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INTRODUCTION 

The study of piecewise dynamical system is mainly motivated by 
some applications, for instance:

• Mechanics: dry friction, impacts

• Power electronics: switching converters

The physical model of these systems is primarily time continuousThe physical model of these systems is primarily time-continuous
and frequently, a map is derived from it, for instance a Poincaré map

However, the map studied here is mainly inspired in theoretical 
considerationsconsiderations
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THE PIECEWISE (PLANAR) MAP

In a piecewise map, the phase plane is split in several regions
The map is assumed smooth in every one of those regions
Discontinuity at their boundaries can have several degrees

1) We assume a planar map F(x), x = (x, y) and

2( , ) : 0  (left region)x y x
y

a partition of the phase plane in two regions

2( , ) : 0  (right region)

separated by the boundary line

x y x x

2

p y y

( , ) : 0x y x phase plane ( 2)
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CONTINUOUS PIECEWISE LINEAR (CPWL) MAP

2) We also assume the map F is linear in both regions and +

A BF x x x
1

,
,

n n n
n n

n n n

A B
A B

F x x x
x F x

F x x x

where is the state are 2 2 constant matricesx y A ax
2

1 2

where  ,  is the state,   are 2 2 constant matrices 

and  ,   are constant vectors in 

n n n ijx y A a

B b b

x

11 12 1 11 12 10 0
so that

a a b a a b

3) In addition, we assume continuity at the boundary , that is

21 22 2 21 22 2

111 12 11 12

 so that

, ,

y ya a b a a b

ba a a a
A A B B B

ba a a a 221 22 21 22 ba a a a

Continuity at implies a reduction of parameters from 12 to 8
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A  NORMAL FORM FOR THE CPWL MAP

Proposition: Assuming a12 0 (dynamics is decoupled only if a12 0), 
the CPWL map is conjugate to the normal form

01
,     

0 n n
T

bD
x x

the CPWL map is conjugate to the normal form
where T , T and D , D stand for 
trace and determinant of A , A

1

0

01
,

0

n

n n

bD

T
bD

x
x x

,

and  b {0, 1}, thus dealing to 
two families of CPWL maps

1 0 0
Proof: The normal form is straightforward after the diffeomorphism

22 12 1

1 0 0
a a b

x x x

and scaling 1 provided that 1 0x b a a b x b a a b

The number of parameters has been reduced from 8 to 4 and one modal

1 22 12 2 1 22 12 2and scaling  1 ,   provided that  1 0x b a a b x b a a b
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HOMOGENEOUS AREA PRESERVING CPWL MAP

�� h i h ( b 0) h b ( 1) b 0

In addition to the continuity at the boundary, we assume:

�� The map is homogeneous (case b = 0) so that  b1(a22 1) a12 b2 = 0
This case happens when the fixed points for the left and the right pieces 
of the original map (F and F+) coincide and it is at the boundary 

�� The map is area preserving so that  D = D+ = 1

1
,      

1 0n n n n
T

A TG x x x x

Then, the map F takes the normalized form G

1

1 0

1
,

1 0

n n

n n n n
T

A T
x G x

G x x x x
1 0

Therefore, the parameter space is reduced to the trace plane (T+, T )

Resonances in an area preserving CPWL map, NPDDS, Oct-2014, Tossa de Mar 7



HOMOGENEOUS AREA PRESERVING LINEAR MAP

Consider the homogeneous area preserving linear map A(T)
1T

1

1
1 0n n n

T
A Tx x x

h h i lThen, the eigenvalues are
2

1 2
1 4, , where

2
T T

and the origin is a fixed point of type

Saddle if T > 2 and so the eigenvalues are real and one of them has a

2

Saddle if T > 2, and so the eigenvalues are real and one of them has a 
modulus greater than one

Centre if T < 2 and so both eigenvalues are complex with = 1Centre if T < 2, and so both eigenvalues are complex with = 1

Critical T = 2, and so we have a double eigenvalue 1 = 2 = T/2
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ASSOCIATED SLOPE MAP TO THE MAP A(T)
To study the angular dynamics, we define the following sets:
(a) The straigh line  ,x x

(b) The ray on the left   and the ray on the right  
(c) The vertical rays  0, , 0   and  0, , 0y y y y

0 0

0 1 0
,   i.e., points in  ( ) map to  ( )

1 0 0
T y

A T

Considering the transformation of  lines by means of the map A(T), we get

0 0, , p ( ) p ( )
1 0 0
0

,   i.e., points in  ( ) map to  ( )T T

y y
x

A T
Tx x

1

points in  
1

,   i.  a
1

pe., m
x

A T T x
Tx

 to points in h

Important property: The slope map h is increasing

1h
T

where the slope map h is defined as
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ASSOCIATED CIRCLE MAP TO THE MAP A(T)
If we put = tan( ), S1 and define T = tan 1(T), we can define the map g: S1 S1

0 if /2/2

1

0 if 2
tan tan if 2

if  2

T

T

h T
0

/2/2

1

if  2
tan tan if 

if 2

T

Th
g /2

/2
1

2
tan tan if 2

if  2

T

T

h

+
0

1tan tan if Th

As  implies  and , where tan , a fixed point h g g

/2/2
+ T

As  implies  and , where tan , a fixed point 

of the slope map  determines two fixed points of the associate circle map 

h g g

h g

Note: if tan( ) < T, rays in + ( ) map to + ( ); if tan( ) > T, rays in + ( ) map to ( +)

Resonances in an area preserving CPWL map, NPDDS, Oct-2014, Tossa de Mar 10



THE LINEAR MAP A(T). THE SADDLE CASE T > 2
2 2

1 2
4 4,

2 2
T T T TThe fixed points of the slope map h are

The fixed points of map g are 1 = k + tan 1( 1), 2 = k + tan 1( 2) for k = 0, 1 
and their stability is determined by the stability of the fixed points of the map h

They exist only if T 2 and they satisfy the condition  1 2 = 1

1 22 2
2 1

d 1 d 1Since    and  ,
d d

h h

and their stability is determined by the stability of the fixed points of the map h

2 1

1 2 1 2

1 2 1 2

if 2 : 0 1 ,  so  is attractor and  is repellor
we have  

if 2 : 1 0,  so  is repellor and  is attractor
T T
T T

2 1

1 2 1

1 2

 that  and  are also the eigenvalues of the linear map ,
corresponding  to the line  and  to the line 

n nNote A Tx x

2 1

2 1
If 2 2 , the orbits in the invariant line   converge to the

origin and the remaining orbits are unbounded

T T
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THE LINEAR MAP A(T). THE CENTRE CASE T < 2

If |T| < 2, the eigenvalues are complex and every orbit is bounded

If we put T = 2cos( ), where 0 < < , the dynamics of the circle map g
is then classified according to the rotation number  = /(2 )

If is rational that is = p/q, the dynamics is periodic with period q

If is irrational the dynamics is quasiperiodic

cos1
sin sinBy means of the changeProof : y x

If is irrational the dynamics is quasiperiodic

By means of the change  ,
0 1

cos sin
we get so is equivalent to a rotation

n nProof :   

A T

y x

y y1we get  so  is equivalent to a rotati  ,
sin

on
cosn n A Ty y
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THE LINEAR MAP. RECAP AND CASES T = 2

Centre (focus) if trace T < 2. The orbits are bounded. Also, the orbits 
are periodic if the rotation number is rational or quasiperiodic otherwisep q p

Saddle if trace T > 2. The orbits are unbounded except those contained in 
the line corresponding to the repellor in the circle map. We can distinguish:the line corresponding to the repellor in the circle map. We can distinguish:

Case T > 2 ( 1,2 > 0). The orbits escape along one direction of a straight line

Case T < 2 ( < 0) The orbits escape alternating direction of a straight line

For T = 2, the eigenvalues are 1 = 2 = T/2 = 1

Case T < 2 ( 1,2 < 0). The orbits escape alternating direction of a straight line

Then the line T/2 is invariant. If T = 2 the line 1 is plenty of equilibrium 
points and if T = 2, every point in line 1 is two periodic

The pair of fixed points of the circle map g existing for T > 2 collapses at 
T = 2 and disappear for T < 2. This is a saddle-node bifurcation for g

Resonances in an area preserving CPWL map, NPDDS, Oct-2014, Tossa de Mar 13



SLOPE AND CIRCLE MAPS 
ASSOCIATED TO THE CPWL MAP GASSOCIATED TO THE CPWL MAP G

Let first recall the definition of the area preserving CPWL map G

1

1
,

1 0

1

n n n n

n n

T
A T

T

G x x x x
x G x

1
,

1 0n n n n
T

A TG x x x x

We define the slope maps h , h+ associated to A(T ), A(T+) respectivelyWe define the slope maps h , h associated to A(T ), A(T ) respectively
1 1,h h

T T

We also denote the circle maps associated to h , h+ as g , g+ respectively
The circle map g: S1 S1 associated to the CPWL map G is then defined

3  if    2 2
  if  2 2

g

g
g

Resonances in an area preserving CPWL map, NPDDS, Oct-2014, Tossa de Mar 14



THE CPWL MAP G. SYMMETRY PROPERTIES
1) Map G is invariant under the change of variables and parameters

(x, y, T , T+) ( x, y, T+, T )
Therefore, it is enough to analyze dynamics in the half plane T+ T

2) Map G is reversible under involution , that is RG = G 1R
0 1

R2) Map G is reversible under involution , that is RG  G R
1 0

Consequently, if  G(x0, y0) = (x1, y1),  then  G 1(y0, x0) = (y1, x1)

1Also, if is a -periodic orbit of the circle map , thenq g1

1
1

1

Also, if  ...  is a periodic orbit of the circle map , then

  ...  is a -periodic orbit of , where 2

  ...  is a -periodic orbit of  with opposite stability that 

q

q i i

q

q g

q g

q g

tan tan

To every value  in  (analogously to  in ) we can associate the ray 
   if 2 3 2    or     if 2 2

i i

i i

i i

q

If   and  are the stable and the unstable orbits in  respectively, 
the

g
n the dynamics in  is unbounded tending to the rays associated to ,  

except for the orbits in the rays associated to that converge to the origin
G
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THE CPWL MAP G. THE CASE T 2

1 2
1 2If 2,  then  and  are invariant rays for , and  and  are fixed 

points for the circle map , where
T

g
G

For map is an attractor and is a repellorg

2 2

1
1 2

4 4
, , tan ,  1,2

2 2 k k

T T T T
k

1 2For map ,  is an attractor and  is a repellorg

an orbit starting in  will evAssume entuall2, thus y go into T

2 2 then the orbits of are unbounded tending to except thoseIf T T G

If 2 2 then and we have a fold bifurcation for theT T

1

2

 2,  2,  then the orbits of  are unbounded tending to ,  except those 
in  that converge to the origin

If T T G

  or to the ray If  2,   2, the orbits of  will tend either to the ray , T T G
1

1 2 1 2 If  2,  2,  then ,  and we have a fold bifurcation for the 
circle map . The ray  is plenty of equilibria and any other orbit is unbounded

T T
g

Due to the symmetry, the case T+ 2 can be reduced to the case T 2

1 1
y, , y

 depending on the ini
,

which can be analogously def tined, ial point

Resonances in an area preserving CPWL map, NPDDS, Oct-2014, Tossa de Mar 16



THE CPWL MAP G. THE CASE T T+ 4, T < 0

We analyze the properties of the composition of the linear maps A(T ) A(T+)

1 2 1 2

The corresponding slope map   
1

has the fixed points and with stable and unstable

Th h
T T T

1 2 1 2

2

has the fixed points    and  , with  stable and  unstable

1and being  4
2

T T
T T T T T T

1 2

1 1
1 2 1 2 1 2 1 2

The fixed points of the composition  are  and 

The corresponding angles are tan , tan , so that

h h
T T

1,2 1,2 1,2 1,2

1 1 2 2

The corresponding angles are  tan ,  tan ,  so that

,  and ,  are 2-periodic orbits (repellor and attractor) of  map g

1,2 1,2

1 2

1,2Since ,  transforms ray  into ray  and vice verse. The orbits of 

are unbounded and agglomerate around , except in  that converge to origin

T G G 
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DYNAMICS CLASSIFICATION FOR MAPS g AND G
The remaining parameter region is {(T , T+), T T+ < 4, T < 2, T+ < 2} 
Here, there is an intricate pattern of sub regions with different dynamics

Let us classify the dynamics found in this parameter region by considering 
the number of periodic orbits for the circle map g, having a period q 3

2) There is only a pair of q-periodic orbits. Then, due to the reversibility, they 

1) Every orbit is q-periodic. Here, Gq = I, and we say G is a finite order map

are symmetric each other and they have opposite stability. The origin is a saddle 
point for map G and we call this dynamics as ray type because unbounded orbits of 
G agglomerate around the rays associated to the points of the stable orbit of g

3) There is only one q-periodic orbit, which due to reversibility is R-symmetric
Then, if q is odd a point of the orbit must be either /4 or 5 /4, and if q is even two 
points of the orbit are either /4 and 5 /4 or none of them.points of the orbit are either /4 and 5 /4 or none of them.
If T = T+ = T, this case is only possible if T = 2 with q = 1 or if T = 2 with q = 2 

4) There are no periodic orbits. Then the rotation number is irrational
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FIBONACCI POLYNOMIALS FOR An(T)

1

1 2

1
   If  ( ) ,   then  ,

1 0
n nn

n n

T TT
Proposition : A T A T

T T1 2

2
2

1 2

where 

  and  1

n n

nfloor
k n k

n n n n

n k
T T T T T T

k0k k

Proof: From Cayley Hamilton theorem, we have An = TAn 1 An 2 for n 2, 
then we apply induction with A0 = I and A1 = A(T)

The generalized Fibonacci polynomial sequence is defined recursively as

0 10 1u x y u x y

then we apply induction with A  I and A  A(T)

0 1

1 2

, 0, , 1

, , ,n n n

u x y u x y

u x y xu x y yu x y

By induction can be proved that
2

2 1
1

0

1
, ,    thus     , 1

nfloor
k n k

n n n
k

n k
u x y y T T u T

k

By induction can be proved that
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LINES WITH CONTINUOUS ROTATION NUMBER

  Along the line in the parameter planeProposition : 

1

, 2,  2cos   for 2:  2CR T T T T p
p

T1cos2 2the rotation number is  ,   where  
21 2

T

p

0 Since ,  for every value  with a corresponding angle 

2 0 Then there exists an integer

p

p p

Proof : A T I

x A T x x k

x

G0 0 0 0

0 1 1

2 0,    . Then, there exists an integer  

such that , which corresponding angle satisfies 2 0 

I

p p

k

x A T x x k

x x

G

G

f hi i i l h li b l di h i hA TIn fact, this is equivalent to the linear map  by excluding the  right 

iterations and then, the expression of the rotation number is straightforward

A T p
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POINTS WITH FINITE ORDER DYNAMICS

We define the set of points in the 
parameter plane = :T TFOparameter plane    ,

2cos ,  2

:

p

T T

T T p
p

FO

2cos , 2 
p

p

T p
p

T

In fact, points in FO are the intersection 
of CR lines with analogous CR+ lines

,

so  is of 

For points 

finite order with per

in , 

io  d  

p pFO T I

p

A TA

pG

Next, we study the dynamics of G with parameter values around FO points

p p p
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RAY DYNAMICS WITH PATTERN (p , p+)
We say that a periodic orbit of  has the pattern ,  if it is constitued by 

consecutive points with 2 3 2, followed by points 2 2

g p p p

p

T T T T T T T T

,

consecutive points with 2 3 2,  followed by  points 2 2

Thu dynamics of  is reprs e t sentehe d by    , 
p p

p

T TG p pA T A T

1 1 1 2 1

1 1 2 1 1 2 2

p p p p p p p p

p p p p p p p p

T T T T T T T T

T T T T T T T T

,
If   and , then , ,  that is  is of finite order and so

p p p p p p

- +

T T T T T T I

every orbit is periodic with pattern p , p and two of  the orbits are R - symmetric

G

, ,
, ,

We will see that the pattern ,  is 

We have det 1 and let us define trace 2

in some regions contaadmissible for  ining 

p p p p
T T T T

p p Gp , g

,

g

, so we have a  in the quoted r
p p

ray type dynamics

p p

T T egions excluding 

being the boundary determined by the condition 0

, ,
p p

T T

T T
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EXAMPLE: 7-PERIODIC ORBIT FOR MAP g

Let be one of the two symmetric periodic
Let us consider the  point 1, 4, 3p

R
FO p

Let  be one of the two -symmetric periodic 
orbits of the map , which is drawn on the left

S R
g

4,3The line    is defined by  , 0

Along this line,  the -symmetric periodic

a T T

R
orbit of map  evolves as shown belowg
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POCKETS WITH 7-PERIODIC ORBITS FOR g
Let us consider the FO point 4, p = 5, p+ = 2

We saw the line a ends at the point 4, where p ,
the R-symmetric orbit has the transition from 
the pattern (4, 3) to the ones (5, 2) and (6, 1)

The pattern (6, 1) continues along the line c

The R-symmetric orbit with the pattern (5, 2) 
along the line b is plotted below Note this isalong the line b is plotted below. Note this is 
the other R-symmetric orbit at point 4
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INSIDE THE POCKET
Inside the parameter region with ray dynamics, 
we have two periodic orbits for map g with 
opposite stability arising from each one of theopposite stability arising from each one of the 
R-symmetric periodic orbits at the boundaries 
(see the diagrams plotted below)

h i li li i h d iThere exists a line splitting the ray dynamics 
region in two parts. Each one has the pattern of 
the corresponding boundary. At this transition 
line (see point 8), the pattern changes and can 
be computed from 4,3 12

, 0T T
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PROPERTIES OF AT FO POINTS

1 2 If  2cos , then    1, 0, 1n n n n n n nProposition : T T T T
n

1

1 2

 
1

Recall that ( ) ,   and 
1 0

n nn n
n

n n

Proof :
T TT

A T A T A T I
T T1 2n n

: The derivative of the function   is

d 2 1
nProposition T

T T T T1
2

d 2 1
                             

d 4
n n nT nT T n T
T T

 From  and the derivative d d , 

by induction we can evaluate d d  at  for   0...2
h l ll h di d h h i f h

n k n n

j j
n k n

Corollary : T T T

T T T k

,

These results allow us to compute the gradient and the hessian of the 

function  
p k p k

T , , for 0, 1,  at the point ,
p p

T k T T
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PROPERTIES OF GRADIENT AND HESSIAN OF 

, ,
  , ,grad 0

p p p p p p p p
T T T T

, ,
  , ,0  and  grad 0  for 1

p k p k p p p k p k p p
T T T T k

2

2 2,

cos cos
  det hessian ,  =

2sin sin
p p p p

p p
p p

T T 0

If  , then ,is saddle shapped around 
p p p p

p p T T

2sin sin
p p

,

,
there exist at least two 

pp

Thus 0

The pattern ,  is admissible for the dynamics along 

lines through ,  satisfyi

one of th

ng 

ese l

,
p p p p

p p p p

p p

T T

p p

T T

ines, whiche patte , s ad ss b e o t e dy a cs a o g o e o t esep p

1 1

es, w c
is the boundary of the ray dynamics region in the parameter plane with that pattern.

This line exits until the two neighbor poin ,ts 
p p

T T
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SUBREGION TONGUES AT FO POINTS

`

  The boundaries of the subregions with ray dynamics and patterns 

1, 1  collapse at the point , ,  so they are tongue shapped
p p

Proposition :
p p T T

,
  For 1,  we have grad , 0,  then we compute

the slope of the boundary lines for ray dynamics with patterns ,
p k p k p p

Proof : k T T

p k p k
at the point ,  and obtain that both boundary lines have

p p
T T the common slope 

2

sin
dTd ,
d

sin
p p

pT pT T
T p

p

Moreover, the transition lines where 
the pattern ,  changes to one p p

of the patterns 1, 1  also 
has the previous common slope

p p
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SUBREGION TONGUES AT DIAGONAL POINTS

, , ,We have  , grad , det hessian , 0p p p p p p p p p p p pT T T T T T

, ,

,

It can be shown that  , 0  and  , 0 

for  sufficiently small, then  is saddle shapped around ,

p p p p p p p p

p p p p

T t T t T t T t

t T T

Considering the parameter symmetry, we 
obtain that the slopes of both boundary 

dlines are   1  at ,d

Thus we conclude that the three patterns

p p
T T TT

Thus, we conclude that the three patterns 

,  for 0, 1 are admissible 

in a region whi

p k p k k

ch is tongue shaped andin a region which is tongue shaped and 
symmetric with respect to the diagonal
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SUMMARY OF RAY DYNAMICS REGIONS
Some bifurcation lines in the parameter plane have been plotted on the 
left panel and a zoom is showed on the right panel
The number of pockets with period q for map g increases with q
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CONCLUSIONS

A circle map g is defined for the area preserving CPWL map G, so that the 
periodic dynamics of gives account for the ray dynamics of Gperiodic dynamics of g gives account for the ray dynamics of G

Lines in the parameter plane with a continuous rotation number CR exist 
f h G f h li G(T T) f 2 T 2for the map G, apart from the linear case G(T, T), for 2 < T < 2

Around the finite order points FO (defined by the intersection of the CR+  

and CR lines) there exist tongue shaped regions with ray dynamics. For 
each periodicity, several pockets linked through those FO points exist

Conjecture: Associated to some of the finite order points at the diagonal of 
the parameter plane, there exists a parametric ray dynamics region having 
a pocket structure as the one obtained from the crossing of the CR linesa pocket structure as the one obtained from the crossing of the CR lines. 
These regions follow the well known Farey sequence
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