GLOBAL NILPOTENT REVERSIBLE CENTERS WITH CUBIC NONLINEARITIES SYMMETRIC WITH RESPECT TO THE x-AXIS

MONTSERRAT CORBERA AND CLAUDIA VALLS

Abstract

Let $P_{3}(x, y)$ and $Q_{3}(x, y)$ be polynomials of degree three without constant or linear terms. We characterize the global centers of all polynomial differential systems of the form $\dot{x}=y+P_{3}(x, y), \dot{y}=Q_{3}(x, y)$ that are reversible and invariant with respect to the x-axis.

1. Introduction and statement of the main results

A planar polynomial differential system of degree three having a nilpotent center at the origin can be written as

$$
\begin{align*}
& x^{\prime}=y+a_{20} x^{2}+a_{11} x y+a_{02} y^{2}+a_{30} x^{3}+a_{21} x^{2} y+a_{12} x y^{2}+a_{03} y^{3}, \\
& y^{\prime}=b_{20} x^{2}+b_{11} x y+b_{02} y^{2}+b_{30} x^{3}+b_{21} x^{2} y+b_{12} x y^{2}+b_{03} y^{3} . \tag{1}
\end{align*}
$$

We consider systems (1) that are invariant under the symmetry $(x, y, t) \mapsto(x,-y,-t)$. Imposing that systems (1) are invariant under such symmetry we get that $a_{20}=a_{30}=a_{02}=a_{12}=$ $b_{11}=b_{21}=b_{03}=0$ and they become

$$
\begin{align*}
& x^{\prime}=y\left(1+a_{11} x+a_{21} x^{2}+a_{03} y^{2}\right), \\
& y^{\prime}=b_{20} x^{2}+b_{30} x^{3}+b_{02} y^{2}+b_{12} x y^{2} . \tag{2}
\end{align*}
$$

Note that $(0,0)$ is a nilpotent singular point. To be isolated we need that the second equation in (2) is not identically zero (which yields $b_{20}^{2}+b_{30}^{2}+b_{02}^{2}+b_{12}^{2}>0$) and that both equations in (2) do not have the common factor y (which gives $b_{20}^{2}+b_{30}^{2}>0$). We can prove that if $b_{20}^{2}+b_{30}^{2}>0$, then the two equations in (2) cannot have a common factor of the form $a x+b y$ with $a \neq 0$ or of the form $a x^{2}+b x y+c y^{2}+d x+e y$ with $a^{2}+b^{2}+c^{2}>0$. In short, the singular point $(0,0)$ is isolated if and only if $b_{20}^{2}+b_{30}^{2}>0$.

Now we apply [3, Theorem 3.5] to ensure that the singular point is a linear nilpotent center. Since system (3) is reversible, such a linear nilpotent center will be indeed a center. We compute the functions F and G defined in [3, Theorem 3.5] and we get

$$
F(x)=b_{20} x^{2}+b_{30} x^{3} \quad \text { and } \quad G(x)=0 .
$$

So the origin is a nilpotent center if and only $b_{20}=0$ and $b_{30}<0$. Note that under these conditions the origin is an isolated singular point.

$$
\begin{align*}
& \text { Assume that } b_{20}=0 \text { and } b_{30}=-\alpha^{2} \text { with } \alpha \neq 0 . \text { Then system (2) becomes } \\
& \qquad \begin{aligned}
x^{\prime} & =y\left(1+a_{11} x+a_{21} x^{2}+a_{03} y^{2}\right), \\
y^{\prime} & =-\alpha^{2} x^{3}+b_{02} y^{2}+b_{12} x y^{2} .
\end{aligned} \tag{3}
\end{align*}
$$

We characterize the planar polynomial differential systems (3) having a global center at the origin, called from now on global nilpotent centers. We recall that a center is a singular point filled up

[^0]
[^0]: 2010 Mathematics Subject Classification. Primary: 37D99.
 Key words and phrases. Global reversible centers, nilpotent centers, cubic polynomial differential systems.
 The first author is partially supported by the Agencia Estatal de Investigación grant PID2019-104658GB-I00. The second author is supported by FCT/Portugal through CAMGSD, IST-ID, projects UIDB/04459/2020 and UIDP/04459/2020.

