Semiconjugacy to a map of constant slope II

J. B. (a joint work with H. Bruin)

Czech Technical University in Prague bobok@mat.fsv.cvut.cz

Tossa de Mar

October 3, 2014

A continuous map $T : [0,1] \rightarrow [0,1]$ is said to be piecewise monotone if there are $k \in \mathbb{N}$ and points $0 = c_0 < c_1 < \cdots < c_{k-1} < c_k = 1$ such that T is monotone on each $[c_i, c_{i+1}]$, $i = 0, \ldots, k-1$. A piecewise monotone map T has a *constant slope s* if |T'(x)| = s for all $x \neq c_i$. The following facts are well known for piecewise monotone interval maps:

- (i) If T has a constant slope s then the topological entropy $h_{top}(T) = \max(0, \log s)$, see [Misiurewicz & Szlenk 80].
- (ii) If $h_{top}(T) > 0$ then T is semiconjugate via a continuous non-decreasing map h to some map \tilde{T} of constant slope $e^{h_{top}(T)}$, see [Parrry 66, Milnor & Thurston 88].

For maps with a countably infinite number of branches, the above property (i) can fail, see for example [Misiurewicz & Raith 05].

One of the few facts that remains true in the countably piecewise monotone setting is:

Proposition

If T is Lipschitz with Lipschitz constant s, then $h_{top}(T) \le \max\{0, \log s\}$.

See for example [Katok & Hasselblatt 95]

The question we want to address is when a (continuous) countably piecewise monotone map T is conjugate to a map with constant slope $\pm \lambda$ (regardless of whether $\log \lambda = h_{top}(T)$ or not). We want to explore what can be said if only the Markov structure (transition matrix) of a countably piecewise monotone map is known in terms of the Vere-Jones classification [Vere-Jones 67], refined by [Ruette 03].

\mathcal{CPM} : the class of countably piecewise monotone Markov maps

A Markov partition $\mathcal{P} = \{P_i\}_{i \in \mathcal{A}}$ for a map $T: [0,1] \rightarrow [0,1]$ consists of intervals P_i , with the following properties:

- The index set A is finite or countably infinite, but also if #A = ∞, it need not necessarily have the ordinal type as N or Z.
- The intervals $P_i \subset [0,1]$ have pairwise disjoint interiors and $[0,1] \setminus \bigcup_{i \in \mathcal{A}} P_i$ is countable.

• If
$$T(P_i^{\circ}) \cap P_j^{\circ} \neq \emptyset$$
, then $T(P_i) \supset P_j$.

In general there are infinitely many Markov partitions (P_{α,i})_{i≥1} such that connect-the-dots map of Q_α = [0,1] \ ∪_{i∈A} P^o_{α,i} equals to T. Let P = (P_i) be the minimal Markov partition for which [0,1] \ ∪_{i∈A} P^o_i = ∩_α Q_α.

Any continuous map $\mathcal{T}:[0,1]\to [0,1]$ is said to belong to the class \mathcal{CPM} if

- it admits a Markov partition as above, T|P_i^o is monotone (perhaps constant) for each P_i,
- and $h_{top}(T) < \infty$.

For a given $T \in CPM$, we associate to its Markov partition P the transition matrix $M = M(T) = (m_{i,j})_{i,j \in A}$, defined by

$$m_{ij} = egin{cases} 1 & ext{if } \mathcal{T}(P_i) \supset P_j, \ 0 & ext{otherwise} \end{cases}$$

The matrix M = M(T) represents a bounded linear operator \mathcal{M} on $\ell^1 = \ell^1(\mathcal{A})$, provided the supremum of the column sums is finite. In fact then,

$$\|\mathcal{M}\| = \sup_{j} \sum_{i} m_{ij}.$$

If $\|\mathcal{M}\| < \infty$, then we speak of the *operator* type (acting by right-multiplication on the Banach space ℓ^1), if $\|\mathcal{M}\| = \infty$, then we speak of the *non-operator* type.

It can be easily seen that for many $T \in CPM$ the matrix M = M(T) does not represent a bounded operator on ℓ^1 .

For any matrix M = M(T), $T \in \mathcal{CPM}$, we define the powers $M^n = (m_{ij}^{(n)})$ of M:

$$M^0=E, \ M^n=\sum_{j\in\mathcal{A}}m_{ij}m_{jk}^{(n-1)}, \ n\in\mathbb{N}.$$

 \mathcal{CPM}_{λ} ... the class of all maps from \mathcal{CPM} of a constant slope λ , i.e., $f \in \mathcal{CPM}_{\lambda}$ if $|f'(x)| = \lambda$ for all $x \in [0, 1]$, possibly except at the points of $[0, 1] \setminus \bigcup P_i^{\circ}$

The following theorem has been proved in [J.B., Studia Mathematica **208**(2012), 213–228.]

Theorem

Let $T \in CPM$ with $M = M(T) = (m_{ij})_{i,j \in A}$. Then T is semiconjugate via a continuous non-decreasing map ψ to some map $S \in CPM_{\lambda}$, $\lambda > 1$, if and only if there is a nonzero vector $v = (v_i)_{i \in A}$ from $\mathcal{K}^+ \subset \ell^1(\mathcal{A})$ such that

$$\forall i \in \mathcal{A}: \sum_{j \in \mathcal{A}} m_{ij} v_j = \lambda v_i.$$
(1)

If the equation (1) has a solution from $\ell^{\infty}(\mathcal{A}) \setminus \ell^{1}(\mathcal{A})$ then $\psi \colon [0,1] \to D$ and $S \in \mathcal{CPM}_{\lambda}(D)$ for some $D \in \{\mathbb{R}, \mathbb{R}^{+}, \mathbb{R}^{-}\}.$

Remark

- The theorem remains true also for natural classes of non-continuous maps.
- We do not assume that the entropy of T is positive.
- All four possibilities {operator, non-operator} × {v ∈ ℓ¹, v ∉ ℓ¹} can exist.
- (i) If T is leo (for every open set U there is an n such that $T^{n}(U) = [0, 1]$), then any solution of the equation (1) is from ℓ^{1} .
- (ii) If T is topologically mixing (for every open sets U, V there is an n such that $T^m(U) \cap V \neq \emptyset$ for all $m \ge n$), then any solution v of the equation (1) satisfies

$$\forall \ \varepsilon > 0: \ \sum_{P_j \subset (\varepsilon, 1-\varepsilon)} v_j < \infty.$$

To show (i): If $Mv = \lambda v$ and P_i is such that the *i*-th row of M^n is strictly positive, then $\lambda^n v_i = \sum_j m_{ij}^{(n)} v_j \ge \sum_j v_j$, so $v \in \ell^1$.

Two easy examples, non-continuous with zero entropy

Example

Let

$$M(f) = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & \cdots \\ 0 & 1 & 1 & 1 & \cdots & \cdots \\ 0 & 0 & 1 & 1 & \cdots & \cdots \\ 0 & 0 & 0 & 0 & \cdots & \cdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & \cdots \end{pmatrix}$$

The index set \mathcal{A} has the ordinal type of \mathbb{N} and the equation (1) has the solution $v(\lambda) = ((\frac{\lambda-1}{\lambda})^i)_{i \in \mathcal{A}} \in \ell^1$ for each $\lambda > 1$.

Example

Let

Again, the index set \mathcal{A} has the ordinal type of \mathbb{N} and the equation (1) has the solution $\nu(\lambda) = (\lambda^i)_{i \in \mathcal{A}} \in \ell^1$ for each $\lambda \in (0, 1)$ and is positive for $\lambda > 1$.

But we are mostly interested in continuous transitive interval maps, so from now we always assume that a map $T \in \mathcal{CPM}$ is either topologically mixing or even leo! We denote the set of all such maps in \mathcal{CPM} by

 $\mathcal{CPM}_+.$

Then all possible semiconjugacies from our Theorem (equation (1)) are in fact conjugacies!

A matrix $M = (m_{ij})_{i,j \in \mathcal{A}}$ will be called

- *irreducible*, if for each pair of indices i, j there exists a positive integer n such that $m_{ii}^{(n)} > 0$,
- and *aperiodic*, if for each pair of indices i, j there exists a positive integer n_0 such that $m_{ij}^{(n)} > 0$ for all $n \ge n_0$.

To a given 0-1 irreducible aperiodic matrix $M = (m_{ij})_{i,j \in A}$ corresponds a strongly connected oriented Markov graph $G = G(M) = (A, \mathcal{E} \subset A \times A)$, where $(i, j) \in \mathcal{E}$ if and only if $m_{ij} = 1$, and vice versa.

Remark

If $T \in CPM_+$ is topologically mixing then its transition matrix M = M(T) is irreducible and aperiodic.

Proposition (Vere-Jones 67)

(i) Let $M = (m_{ij})_{i,j \in A}$ be an infinite nonnegative irreducible aperiodic matrix. There exists a common value λ_M such that for each i, j

$$\lim_{n\to\infty}(m_{ij}^{(n)})^{\frac{1}{n}}=\lambda_M.$$

(ii) For any value r > 0 and all i, j
the series ∑_n m⁽ⁿ⁾_{ij}rⁿ are either all convergent or all divergent;
as n → ∞, either all or none of the sequences {m⁽ⁿ⁾_{ij}rⁿ}_n tend to zero.

By definition, the value $R = \frac{1}{\lambda_M}$ is a common radius of convergence of the power series $M_{ij}(z) = \sum_{n \ge 0} m_{ij}^{(n)} z^n$. Thus, $M_{ij}(r) < \infty$ for 0 < r < R and $M_{ij}(r) = \infty$ if r > R.

Let $T \in CPM_+$, consider its transition matrix M(T) and the associated oriented Markov graph G = G(T). In G:

• $m_{ii}^{(n)}$ = the number of paths of length *n* connecting *i* to *j*.

Let

• $f_{ij}^{(n)}$ = the number of paths of length *n* connecting *i* to *j*, without appearance of *j* before the final *j* (first entrance), in particular $f_{ij}^{(1)} = m_{ij}$.

We can consider radia of convergence (depending on i, j) of power series $F_{ij}(z) = \sum_{n \ge 1} f_{ij}^{(n)} z^n$. The behaviour of the series $M_{ij}(z)$, $F_{ij}(z)$ for z = R is used for classification of irreducible aperiodic matrices. This is summarized in the following table which applies independently of the sites $i, j \in A$ if M is irreducible [Vere-Jones 67], [Ruette 03]:

	transient	n-recurrent	weakly	strongly
			p-recurrent	p-recurrent
$\sum_{n\geq 0} f_{ii}^{(n)} R^n$	< 1	=1	= 1	=1
$\sum_{n\geq 0} n f_{ii}^{(n)} R^n$	$\leq \infty$	∞	$<\infty$	$<\infty$
$\sum_{n\geq 0} m_{ij}^{(n)} R^n$	$<\infty$	$=\infty$	$=\infty$	$=\infty$
$\lim_{n \to \infty} m_{ij}^{(n)} R^n$	= 0	= 0	$=\lambda_{ij}>0$	$=\lambda_{ij}>0$
for all <i>i</i> We say that a ma	$\begin{vmatrix} R = L \\ P = L \end{vmatrix} = \begin{vmatrix} R = L \\ R = L \end{vmatrix} = \begin{vmatrix} R = L \\ R = L \end{vmatrix} = \begin{vmatrix} R < L_{ii} \\ R = C\mathcal{PM}_+ \\ R = R + ransient, R - null or R - positive if it is activity M. The shows table describes various$			
the case for its matrix <i>i</i> . The above table describes various				

possibilites of covering properties of maps from \mathcal{CPM}_+ .

Proposition

Let $T \in CPM_+$ and M = M(T). The following is true.

- (i) $\lambda_M = e^{h_{top}(T)}$.
- (ii) If M represents an operator \mathcal{M} on ℓ^1 with the spectral radius $r(\mathcal{M})$ then $e^{h_{top}(\mathcal{T})} = r(\mathcal{M})$.

Following [Gurevich 69] we can define the entropy of an irreducible aperiodic infinite matrix M, and also its associated oriented Markov graph G as

$$h(M) = h(G) = -\log R = \log \lambda_M > 0.$$

By the previous Proposition for $T \in C\mathcal{PM}_+$, $h(M(T)) = h(G(T)) = h_{top}(T)$.

For the following theorem, see [Vere-Jones 67]:

Theorem

For every recurrent irreducible aperiodic matrix, the equation (1) is uniquely λ_M -solvable with v strictly positive.

Applying the above result we obtain

Theorem

For every recurrent leo map $T \in CPM_+$, the equation (1) is uniquely λ_M -solvable with $v \in \ell^1$.

Salama's criteria

There are geometrical criteria - see [Salama 88] and also [Ruette 03] - for each case of the Vere-Jones classification to apply in terms of whether the underlying strongly connected Markov graph can be enlarged/reduced (in the class of strongly connected Markov graphs) without changing the entropy.

Theorem

Assume that M is an irreducible aperiodic 0-1 matrix with $h(M) < \infty$, denote G its associated strongly connected Markov graph. Then

- If there are strongly connected Markov graphs G_0 and G_1 such that $G_0 \subsetneq G \subsetneq G_1$ and $h(G_0) = h(G) = h(G_1)$, then M is transient.
- *M* is strongly positive recurrent if and only if $h(G_0) < h(G)$ for any $G_0 \subsetneq G$.
- *M* is null-recurrent if and only if there exists $G_0 \subsetneq G$ with $h(G_0) = h(G)$, but $h(G) < h(G_1)$ for every $G_1 \supsetneq G$.

Theorem

Let $T \in CPM$ be transient with M = M(T) representing an operator on ℓ^1 . Then the equation (1) does not have any λ_M -solution in ℓ^1 .

Sketch of the proof. The limit $\lim_{\lambda \searrow \lambda_M} \frac{1}{\lambda} (M_{ij}(\frac{1}{\lambda}))$ exists hence the matrix $\frac{1}{\lambda_M} (M_{ij}(\frac{1}{\lambda_M}))$ equals to the non-continuous resolvent operator $(\lambda_M - M)^{-1}$ hence the spectral radius λ_M od M is in the continuous part of the spectrum $\sigma(M)$.

example

In this case we know several examples of maps from \mathcal{CPM}_+ for that the equation (1) is λ -solvable in ℓ^1 for each $\lambda \geq \lambda_M$.

Example

 $V = \{v_i\}_{i \ge -1}, X = \{x_i\}_{i \ge 1}, V, X \text{ converge to } 1/2 \text{ and } 0 = v_{-1} = x_0 = v_0 < x_1 < v_1 < x_2 < v_2 < x_3 < v_3 < \cdots$

$$f = f(V, X) : [0, 1] \rightarrow [0, 1]$$

(a)
$$f(v_{2i-1}) = 1 - v_{2i-1}, i \ge 1, f(v_{2i}) = v_{2i}, i \ge 0,$$

- (b) $f(x_{2i-1}) = 1 v_{2i-3}, i \ge 1, f(x_{2i}) = v_{2i-2}, i \ge 1,$
- (c) $f_{u,v} = \left| \frac{f(u) f(v)}{u v} \right| > 1$ for each interval $[u, v] \subset [x_i, x_{i+1}]$,
- (d) f(1/2) = 1/2 and f(t) = f(1 t) for each $t \in [1/2, 1]$.

(the property (c) can be satisfied since for our V, X by (a),(b), $f_{x_i,x_{i+1}} > 2$ for each $i \ge 0$) We denote by $\mathcal{F}(V, X)$ the set of all continuous interval maps fulfilling (a)-(d) for a fixed pair V, X and

$$\mathcal{F} := \bigcup_{V,X} \mathcal{F}(V,X).$$

(a) The map T_9 ; (b) the map T_{20} .

Let us repeat that by [Vere-Jones 67]

Theorem

For every recurrent map $T \in CPM_+$, the equation (1) is uniquely λ_M -solvable with v positive.

Using the above theorem, Salama's criteria and the properties from our Table, one can construct examples of *n*-recurrent (operator, non-operator type) maps from \mathcal{CPM}_+ for which the equation (1) is solvable in $\ell^{\infty} \setminus \ell^1$, so not in ℓ^1 .

random walk on $\ensuremath{\mathbb{Z}}$

There exists a (non-operator type) n-recurrent map $T \in C\mathcal{PM}_+$ for which the equation (1) is λ_M -solvable in ℓ^1 .

Again the same theorem can be applied:

Theorem

For every recurrent map $T \in CPM_+$, the equation (1) is uniquely λ_M -solvable with v positive.

There exists a (non-operator type) weakly p-recurrent map $T \in CPM_+$ for which the equation (1) is λ_M -solvable in ℓ^1 .

Theorem

For every strongly p-recurrent (operator type) map $T \in CPM_+$, the equation (1) is uniquely λ_M -solvable in ℓ_1 .

As a concrete example of such maps we introduce the following.

Definition*

For an integer m > 1, we say that a map $T \in C\mathcal{PM}_+$ is *m*-ruled, if there are \mathcal{P} -basic intervals l_1, \ldots, l_m such that

- T has an m-horseshoe created by the intervals I_1, \ldots, I_m
- $\forall j \in \mathcal{A} \ \forall y \in P_j^{\circ}$: card $[T^{-1}(y) \cap ([0,1] \setminus \bigcup_{i=1}^m I_i)] < m$.

Theorem

If $T \in CPM_+$ is m-ruled and of operator type then it is strongly positive recurrent.

example

example

Thank you for your attention!