On the dynamics of an affine system with non-reducible linear behaviour 1
Marc Jorba, Angel Jorba 9 Universitat de Barcelona
Universitat de Barcelona

Description of the problem

Consider the following quasi-periodically forced discrete dynam- Essential non-reducibi“ty Goal of this work
ical system: . - | | » We show that non-reducibility has dynamical manifestation.
x = f(x,0), Reducibility can have a topological obstruction. In that case we » We study the destruction of the family of attracting invariant
0 =0+ w. speak about essential non-reducibility: curves of the model:
and w € (0,27) \ 27 Q. \y) #\sin6 coso y Vo |’ (2)
Suppose there exists an invariant curve, a function x € Let A € C'(T,GLoR), r > 0. Fix a vector v € R2 \ {0} and 7] =0 4 w.
C’(T, U), such that - 22 - _ \
(0 conS|d9r e curve va IR, 0 Jiven Dy Va(0) = '.4(9.)‘/' » Here, p IS a positive parameter.
x(0 + w) = 1(x(0), 0). i GRS e winelig) MLmIoEs @ L5 Lilielz), £ i winelie The linear behaviour of the model is essentially non-reducible
. . L . . | number of v, around the origin of R2. T _ S y |
The linear dynamics around the invariant curve is described by: » There exists a smooth invariant curve z,, for each p # 1.
x = A(9)x, » The curve z,, is attracting when p < 1.
G =0+ (1) » The winding number of a cocycle does not depend on the
P choice of he vector v
We have named A(0) := Dxf(x(0)). Any system such as (1) is » The winding number is invariant under conjugation. Since a
called quasi-periodic linear skew product, or a quasi-periodic constant matrix B verifies wind B = 0, if A is a cocycle such Consider the system (2). Assume the rotation number w to be
C' cocycle. that wind A # 0, then A is essentially non-reducible. of constant type. Then, when p — 1:
» A linear map coming from a Poincaré section of a quasi- 1. The invariant curve z,, undergoes a fractalization process,
periodic linear ODE has winding number zero. I.e. ,
A
Reducibility Affine systems (EMIES
. Consider the following affine system on the plane: 2. The winding number of z,, around any point of R? verifies the
lowing
X = pA(0)x + b(0), | : —1
. r o . r = windz, = O(1 — )™ .
System (1) is said to be C"-reducible if there exists a C 0 =0+ w,

change of variables x = C(0)y such that transforms the

former system into: with A € C"(T,GLsR) and b € C'(T,R?) =: E, r > 0, en-

dowed with the standard C" norm. Let ||A|| = Sup||x||=1 | Ax||

Corollary

y = By, T k\1/k
=0+ w and p(A) = limy_, o ”'_4 ”, y , Let z,, be the invariant curve of (2). It holds
— ' » If p(A) < 1 an attracting invariant curve appears as a fixed ”
Where the matrix B = C—1(6 + w)A(8)C(8) does not point of the operator: U graph z, = R® forany pg € (0,1).
depend on 6. T (x(8)) = pA(8 — w)x(0 — w) + b(6 — w). pE(1o,1)

Numerical experiments: exploring the breakdown scenario Sketch the proof
T — 100000 - S S We take advantage on the identification between R? and the complex plane.
i * | ﬁ 5 _ . il
[ | 10000 - | Z_ = peé-z + C,
, ~ | 0 =0 + w.
100 | 5 , ~ |
: \ § 1000 \\ : It is possible to compute explicitly the Fourier expansion for the invariant curve:
| i | I * > (k1)
ol ? 100 : 3 Z“(H) —C Z [Lke_l 5 welkg, (3)
B 1 ol 7 k=0
f f | which is convergent whenever 1 < 1. The series was studied by Hardy and Littlewood in
i T U I e S ] 1914 | from their work it is easy to see that, if w is of constant type:
0.0001 0.001 0.01 0.1 1 0.001 0.01 0.1 1

1Zulloo = O(1 — )~ 1/2.

Red: Plot of ||z, ||-. Green: Plot of the function 2(1 — p)~1/2. Red: Plot of ||/ ||.. Green: Plot of the function (1 — 1) ~%/2. .
/ —
12, lloc = O(1 — ) 3/2.

L WOELD By the principle argument, the winding number of (3) is the number of zeros in the unit disk
le+06 [ y . of the function -
| i 1000 g _jk(k+1)
100000 - \\ . ’ f(z) —3s Z e 72 zk
10000 - \\ | 1008 3 k=0
| . i The winding number, hence, can be defined for a full measure set of ;’s and
1000 + ]
100 “ Wind Zu — 0(1 — Il,)_1.
: 1 g
10 - :
0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 On the redUCibIe case
Red: Length of z,. Green: Plot of the function 3(1 — ) ~%/2. Red: Plot of wind z,,. Green: Plot of the function 3(1 — )=,
Assume we deal with a reduced affine system with one dimensional complex coordinates:
Plot of the invarant curve for mu=0.5 Plot of the invarant curve for mu=0.9 C — MC + b(g),

0.8 | | w ‘ 4 | | 9_=9—|—w.

. Assume:
» The rotation number w is Diophantine.
» The independent term b is smooth.

We look for a curve ¢, € C'(T, C) which satisfies the condition of invariant curve. It is
possible to find explicitly the Fourier coefficients.

| y by
Sk = Gike

e — u

The smoothness of b implies a suitable decay on the values |bg|, then:

) » If b is average free, the decay on the values |bg|, imply the smoothness of ¢,.

» If b is average different from zero, the invariant curve diverges when . — 1 with velocity
6 O(1 — p)~ ! and with bounded derivative.

» No fractalization occurs in the reducible case.
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