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The problem statement
Using wavelets, we give an analytical approximation of a case of a Strange Non–Chaotic Attractor (SNA) given by the solution of a (non) – linear system of equations.

Dynamical motivation

Consider a skew product on the cylinder
(
θk+1
xk+1

)
=

(
Rω(θk)

Fσ,ε(θk, xk)

)
, where

Rω is an irrational rotation and Fσ,ε : S1 × R −→ R.

Figure 1: Notice the abrupt changes in
the graph of the attractor (σ = 1.5 and
ε = 0).

There are several works (see [3] and
references therein) where it is shown
that, under mild conditions, there ex-
ists an upper semi continuous func-
tion ϕsuch that verifies the Invariance
Equation and if we restrict ourselves
to the Keller setting such ϕ is a SNA
if σ > 1 and ε = 0, where the
strangeness of the attractor refers to
complicated geometry (see Figure 1).
On the other side, provided that Fσ,ε ∈

Cn+1(S1 × R,R) then the linear op-
erator between the functional spaces
given by

T : Cn(S1 × R,R) −−−−−−−→ Cn(S1 × R,R) (1)
ϕ 7−→ Fσ,ε(θ, ϕ(θ)) − ϕ(Rω(θ))

is a differentiable operator and also, notice, that if there exists ϕ such that
Tϕ(Rω(θ)) = 0 then ϕ is an invariant curve: verifies the Invariance Equation.

Wavelet tools
Let ψ(x) ∈ L 2(R) be a function whose integer translates and dilations by powers
of two: 2− j/2ψ

(
x−2 jn

2 j

)
, is an orthonormal basis of L 2(R). Such a function is

called mother wavelet (see [4]). Since our framework is S1, we use the common
trick of the periodization of a R-function by setting ψPER

j,n (x) as follows:

ψPER
j,n (x) =

∑̀
∈Z
ψ j,n(x + `) = 2− j/2 ∑̀

∈Z
ψ

(
(x+`)−2 jn

2 j

)
.

Theorem. [(see [2])] An orthonormal basis of L 2(S1) is given by the sytem
{1, ψPER

j,n with j ≤ 0 and n = 0, 1, . . . , 2− j − 1}.
Four our purposes we will be focused on the Daubechies wavelets which are a
family of orthogonal wavelets characterized by a maximal number of vanishing

moments, p, for some given support, [1 − p, p]:
p∫

1−p
xkψ(x) dx = 0 for 0 ≤ k < p.

Proposition 1. Let ψ(x) be a R-Daubechies wavelet with p > 1 vanishing
moments. Then, given j ≤ 0 and θ ∈ S1 ψPER

j,n (θ) =
∑
`∈Λθ

∑
n∈ℵθ

ψ j,n(θ), where

Λθ ⊂
[
d

1−p
2− j − θe, b

p−1
2− j − θc

]
and, being t = b2− jθc and α = {2− jθ}, ℵθ ⊂

[max (0, 2− j` + t + dαe − p),min (2− j − 1, 2− j` + t + p − 1)].
As an easy corollary, we have that for an integer J “big enough” then the follow-
ing equality holds ψPER

j,n (θ) = ψ j,n(x) if j > J.
Observation 2. The Daubechies wavelets, in contrast to the trigonometric poly-
nomials, do not have a closed expression. Therefore, it is necessary to perform a
strategy to, given a point θ̃ ∈ S1, evaluate ψPER

j,n (θ̃). To do this, in the R-case there
are some methods and we have modified, using Proposition 1, one of them: the
Daubechies – Lagarias algorithm (see [1, 5]) in order to use it on S1 .
With the above Observation and Proposition 1 in mind we can prove the following
Proposition 3. Let θ̃ be an arbitrary point of S1 and ψ(x) be a R-Daubechies
wavelet with p > 1 vanishing moments. Then, for the vector u and the matrcies
T0 and T1,

ψPER(θ̃) =
∑
`∈Λθ

lim
k→∞

u(θ̃ + `)′v(θ̃ + `, k) =
∑
`∈Λθ

lim
k→∞

u(θ̃ + `)′

 1
2p − 1

1′
∏

i∈dyad({2θ̃+`},k)

Ti

 ,
where u(·), T0 and T1 are fully determined by ψ and 1′ is a row vector of ones.

Forging a nonlinear system of equations
Using T, from Equation (1), and a equidistributed partition of S1 with N = 2J

points, namely θi = i/N, we want to express the invariant curve, ϕ, as a finite

expansion like ϕ ∼ a0 +
0∑

j=−J

2− j−1∑
n=0

〈
ϕ, ψPER

j,n

〉
ψPER

j,n = a0 +
∑
l∈Λ

dPER
l ψPER

l ,where l = 2 j +n

(therefore j = blog2(l)c and n = l − 2 j), performing a (non) – linear system of
equations where the unknowns are a0 and the coefficients dPER

l by setting:

Tϕ(Rω(θi)) = 0⇔

F of Newton’s method︷                                                                     ︸︸                                                                     ︷
a0 +

∑
l∈Λ

dPER
l ψPER

l (Rω(θi)) − Fσ,ε

θi, a0 +
∑
l∈Λ

dPER
l ψPER

l (θi)

.
In order to solve the above System, as usual, we will use Newton’s method:
JF (xn)(X) = −F (xn) for the unknown X = xn+1 − xn and given an initial seed x0.
In our particular framework, JF has some interesting properties. Indeed,
Lemma 4. The (i, l)-th entry of the Jacobian matrix of JF , for the case (1) and
using a wavelet expression of ϕ, is given by:

1 −
∂Fσ,ε

(
θi,a0+

∑
l∈Λ

dPER
l ψPER

l (θi)
)

∂x if l = 0,

ψPER
l (Rω(θi)) −

∂Fσ,ε

(
θi,a0+

∑
l∈Λ

dPER
l ψPER

l (θi)
)

∂x ψPER
l (θi) otherwise.

Moreover, if ψ(x) is a R-Daubechies wavelet then JF is a “highly structured”
sparse matrix.
To get the initial guess x0 is enough to use the Trapezoidal rule. Indeed,
Lemma 5. Let ΨPER

N be the N×N matrix whose columns are ψPER
l (θi) and consider

the Transfer Operator, T(ϕ)(θ) = Fσ,ε(θ, ϕ(θ)). Then x0 = ΨPER
N ϕ̃ is an exponen-

tially close “good seed” where, being k > k0 ∈ N, ϕ̃ = T(ϕk−1) = Tk(c) and
ϕ0 = c is sufficiently large positive constant function.

A (small) linear system of equations
Fix N ∈ N such that is “big enough” and consider

(
ΨRω

PER
N − ∆NΨPER

N

)
X = −F (xn)

to be the linear system of equations given – created by Proposition 3 and Lem-
mae 4 & 5. The system, large and sparse, is solved using a Krylov method:
Generalized Minimal Residual Method (GMRES). Such method is an iterative
method that seek the solution on a linear subspace generated by the powers of the
system matrix against the residual vector r = JF

∣∣∣
xn
− F (xn).

For a fixed σ > 1 and ε ≥ 0 and different levels of tolerance in the New-
ton’s method we have carried out, for a particular instance of the Keller setting
(Fσ,ε(θ, x) = 2σ(ε + |cos(2πθ)|) tanh(x)

∣∣∣
R+ ), some succesful experiments in terms

of expended time and the N’s coice (2J with J = 10, 11, . . . , 15) with GMRES.

One step beyond: switch small by huge, but... why?
It is known that the wavelet coefficients can characterize the lack of regularity of
a parameter dependent function (see [2]) and, also, the behaviour of the Newton’s
method can be used in the same way. On the other side, since in our case JF is
a sparse matrix the “large matrix problems” appear noticeably after (respect a
dense matrix). In view of that, in order to have more information the increase of
N seems to be necessary but, the standard techniques to speed up the convergence
of the GMRES method seems to be not very useful in our framework.
Recall that the system to solve is

(
ΨRω

PER
N − ∆NΨPER

N

)
X = −F (xn) and in a future

work it will be preconditioned using two matrices. The first one is the analogous
of the Fast Fourier Transform in the wavelets framework: the Discrete Wavelet
Transform DWT (see[4]). The second one is recalling that ΨPER

N must be an or-
thogonal matrix. Therefore, (ΨRω

PER
N ΨPER

N
>
− ∆N)Y = −F (xn), with Y = ΨPER

N X
must be the reformulation of the system to solve using the GMRES method.
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