CHARACTERIZATION OF GLOBAL CENTERS BY THE MONODROMY AT INFINITY

ISAAC A. GARCÍA¹, JAUME GINÉ² AND JAUME LLIBRE³

ABSTRACT. In this work we focus in the family of real planar polynomial vector fields of arbitrary degree. We are interested in to characterize when a (local) center singularity of these vector fields becomes a global center, that is, its period annulus foliates the punctured real plane. The characterization of any global center is done by blowing-down the polycycle at infinity into a monodromic singular point.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

A center of a real planar polynomial vector field $\mathcal{X} = P(x, y)\partial_x + Q(x, y)\partial_x$, with $P, Q \in \mathbb{R}[x, y]$ polynomials of degree n, is an equilibrium point having a punctured neighborhood foliated by periodic orbits. A global center is a center p such that $\mathbb{R}^2 \setminus p$ is foliated by periodic orbits.

The notion of center goes back to the works of Huygens in 1656 about the pendulum clock, see [21, 28]. Some centuries later the definition of center was given in the works of Poincaré [29] in 1881 and Dulac [9] in 1908. To determine if a given differential system has a center at a singular point is in general a difficult problem, see for instance [12, 13, 18, 19] and references therein.

In general it is not easy to determine when a center is global. The method used up to know is based in the blow-up process [3], see for example [23,25]. However using the following result we propose a simple solution of the global center problem based in a well-known established algorithm for determining when a singular point is monodromic.

Theorem 1. Let the origin be the unique singularity of a real planar polynomial vector field \mathcal{X} of degree n. We consider the Bendixson compactification $\tilde{\mathcal{X}} = \phi_*(\mathcal{X})/(u^2 + v^2)^n$ of \mathcal{X} where ϕ_* is the pull-back

²⁰¹⁰ Mathematics Subject Classification. 34C05.

Key words and phrases. center, global center, polynomial differential systems.