and for all n ∈ N, F n

X (C) /∈ I(FX ).

Theorem.
For F being birational, after a finite number of blowing-up’s, we
get a map FX which is AS

If FX is AS we say that FX is a regularization of F .
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2. Algebraic entropy for birational maps: the Picard
group
Let X be the manifold that we get after a finite number of
blowing-up’s.The set Div(X ) of the divisors of X is formed by formal
sums D =

∑
diDi , where di ∈ Z and {Di}i∈N a locally finite sequence

of irreducible hypersurfaces on X . Then P ic(X ) is the set Div(X )/∼
modulo linear equivalence.
It can be seen that

P ic(X ) =< L̂,Ep1 ,Ep2 , . . . ,Epk >,

where p1,p2, . . . ,pk are the base points of the blowing-up’s and L is a
generic line in PC2. Let F ∗X : P ic(X ) −→ P ic(X ) be the map induced by
FX on P ic(X ).

Theorem.
FX is AS if and only if

(F ∗X )
n = (F n∗

X ).
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2. Algebraic entropy for birational maps: who to
determine it.

Theorem.
Let f be a birational map and let dn be the degree of f n. Then dn
satisfies a homogeneous linear recurrence with constant
coefficients. This recurrence is governed by the characteristic
polynomial of the matrix of F ∗X , where FX is a regularization of F .
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2. Algebraic entropy for birational maps: a simple
example.
Consider:

f (x1, x2) =

(
x1 − x2,

x1 + x2

1 + x2

)
,

F [x0 : x1 : x2] = [x0(x0 + x2) : (x1 − x2)(x0 + x2) : x0(x1 + x2)].

Calculate the jacobian of (DF ) :

jF = 2x0(x0 + x2)(2x0 − x1 + x2).

So, F has three exceptional curves

S0 := {x0 = 0} , S1 := {x0 + x2 = 0} , S2 := {2x0 − x1 + x2 = 0}

that colapse to

A0 := [0 : 1 : 0] , A1 := [0 : 0 : 1] , A2 := [1 : 2 : 2]

respectively. The indeterminacy points of F are

O0 = [1 : 1 : −1] , O1 = [0 : 1 : 1] , O2 = [0 : 1 : 0].
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2. Algebraic entropy for birational maps: a simple
example.
f is birational, being it inverse

f−1(x , y) =
(

xy − x − y
y − 2

,
x − y
y − 2

)

F−1[x0 : x1 : x2] = [x0(x2 − 2x0) : x1x2 + x0x1 − x0x2 : x0(x1 − x2)]

jF−1 = (2x0 − x1)(2x0 − x2)x0.

So, F−1 has three exceptional curves

T0 := {2x0 − x1 = 0} , T1 := {2x0 − x2 = 0} , T2 := {x0 = 0}

that colapse to

O0 = [1 : 1 : −1] , O1 = [0 : 1 : 1] , O2 = [0 : 1 : 0]

respectively.
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2. Algebraic entropy for birational maps: a simple
example.
We observe that A0 = O2 so we have to blow-up this point. Call E0 the
blowing-up at A0 = [0 : 1 : 0]. We look the points [u : v ]E0 ∈ E0 as
limt→0[tu : 1 : tv ]. Taking limt→0 F [tu : 1 : tv ] we can extend F to E0.
We get that:

FX [u : v ]E0 = lim
t→0

F [tu : 1 : tv ] = [0 : u + v : u] ∈ S0.

Also, the points of S0, [0 : x1 : x2] = limt→0[t : x1 : x2] and taking
F [t : x1 : x2] we have that:

FX [0 : x1 : x2] = [x2 : x1 + x2]E0 .

Hence,via FX :
S0 −→ E0 −→ T2 = S0,

and
E(FX ) = {S1,S2} and I(FX ) = {O0,O1}.
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2. Algebraic entropy for birational maps: a simple
example.

Now we have to follow the orbits under FX of A1 = [0 : 0 : 1] and
A2 = [1 : 2 : 2] and see if they meet O0 = [1 : 1 : −1] or O1 = [0 : 1 : 1].
Since A1 = [0 : 0 : 1] ∈ S0, its image belongs to E0.We calculate F 2

X
restricted to S0 and we find:

F 2
X [0 : x1 : x2] = [0 : x2 : x1 + 2x2].

From this we see that F k
X (A1) 6= O1. It is also clear that F k

X (A1) 6= O0.It
can also be seen that F k (A2) 6= O0 and F k (A2) 6= O1. Then, FX
already is Algebraically Stable.
Consider P ic(X ) =< L̂,E0 > . The map induced by FX on H(1,1)(X ),
F ∗X is defined just taking preimages. Hence F ∗X (E0) = S0. Avoiding
technicalities, S0 = L̂− E0 and F ∗X (E0) = 2L̂− E0.
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2. Algebraic entropy for birational maps: a simple
example.

The equalities F ∗X (E0) = L̂− E0 and F ∗X (E0) = 2L̂− E0 determines the
matrix of F ∗X : (

2 1

−1 −1

)
which has as characteristic polynomial P(λ) = λ2 − λ− 1. The
sequence of the degrees of f n satisfies

dn+2 = dn+1 + dn

and the dynamical degree of f is the golden mean 1+
√

5
2 .
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3. The case of zero entropy

Let f : C2 → C2 be a birational map.

Definition
f preserves a rational fibration (resp. elliptic fibration) if it exists a
rational map V : C2 → C such that for almost all c ∈ C, the curve
V = c has genus equal zero (resp. genus one)and f sends
V = c a V = c′.

If c′ = c then f is rationally integrable
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3. The case of zero entropy

Theorem. Let f be a birational map and let dn be the degree of
f n. Assume that f has zero entropy. Then exactly one of the
following holds:

The sequence of degrees dn grows quadratically and f
preserves an elliptic fibration. In this case there is a
regularization of F which is an automorphism.
The sequence of degrees dn grows linearly and f preserves
a rational fibration. In this case there does not exist any
regularization of F being an automorphism.
The sequence of degrees dn is bounded and f preserves
two generically transverse fibrations. In this case there is a
regularization of F which is an automorphism.

Furthermore in the first and second, the invariant fibrations are
unique.
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4. Dynamical degree of a nine parametric family of
birational maps.
We consider the family of fractional maps f : C2 → C2 of the form:

f (x , y) =
(
α0 + α1x + α2y ,

β0 + β1x + β2y
γ0 + γ1x + γ2y

)
, (1)

where the parameters are complex numbers. The indeterminacy set of
F is I(F ) = {O0,O1,O2}, with

O0 = [(βγ)12 : (βγ)20 : (βγ)01],O1 = [0 : α2 : −α1],O2 = [0 : γ2 : −γ1],

(here (βγ)ij := βiγj − βjγi for i , j ∈ {0,1,2}). The indeterminacy set of
F−1 is I(F−1) = {A0,A1,A2}, with

A0 = [0 : 1 : 0],
A1 = [0 : 0 : 1],
A2 = [(βγ)12 (αγ)12 :
(α0 (βγ)12 − α1 (βγ)02 + α2 (βγ)01) (αγ)12 : (αβ)12 (βγ)12].
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4. Dynamical degree of a nine parametric family of
birational maps.

We divide the family in 5 subfamilies.

Theorem 1. Suppose that α1, α2, γ1, γ2 are all non zero and that
(βγ)12 6= 0 and (αγ)12 6= 0. Then either,
(i) If it exists p ∈ N such that F p(A2) = O0, then the dynamical

degree of F is given by the largest root of the polynomial

xp+2 − 2xp+1 + x − 1.

(ii) If no such p exists then dynamical degree of F is 2.
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4. Dynamical degree of a nine parametric family of
birational maps.
Theorem 2. Assume that γ1 = 0, α2 6= 0, (βγ)12 6= 0 and
(αγ)12 6= 0. Let F̃ be the induced map after blowing up the point
A0. Then the following hold:

If F̃ p(A2) = O0 for some p ∈ N and F̃ 2k(A1) 6= O1 for all
k ∈ N then the characteristic polynomial associated with F
is given by

Xp = xp+1(x2 − x − 1) + x2.

Assume that F̃ 2k(A1) = O1 for some k ∈ N. Let F̃1 be the
induced map after we blow-up the points
A0,A1, F̃ (A1), . . . , F̃ 2k(A1) = O1. If F̃ p

1 (A2) 6= O0 for all p ∈ N,
then the characteristic polynomial associated with F is given
by

Xk = x2k+1(x2 − x − 1) + 1.
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4. Dynamical degree of a nine parametric family of
birational maps.

If F̃ 2k(A1) = O1 and F̃ p
1 (A2) = O0 for some p, k ∈ N then the

characteristic polynomial associated with F is given by

X(k ,p) = xp+1(x2k+3 − x2k+2 − x2k+1 + 1) + x2k+3 − x2 − x + 1.

Assume that F̃ 2k(A1) 6= O1 and F̃ p(A2) 6= O0 for all k , p ∈ N.
Then the characteristic polynomial associated with F is
given by

X (x) = x2 − x − 1.
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4. A subfamily with zero entropy

X(k ,p) = xp+1(x2k+3 − x2k+2 − x2k+1 + 1) + x2k+3 − x2 − x + 1.

for p > 2 (1+k)
k the sequence of degrees dn grows exponentially for

all p, k ∈ N;
for (p, k) ∈ {(3, 2), (4, 1)} the sequence of degrees dn grows
quadratically;
for (p, k) ∈ {(0, k), (1, k), (2, k), (3, 1)} the sequence of degrees
dn is periodic.

In the case (p, k) = (4,1)

f (x , y) =
(

1− x + y , x
y−1

)
, V (x , y) = 1−y

xy(1−x+y) satisfies
V (f (x , y)) = V (x , y).

f (x , y) =
(

x + y , x
y−1

)
, V (x , y) = 1+2x+y−2y2

xy(x+y) satisfies

V (f 2(x , y)) = V (x , y).
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4. A subfamily with zero entropy

In the case (p, k) = (3,2),
f (x , y) =

(
1
4 + x + y , x

y− 1
2

)
, V (x , y) =

256 x3y2+384 x2y3+128 xy4+128 x3y+192 x2y2+32 xy3−16 y4−16 x2−8 xy+8 y2−8 x−1

(−4 y2+4 x+1)
2

satisfies V (f (x , y)) = V (x , y).

The cases
(p, k) ∈ {(0, k), (1, k), (2, k), (3, 1)}

For (p, k) = (0, k), f is 2k + 2 periodic.
For (p, k) = (1, k), f is 2k + 4 periodic.
For (p, k) = (2, k), f is 4k + 6 periodic.
For (p, k) = (3,1), f is 18 periodic.

Anna Cima and Sundus Zafar (UAB) Algebraic entropy for birational maps in the plane UAB 2014 24 / 26



4. A subfamily with zero entropy

In the case (p, k) = (3,2),
f (x , y) =

(
1
4 + x + y , x

y− 1
2

)
, V (x , y) =

256 x3y2+384 x2y3+128 xy4+128 x3y+192 x2y2+32 xy3−16 y4−16 x2−8 xy+8 y2−8 x−1

(−4 y2+4 x+1)
2

satisfies V (f (x , y)) = V (x , y).

The cases
(p, k) ∈ {(0, k), (1, k), (2, k), (3, 1)}

For (p, k) = (0, k), f is 2k + 2 periodic.
For (p, k) = (1, k), f is 2k + 4 periodic.
For (p, k) = (2, k), f is 4k + 6 periodic.
For (p, k) = (3,1), f is 18 periodic.

Anna Cima and Sundus Zafar (UAB) Algebraic entropy for birational maps in the plane UAB 2014 24 / 26



4. A subfamily with zero entropy

In the case (p, k) = (3,2),
f (x , y) =

(
1
4 + x + y , x

y− 1
2

)
, V (x , y) =

256 x3y2+384 x2y3+128 xy4+128 x3y+192 x2y2+32 xy3−16 y4−16 x2−8 xy+8 y2−8 x−1

(−4 y2+4 x+1)
2

satisfies V (f (x , y)) = V (x , y).

The cases
(p, k) ∈ {(0, k), (1, k), (2, k), (3, 1)}

For (p, k) = (0, k), f is 2k + 2 periodic.
For (p, k) = (1, k), f is 2k + 4 periodic.
For (p, k) = (2, k), f is 4k + 6 periodic.
For (p, k) = (3,1), f is 18 periodic.

Anna Cima and Sundus Zafar (UAB) Algebraic entropy for birational maps in the plane UAB 2014 24 / 26



4. A subfamily with zero entropy

In the case (p, k) = (3,2),
f (x , y) =

(
1
4 + x + y , x

y− 1
2

)
, V (x , y) =

256 x3y2+384 x2y3+128 xy4+128 x3y+192 x2y2+32 xy3−16 y4−16 x2−8 xy+8 y2−8 x−1

(−4 y2+4 x+1)
2

satisfies V (f (x , y)) = V (x , y).

The cases
(p, k) ∈ {(0, k), (1, k), (2, k), (3, 1)}

For (p, k) = (0, k), f is 2k + 2 periodic.
For (p, k) = (1, k), f is 2k + 4 periodic.
For (p, k) = (2, k), f is 4k + 6 periodic.
For (p, k) = (3,1), f is 18 periodic.

Anna Cima and Sundus Zafar (UAB) Algebraic entropy for birational maps in the plane UAB 2014 24 / 26



4. A subfamily with zero entropy

In the case (p, k) = (3,2),
f (x , y) =

(
1
4 + x + y , x

y− 1
2

)
, V (x , y) =

256 x3y2+384 x2y3+128 xy4+128 x3y+192 x2y2+32 xy3−16 y4−16 x2−8 xy+8 y2−8 x−1

(−4 y2+4 x+1)
2

satisfies V (f (x , y)) = V (x , y).

The cases
(p, k) ∈ {(0, k), (1, k), (2, k), (3, 1)}

For (p, k) = (0, k), f is 2k + 2 periodic.
For (p, k) = (1, k), f is 2k + 4 periodic.
For (p, k) = (2, k), f is 4k + 6 periodic.
For (p, k) = (3,1), f is 18 periodic.

Anna Cima and Sundus Zafar (UAB) Algebraic entropy for birational maps in the plane UAB 2014 24 / 26



4. A subfamily with zero entropy

In the case (p, k) = (3,2),
f (x , y) =

(
1
4 + x + y , x

y− 1
2

)
, V (x , y) =

256 x3y2+384 x2y3+128 xy4+128 x3y+192 x2y2+32 xy3−16 y4−16 x2−8 xy+8 y2−8 x−1

(−4 y2+4 x+1)
2

satisfies V (f (x , y)) = V (x , y).

The cases
(p, k) ∈ {(0, k), (1, k), (2, k), (3, 1)}

For (p, k) = (0, k), f is 2k + 2 periodic.
For (p, k) = (1, k), f is 2k + 4 periodic.
For (p, k) = (2, k), f is 4k + 6 periodic.
For (p, k) = (3,1), f is 18 periodic.

Anna Cima and Sundus Zafar (UAB) Algebraic entropy for birational maps in the plane UAB 2014 24 / 26



4. A subfamily with zero entropy

In the case (p, k) = (3,2),
f (x , y) =

(
1
4 + x + y , x

y− 1
2

)
, V (x , y) =

256 x3y2+384 x2y3+128 xy4+128 x3y+192 x2y2+32 xy3−16 y4−16 x2−8 xy+8 y2−8 x−1

(−4 y2+4 x+1)
2

satisfies V (f (x , y)) = V (x , y).

The cases
(p, k) ∈ {(0, k), (1, k), (2, k), (3, 1)}

For (p, k) = (0, k), f is 2k + 2 periodic.
For (p, k) = (1, k), f is 2k + 4 periodic.
For (p, k) = (2, k), f is 4k + 6 periodic.
For (p, k) = (3,1), f is 18 periodic.

Anna Cima and Sundus Zafar (UAB) Algebraic entropy for birational maps in the plane UAB 2014 24 / 26



4. A subfamily with zero entropy

In the case (p, k) = (3,2),
f (x , y) =

(
1
4 + x + y , x

y− 1
2

)
, V (x , y) =

256 x3y2+384 x2y3+128 xy4+128 x3y+192 x2y2+32 xy3−16 y4−16 x2−8 xy+8 y2−8 x−1

(−4 y2+4 x+1)
2

satisfies V (f (x , y)) = V (x , y).

The cases
(p, k) ∈ {(0, k), (1, k), (2, k), (3, 1)}

For (p, k) = (0, k), f is 2k + 2 periodic.
For (p, k) = (1, k), f is 2k + 4 periodic.
For (p, k) = (2, k), f is 4k + 6 periodic.
For (p, k) = (3,1), f is 18 periodic.

Anna Cima and Sundus Zafar (UAB) Algebraic entropy for birational maps in the plane UAB 2014 24 / 26



4. A subfamily with zero entropy

In the case (p, k) = (3,2),
f (x , y) =

(
1
4 + x + y , x

y− 1
2

)
, V (x , y) =

256 x3y2+384 x2y3+128 xy4+128 x3y+192 x2y2+32 xy3−16 y4−16 x2−8 xy+8 y2−8 x−1

(−4 y2+4 x+1)
2

satisfies V (f (x , y)) = V (x , y).

The cases
(p, k) ∈ {(0, k), (1, k), (2, k), (3, 1)}

For (p, k) = (0, k), f is 2k + 2 periodic.
For (p, k) = (1, k), f is 2k + 4 periodic.
For (p, k) = (2, k), f is 4k + 6 periodic.
For (p, k) = (3,1), f is 18 periodic.

Anna Cima and Sundus Zafar (UAB) Algebraic entropy for birational maps in the plane UAB 2014 24 / 26



4. A subfamily with zero entropy

In the case (p, k) = (3,2),
f (x , y) =

(
1
4 + x + y , x

y− 1
2

)
, V (x , y) =

256 x3y2+384 x2y3+128 xy4+128 x3y+192 x2y2+32 xy3−16 y4−16 x2−8 xy+8 y2−8 x−1

(−4 y2+4 x+1)
2

satisfies V (f (x , y)) = V (x , y).

The cases
(p, k) ∈ {(0, k), (1, k), (2, k), (3, 1)}

For (p, k) = (0, k), f is 2k + 2 periodic.
For (p, k) = (1, k), f is 2k + 4 periodic.
For (p, k) = (2, k), f is 4k + 6 periodic.
For (p, k) = (3,1), f is 18 periodic.

Anna Cima and Sundus Zafar (UAB) Algebraic entropy for birational maps in the plane UAB 2014 24 / 26



5. Relationship between the topological and the
algebraic entropy.

When it is defined, the topological entropy of a birational map
coincides with the algebraic entropy.
The proof is based on the following result of Y. Yomdin in 1987:

For f : N −→ N a continuous mapping defined in the compact m-
dimensional C∞-smooth manifold N, the topological entropy of f
is greater or equal to S(f ), where S(f ) = maxlSl(f ) and Sl(f ) is
the logarithm of the spectral radius of f ∗ : Hl(N,R) −→ Hl(N,R).
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