CHARACTERIZATION OF THE RICCATI AND ABEL POLYNOMIAL DIFFERENTIAL SYSTEMS HAVING INVARIANT ALGEBRAIC CURVES

JAUME GINÉ1 ${ }^{1}$ AND JAUME LLIBRE ${ }^{2}$

Abstract

The Riccati polynomial differential systems are the differential systems of the form $x^{\prime}=c_{0}(x), y^{\prime}=b_{0}(x)+b_{1}(x) y+b_{2}(x) y^{2}$, where c_{0} and b_{i} for $i=0,1,2$ are polynomial functions.

We characterize all the Riccati polynomial differential systems having an invariant algebraic curve. We show that the first four higher coefficients of the polynomial in the variable y defining the invariant algebraic curve determine completely the Riccati differential system. A similar result is obtained for any Abel polynomial differential systems.

1. Introduction and statement of the main results

In this work we study the Riccati differential equation of the form

$$
\begin{equation*}
\frac{d y}{d x}=B_{0}(x)+B_{1}(x) y+B_{2}(x) y^{2} \tag{1}
\end{equation*}
$$

where $B_{i}(x)$ are rational functions. Indeed this differential equation can be transformed into the polynomial differential system

$$
\begin{equation*}
x^{\prime}=c_{0}(x), \quad y^{\prime}=b_{0}(x)+b_{1}(x) y+b_{2}(x) y^{2} \tag{2}
\end{equation*}
$$

where $B_{i}(x)=b_{i}(x) / c_{0}(x)$ for $\mathrm{i}=1,2,3$. The maximum degree of the polynomials $c_{0}(c)$ and $=b_{0}(x)+b_{1}(x) y+b_{2}(x) y^{2}$ is the degree of the polynomial differential system (2).

Already Euler [3] proved that if we know one particular solution, for instance $y_{1}(x)$, of the Riccati equation (1), then the general solution of (1) is $y(x)=y_{1}(x)+$ $1 / v(x)$ where $v(x)$ is the solution of the first-order linear differential equation

$$
\frac{d v}{d x}=-\left(B_{1}(x)+2 B_{2}(x) y_{1}(x)\right) v-B_{2}(x)
$$

The Ricatti differential (1) is the standard example of a nonlinear first order differential equation with a fundamental set of solutions whose general solution is

$$
\begin{equation*}
H\left(y, g_{1}(x), g_{2}(x), g_{3}(x)\right)=\frac{\left(y-g_{1}(x)\right)\left(g_{3}(x)-g_{2}(x)\right)}{\left(y-g_{2}(x)\right)\left(g_{3}(x)-g_{1}(x)\right)}=C \tag{3}
\end{equation*}
$$

the so-called cross-ratio of three arbitrary particular solutions $y=g_{1}(x), y=g_{2}(x)$, and $y=g_{3}(x)$, where C is an arbitrary constant. Indeed, other nonlinear equations integrals.

