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Description of the problem

Consider the following quasi-periodically forced discrete dynam-
ical system: {

x̄ = f (x, θ),

θ̄ = θ + ω.

Where x ∈ U, θ ∈ T, f : U × T 7→ U is of class Cr+1, r ≥ 0,
and ω ∈ (0, 2π) \ 2πQ.
Suppose there exists an invariant curve, a function x ∈
Cr(T,U), such that

x(θ + ω) = f (x(θ), θ).

The linear dynamics around the invariant curve is described by:{
x̄ = A(θ)x,
θ̄ = θ + ω.

(1)

We have named A(θ) := Dxf (x(θ)). Any system such as (1) is
called quasi-periodic linear skew product, or a quasi-periodic
Cr cocycle.

Reducibility
Definition

System (1) is said to be Cr -reducible if there exists a Cr

change of variables x = C(θ)y such that transforms the
former system into: {

ȳ = By ,
θ̄ = θ + ω.

Where the matrix B = C−1(θ + ω)A(θ)C(θ) does not
depend on θ.

Essential non-reducibility

Reducibility can have a topological obstruction. In that case we
speak about essential non-reducibility:

Definition

Let A ∈ Cr(T,GL2 R), r ≥ 0. Fix a vector v ∈ R2 \ {0} and
consider the curve vA at R2 \ {0} given by vA(θ) = A(θ)v .
We define the winding number of A, wind A, as the winding
number of vA around the origin of R2.

I The winding number of a cocycle does not depend on the
choice of the vector v .

I The winding number is invariant under conjugation. Since a
constant matrix B verifies wind B = 0, if A is a cocycle such
that wind A 6= 0, then A is essentially non-reducible.

I A linear map coming from a Poincaré section of a quasi-
periodic linear ODE has winding number zero.

Affine systems
Consider the following affine system on the plane:{

x̄ = µA(θ)x + b(θ),

θ̄ = θ + ω,

with A ∈ Cr(T,GL2 R) and b ∈ Cr(T,R2) =: E , r ≥ 0, en-
dowed with the standard Cr norm. Let ‖A‖ = sup‖x‖=1 ‖Ax‖
and ρ(A) = limk→∞ ‖Ak‖1/k .
I If ρ(A) < 1 an attracting invariant curve appears as a fixed

point of the operator:

T
(
x(θ)

)
= µA(θ − ω)x(θ − ω) + b(θ − ω).

Goal of this work
I We show that non-reducibility has dynamical manifestation.
I We study the destruction of the family of attracting invariant

curves of the model:
(

x̄
ȳ

)
= µ

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
v1
v2

)
,

θ̄ = θ + ω.

(2)

I Here, µ is a positive parameter.
I The linear behaviour of the model is essentially non-reducible.
I There exists a smooth invariant curve zµ for each µ 6= 1.
I The curve zµ is attracting when µ < 1.

Theorem

Consider the system (2). Assume the rotation number ω to be
of constant type. Then, when µ→ 1:

1. The invariant curve zµ undergoes a fractalization process,
i.e.

‖z′µ‖∞
‖zµ‖∞

= O(1− µ)−1.

2. The winding number of zµ around any point of R2 verifies the
following:

wind zµ = O(1− µ)−1.

Corollary

Let zµ be the invariant curve of (2). It holds⋃
µ∈(µ0,1)

graph zµ = R2 for any µ0 ∈ (0, 1).

Numerical experiments: exploring the breakdown scenario
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Red: Plot of ‖zµ‖∞. Green: Plot of the function 2(1− µ)−1/2.
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Red: Length of zµ. Green: Plot of the function 3(1− µ)−3/2.
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Red: Plot of ‖z ′µ‖∞. Green: Plot of the function 4
5(1− µ)−3/2.
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Red: Plot of wind zµ. Green: Plot of the function 1
2(1− µ)−1.

Scenario for the breakdown of the curve.

Sketch the proof

We take advantage on the identification between R2 and the complex plane.{
z̄ = µeiθz + c,
θ̄ = θ + ω.

It is possible to compute explicitly the Fourier expansion for the invariant curve:

zµ(θ) = c
∞∑

k=0

µke−i k(k+1)
2 ωeikθ, (3)

which is convergent whenever µ < 1. The series was studied by Hardy and Littlewood in
1914 , from their work it is easy to see that, if ω is of constant type:

‖zµ‖∞ = O(1− µ)−1/2.

‖z′µ‖∞ = O(1− µ)−3/2.

By the principle argument, the winding number of (3) is the number of zeros in the unit disk
of the function

f (z) = c
∞∑

k=0

e−i k(k+1)
2 ωzk .

The winding number, hence, can be defined for a full measure set of µ’s and

wind zµ = O(1− µ)−1.

On the reducible case
Assume we deal with a reduced affine system with one dimensional complex coordinates:{

ζ̄ = µζ + b(θ),

θ̄ = θ + ω.

Assume:
I The rotation number ω is Diophantine.
I The independent term b is smooth.
We look for a curve ζµ ∈ Cr(T,C) which satisfies the condition of invariant curve. It is
possible to find explicitly the Fourier coefficients.

ζ
µ
k =

bk
eikω − µ

, k ∈ Z.

The smoothness of b implies a suitable decay on the values |bk |, then:
I If b is average free, the decay on the values |bk |, imply the smoothness of ζµ.
I If b is average different from zero, the invariant curve diverges when µ→ 1 with velocity
O(1− µ)−1 and with bounded derivative.

I No fractalization occurs in the reducible case.
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