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Abstract. In this work we focus in the family of real planar
polynomial vector fields of arbitrary degree. We are interested in to
characterize when a (local) center singularity of these vector fields
becomes a global center, that is, its period annulus foliates the
punctured real plane. The characterization of any global center is
done by blowing-down the polycycle at infinity into a monodromic
singular point.

1. Introduction and statement of the main result

A center of a real planar polynomial vector field X = P (x, y)@x +
Q(x, y)@x, with P,Q 2 R[x, y] polynomials of degree n, is an equilib-
rium point having a punctured neighborhood foliated by periodic or-
bits. A global center is a center p such that R2\p is foliated by periodic
orbits.

The notion of center goes back to the works of Huygens in 1656 about
the pendulum clock, see [21, 28]. Some centuries later the definition
of center was given in the works of Poincaré [29] in 1881 and Dulac
[9] in 1908. To determine if a given di↵erential system has a center
at a singular point is in general a di�cult problem, see for instance
[12, 13,18, 19] and references therein.

In general it is not easy to determine when a center is global. The
method used up to know is based in the blow-up process [3], see for
example [23,25]. However using the following result we propose a simple
solution of the global center problem based in a well-known established
algorithm for determining when a singular point is monodromic.

Theorem 1. Let the origin be the unique singularity of a real pla-
nar polynomial vector field X of degree n. We consider the Bendixson
compactification X̃ = �⇤(X )/(u2 + v2)n of X where �⇤ is the pull-back
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