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Abstract. Let P3(x, y) and Q3(x, y) be polynomials of degree three without constant or linear

terms. We characterize the global centers of all polynomial di↵erential systems of the form

ẋ = y + P3(x, y), ẏ = Q3(x, y) that are reversible and invariant with respect to the x-axis.

1. Introduction and statement of the main results

A planar polynomial di↵erential system of degree three having a nilpotent center at the origin
can be written as

x0 = y + a20x
2 + a11xy + a02y

2 + a30x
3 + a21x

2y + a12xy
2 + a03y

3,

y0 = b20x
2 + b11xy + b02y

2 + b30x
3 + b21x

2y + b12xy
2 + b03y

3.
(1)

We consider systems (1) that are invariant under the symmetry (x, y, t) 7! (x,�y,�t). Impos-
ing that systems (1) are invariant under such symmetry we get that a20 = a30 = a02 = a12 =
b11 = b21 = b03 = 0 and they become

x0 = y(1 + a11x+ a21x
2 + a03y

2),

y0 = b20x
2 + b30x

3 + b02y
2 + b12xy

2.
(2)

Note that (0, 0) is a nilpotent singular point. To be isolated we need that the second equation
in (2) is not identically zero (which yields b220+ b230+ b202+ b212 > 0) and that both equations in (2)
do not have the common factor y (which gives b220 + b230 > 0). We can prove that if b220 + b230 > 0,
then the two equations in (2) cannot have a common factor of the form ax+ by with a 6= 0 or of
the form ax2 + bxy + cy2 + dx + ey with a2 + b2 + c2 > 0. In short, the singular point (0, 0) is
isolated if and only if b220 + b230 > 0.

Now we apply [3, Theorem 3.5] to ensure that the singular point is a linear nilpotent center.
Since system (3) is reversible, such a linear nilpotent center will be indeed a center. We compute
the functions F and G defined in [3, Theorem 3.5] and we get

F (x) = b20x
2 + b30x

3 and G(x) = 0.

So the origin is a nilpotent center if and only b20 = 0 and b30 < 0. Note that under these conditions
the origin is an isolated singular point.

Assume that b20 = 0 and b30 = �↵2 with ↵ 6= 0. Then system (2) becomes

x0 = y(1 + a11x+ a21x
2 + a03y

2),

y0 = �↵2x3 + b02y
2 + b12xy

2.
(3)

We characterize the planar polynomial di↵erential systems (3) having a global center at the origin,
called from now on global nilpotent centers. We recall that a center is a singular point filled up
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