Approximating invariant objects using wavelet expansions David Romero i Sànchez

joint work with Lluís Alsedà i Soler.

Department of Mathematics, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalunya – 2014

The problem statement

Using wavelets, we give an analytical approximation of a case of a Strange Non–Chaotic Attractor (SNA) given by the solution of a (non) – linear system of equations.

Dynamical motivation

Consider a skew product on the cylinder

 R_{α} **1S** There are several works (see [3] and references therein) where it is shown that, under mild conditions, there ex-

Forging a nonlinear system of equations

Using **T**, from Equation (1), and a equidistributed partition of \mathbb{S}^1 with $N = 2^J$ points, namely $\theta_i = i/N$, we want to express the invariant curve, φ , as a finite expansion like $\varphi \sim a_0 + \sum_{j=-J}^{0} \sum_{n=0}^{2^{-j}-1} \left\langle \varphi, \psi_{j,n}^{\text{PER}} \right\rangle \psi_{j,n}^{\text{PER}} = a_0 + \sum_{l \in \Lambda} d_l^{\text{PER}} \psi_l^{\text{PER}}$, where $l = 2^j + n$ (therefore $j = \lfloor \log_2(l) \rfloor$ and $n = l - 2^j$), performing a (non) – linear system of equations where the unknowns are a_0 and the coefficients d_1^{PER} by setting: \mathcal{F} of Newton's method $\mathbf{T}\varphi(R_{\omega}(\theta_{i})) = 0 \Leftrightarrow a_{0} + \sum_{l \in \Lambda} d_{l}^{\text{PER}}\psi_{l}^{\text{PER}}(R_{\omega}(\theta_{i})) - F_{\sigma,\varepsilon} \left[\theta_{i}, a_{0} + \sum_{l \in \Lambda} d_{l}^{\text{PER}}\psi_{l}^{\text{PER}}(\theta_{i})\right].$ In order to solve the above System, as usual, we will use Newton's method: $\mathbf{J}\mathcal{F}(x_n)(\mathbf{X}) = -\mathcal{F}(x_n)$ for the unknown $\mathbf{X} = x_{n+1} - x_n$ and given an initial seed x_0 . In our particular framework, $J\mathcal{F}$ has some interesting properties. Indeed, **Lemma 4.** The (i, l)-th entry of the Jacobian matrix of \mathbf{JF} , for the case (1) and using a wavelet expression of φ , is given by: $-\frac{\partial F_{\sigma,\varepsilon} \left(\theta_i, a_0 + \sum_{l \in \Lambda} d_l^{\text{PER}} \psi_l^{\text{PER}}(\theta_i)\right)}{\partial r}$ *if* l = 0, $\psi_{l}^{\text{PER}}(R_{\omega}(\theta_{i})) - \frac{\partial F_{\sigma,\varepsilon}\left(\theta_{i},a_{0}+\sum_{l\in\Lambda}d_{l}^{\text{PER}}\psi_{l}^{\text{PER}}(\theta_{i})\right)}{\partial r}\psi_{l}^{\text{PER}}(\theta_{i})$ otherwise. Moreover, if $\psi(x)$ is a \mathbb{R} -Daubechies wavelet then $\mathbf{J}\mathcal{F}$ is a "highly structured" sparse matrix. To get the initial guess x_0 is enough to use the *Trapezoidal rule*. Indeed, **Lemma 5.** Let Ψ_N^{PER} be the N×N matrix whose columns are $\psi_1^{\text{PER}}(\theta_i)$ and consider the Transfer Operator, $\mathfrak{T}(\varphi)(\theta) = F_{\sigma,\varepsilon}(\theta,\varphi(\theta))$. Then $x_0 = \Psi_N^{\text{PER}} \tilde{\varphi}$ is an exponentially close "good seed" where, being $k > k_0 \in \mathbb{N}$, $\tilde{\varphi} = \mathfrak{T}(\varphi_{k-1}) = \mathfrak{T}^k(c)$ and $\varphi_0 = c$ is sufficiently large positive constant function.

ists an upper semi continuous function φ such that verifies the *Invariance* Equation and if we restrict ourselves to the Keller setting such φ is a SNA if $\sigma > 1$ and $\varepsilon = 0$, where the strangeness of the attractor refers to complicated geometry (see Figure 1). On the other side, provided that $F_{\sigma,\varepsilon} \in$ $C^{n+1}(\mathbb{S}^1 \times \mathbb{R}, \mathbb{R})$ then the linear opgiven by

is a differentiable operator and also, notice, that if there exists φ such that $\mathbf{T}\varphi(R_{\omega}(\theta)) = 0$ then φ is an invariant curve: verifies the Invariance Equation.

Wavelet tools

Let $\psi(x) \in \mathscr{L}^2(\mathbb{R})$ be a function whose integer translates and dilations by powers of two: $2^{-j/2}\psi\left(\frac{x-2^{j}n}{2^{j}}\right)$, is an orthonormal basis of $\mathscr{L}^{2}(\mathbb{R})$. Such a function is called *mother wavelet* (see [4]). Since our framework is S^1 , we use the common

trick of the periodization of a \mathbb{R} -function by setting $\psi_{in}^{\text{PER}}(x)$ as follows: $\psi_{j,n}^{\text{PER}}(x) = \sum_{\ell \in \mathbb{Z}} \psi_{j,n}(x+\ell) = 2^{-j/2} \sum_{\ell \in \mathbb{Z}} \psi\left(\frac{(x+\ell)-2^{j}n}{2^{j}}\right).$ **Theorem.** [(see [2])] An orthonormal basis of $\mathscr{L}^2(\mathbb{S}^1)$ is given by the sytem $\{1, \psi_{i,n}^{\text{PER}} \text{ with } j \leq 0 \text{ and } n = 0, 1, \dots, 2^{-j} - 1\}.$ Four our purposes we will be focused on the *Daubechies wavelets* which are a family of orthogonal wavelets characterized by a maximal number of vanishing moments, p, for some given support, [1 - p, p]: $\int x^k \psi(x) dx = 0$ for $0 \le k < p$. **Proposition 1.** Let $\psi(x)$ be a \mathbb{R} -Daubechies wavelet with p > 1 vanishing moments. Then, given $j \leq 0$ and $\theta \in \mathbb{S}^1$ $\psi_{j,n}^{\text{PER}}(\theta) = \sum \psi_{j,n}(\theta)$, where $\Lambda_{\theta} \subset \left[\left\lceil \frac{1-p}{2^{-j}} - \theta \right\rceil, \left\lfloor \frac{p-1}{2^{-j}} - \theta \right\rfloor \right] and, being t = \lfloor 2^{-j}\theta \rfloor and \alpha = \{2^{-j}\theta\}, \aleph_{\theta} \subset \mathbb{C}$ $[\max(0, 2^{-j}\ell + t + \lceil \alpha \rceil - p), \min(2^{-j} - 1, 2^{-j}\ell + t + p - 1)].$ As an easy corollary, we have that for an integer J "big enough" then the following equality holds $\psi_{j,n}^{\text{PER}}(\theta) = \psi_{j,n}(x)$ if j > J. **Observation 2.** The Daubechies wavelets, in contrast to the trigonometric polynomials, do not have a closed expression. Therefore, it is necessary to perform a strategy to, given a point $\tilde{\theta} \in \mathbb{S}^1$, evaluate $\psi_{j,n}^{\text{PER}}(\tilde{\theta})$. To do this, in the \mathbb{R} -case there are some methods and we have modified, using Proposition 1, one of them: the Daubechies – Lagarias algorithm (see [1, 5]) in order to use it on \mathbb{S}^1 . With the above Observation and Proposition 1 in mind we can prove the following **Proposition 3.** Let $\tilde{\theta}$ be an arbitrary point of \mathbb{S}^1 and $\psi(x)$ be a \mathbb{R} -Daubechies wavelet with p > 1 vanishing moments. Then, for the vector u and the matrices T_0 and T_1 ,

A (*small*) linear system of equations

Fix $N \in \mathbb{N}$ such that is "big enough" and consider $\left(\Psi_{R_{\omega}N}^{PER} - \Delta_N \Psi_N^{PER}\right) X = -\mathcal{F}(x_n)$ to be the linear system of equations given – created by Proposition 3 and Lemmae 4 & 5. The system, large and sparse, is solved using a Krylov method: Generalized Minimal Residual Method (GMRES). Such method is an iterative method that seek the solution on a linear subspace generated by the powers of the system matrix against the residual vector $r = \mathbf{J}\mathcal{F}|_r - \mathcal{F}(x_n)$.

For a fixed $\sigma > 1$ and $\varepsilon \geq 0$ and different levels of tolerance in the Newton's method we have carried out, for a particular instance of the Keller setting $(F_{\sigma,\varepsilon}(\theta, x) = 2\sigma(\varepsilon + |\cos(2\pi\theta)|) \tanh(x)|_{\mathbb{R}^+})$, some succesful experiments in terms of expended time and the N's coice $(2^J \text{ with } J = 10, 11, \dots, 15)$ with GMRES.

One step beyond: switch small by huge, but... why?

It is known that the wavelet coefficients can characterize the lack of regularity of a parameter dependent function (see [2]) and, also, the behaviour of the Newton's method can be used in the same way. On the other side, since in our case $J\mathcal{F}$ is a sparse matrix the "*large matrix problems*" appear noticeably after (respect a dense matrix). In view of that, in order to have more information the increase of N seems to be necessary but, the standard techniques to speed up the convergence of the GMRES method seems to be not very useful in our framework.

$$\psi^{\text{PER}}(\tilde{\theta}) = \sum_{\ell \in \Lambda_{\theta}} \lim_{k \to \infty} u(\tilde{\theta} + \ell)' v(\tilde{\theta} + \ell, k) = \sum_{\ell \in \Lambda_{\theta}} \lim_{k \to \infty} u(\tilde{\theta} + \ell)' \left[\frac{1}{2p-1} \mathbf{1}' \prod_{i \in \text{dyad}(\{2\tilde{\theta} + \ell\}, k)} T_i \right],$$

where $u(\cdot)$, T_0 and T_1 are fully determined by ψ and $\mathbf{1}'$ is a row vector of ones.

Recall that the system to solve is $\left(\Psi_{R_{\omega}N}^{PER} - \Delta_N \Psi_N^{PER}\right) X = -\mathcal{F}(x_n)$ and in a future work it will be preconditioned using two matrices. The first one is the analogous of the Fast Fourier Transform in the wavelets framework: the Discrete Wavelet Transform DWT (see[4]). The second one is recalling that Ψ_N^{PER} must be an orthogonal matrix. Therefore, $(\Psi_{R_{\omega}N}^{PER}\Psi_{N}^{PER\top} - \Delta_{N})Y = -\mathcal{F}(x_{n})$, with $Y = \Psi_{N}^{PER}X$ must be the reformulation of the system to solve using the GMRES method.

References

Wł

- [1] I. DAUBECHIES, Ten lectures on wavelets, vol. 61 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
- [2] E. HERNÁNDEZ AND G. WEISS, A first course on wavelets, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1996. With a foreword by Yves Meyer.
- [3] À. JORBA, J. C. TATJER, C. NÚÑEZ, AND R. OBAYA, Old and new results on strange nonchaotic attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), pp. 3895–3928.
- [4] S. MALLAT, A wavelet tour of signal processing, Academic Press Inc., San Diego, CA, 1998.
- [5] B. VIDAKOVIC, Statistical modeling by wavelets, Wiley Series in Probability and Statistics: Applied Probability and Statistics, John Wiley & Sons, Inc., New York, 1999. A Wiley-Interscience Publication.