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Abstract

We consider a three dimensional complex polynomial, or rational,
vector field (equivalently, a two-form in three variables) which admits
a Liouvillian first integral. We prove that there exists a first integral
whose differential is the product of a rational 1-form with a Darboux
function, or there exists a Darboux Jacobi multiplier. Moreover, we
prove that Liouvillian integrability always implies the existence of a
first integral that is obtained by two successive integrations from a
one-forms with coefficients in a finite algebraic extension of the rational
function field.
MSC (2020): 34A99, 12H05, 34M15.
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1 Introduction and overview of results

The classical theory of integration in finite terms goes back to Liouville.
For 20th century accounts we refer to the seminal works of Risch [23, 24]
and Rosenlicht [25, 26]. Liouvillian functions play a special role in the
integrability problem for functions, vector fields and differential forms. In
an influential paper [27], Singer showed that the existence of a Liouvillian
first integral of a two dimensional polynomial vector field is equivalent to
the existence of a first integral whose differential is a closed rational 1-form.
Moreover, such 1-forms are necessarily logarithmic differentials of Darboux
functions, that is, functions of the form

exp (g/f)
∏

fai
i ,

where the fi, f and g are polynomials in the coordinate variables, and ai
are complex numbers.

Thus, by Singer’s work in [27], Darbouxian integrability captures all
closed form solutions of two dimensional systems. These solutions arise from
rational functions via a finite sequence of adjoining integrals, exponentials
and algebraic functions, see [27, 9]. This means that by the Darboux method
one will obtain all Liouvillian first integrals.

It should be emphasized that Liouvillian integrability is not only of inter-
est for its own sake but also relevant for applications. There is a number of
publications that characterize the Liouvillian first integrals of certain planar
families; pars pro toto we just mention Cairo et al. [6], Oliveira et al. [21].
We recall that the existence of a first integral has important consequences
for the dynamics of a system; see for example Garćıa and Giné [15].

Several algorithmic procedures have been presented in the literature to
obtain Liouvillian first integrals for two dimensional vector fields; for in-
stance, some of them build on the classical Preller–Singer method [22]. See
e.g. Avellar et al. [2], Chèze and Combot [8], Duarte and da Mota [13].

Singer’s theorem [27] has been generalized in various ways, see for ex-
ample Żo la̧dek [29], Casale [5], and Zhang [28]. In particular, Żo la̧dek in
[29] presents a multi–dimensional version of Singer’s theorem for rational
1-forms. Zhang [28] provides a generalization of Singer’s Theorem to vector
fields in n dimensions that admit Darbouxian Jacobi multipliers.

One should also mention work that characterizes Liouvillian first inte-
grals of some families in three dimensions; see Ollagnier [19, 20], and some
recent studies on integrability aspects of certain three dimensional systems;
see Ferčec et al. [14], and also [18]. Concerning algorithms for the com-
putation of Liouvillian first integrals in higher dimensions, see for instance
Avellar et al. [3], Combot [11].

The objective of the present paper is to extend and modify Singer’s
theorem for complex polynomial or rational vector fields in three dimensions.
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As a preliminary step we characterize rational closed one-forms in Theorem
1, and (re-)prove Singer’s Theorem for rational one-forms in n variables in
a purely algebraic manner; see Theorem 2.

With K = C(x, y, z), our first main result states that a polynomial vector
field in three dimensions has a Liouvillian first integral only if one of the
following holds: (i) There exists a first integral whose differential is the
product of a Darboux function with a 1-form over K, or (ii) there exists
an inverse Jacobi multiplier over K of Darboux type, see Theorem 3. (In
case (i), similar to the planar setting, the search for Liouvillian integrals is
reduced to the semi-algorithmic search for invariant algebraic surfaces and
their associated exponential factors.)

Our second main result, see Theorem 4, implies that a three dimensional
Liouville integrable system always admits a finite algebraic extension K̃ of
K with the following property: There exist 1-forms ω, α over K̃ and an
integral whose differential equals ω · exp(

∫
α). This is a version of Singer’s

theorem for vector fields in three dimensions, with K being replaced by a
finite algebraic extension.

2 Background

We start by recalling some basic definitions and facts from differential alge-
bra. For more details see e.g. the monograph by Kolchin [17]. Moreover we
will prove (or reprove) some preliminary results on Liouvillian integrability.
Fields are always assumed to be of characteristic zero.

A differential field is a pair (K,∆) where K is a field together with a
finite set ∆ of derivations of K. Thus for all ∂ ∈ ∆ and all x, y ∈ K one has
the identities

∂(x + y) = ∂x + ∂y, ∂(xy) = (∂x)y + x(∂y).

We will restrict attention to commutative differential fields, that is the
derivations in ∆ commute.

The constants of (K,∆) are those elements x ∈ K such that ∂x = 0 for
all ∂ ∈ ∆, and the subfield of constants will be denoted by CK .

A differential extension of (K,∆) is a differential field (K̃, ∆̃) where K̃
is an extension field of K and each derivation ∂̃ ∈ ∆̃ restricts (uniquely) to
an element ∂ ∈ ∆. Therefore, it is natural to write (K̃,∆).

We will be mostly interested in the rational function field C(x1, . . . , xn),
with ∆ = {∂/∂x1, . . . , ∂/∂xn}, and its extensions.1 Moreover, we focus on
Liouvillian extensions (see also Singer [27] for the notion):

Definition 1. An extension L ⊃ K of differential fields is called a Liouvil-
lian extension of K if CK = CL and if there exists a tower of fields of the

1One could replace C by any algebraically closed field of characteristic zero.
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form
K = K0 ⊂ K1 ⊂ . . . ⊂ Km = L, (1)

such that for each i ∈ {0, . . . ,m− 1} we have one of the following:

(i) Ki+1 = Ki(ti), where ti ̸= 0 and ∂ti/ti ∈ Ki for all ∂ ∈ ∆; thus ti
is an exponential of an integral of some element of Ki.

(ii) Ki+1 = Ki(ti), where ∂ti ∈ Ki for all ∂ ∈ ∆; thus ti is an integral
of an element of Ki.

(iii) Ki+1 = Ki(ti), where ti is algebraic over Ki.
2

We will make extensive use of differential forms, which generally are
more convenient both for the statements and proofs of our results than
vector fields. If L is a differential extension of K = C(x1, . . . , xn) then we
denote by L′ the space of differential 1-forms with coefficients in L. That
is, every 1-form α ∈ L′ can be written as α =

∑
ai dxi with ai ∈ L. Since

the xi are algebraically independent, we can treat the dxi simply as inert
placeholders for the calculations, and do not need to invoke the more general
theory of differentials of a field.

Likewise, we will work with forms of higher degree, and freely use the
familiar properties of the exterior derivative operator d and of wedge prod-
ucts. Recall that one calls a form β closed whenever dβ = 0, and exact when
β = dθ for some form θ.

Remark 1. If L is a differential extension of K = C(x1, . . . , xn), then we
can restate conditions (i)–(iii) in Definition 1 by the following Types:

(i) Ki+1 = Ki(ti), where ti ̸= 0 and dti = δiti with some δi ∈ K ′
i

(necessarily dδi = 0).

(ii) Ki+1 = Ki(ti), where dti = δi with δi ∈ K ′
i (necessarily dδi = 0).

(iii) Ki+1 is a finite algebraic extension of Ki.

We note that the condition CK = CL on constants can always be met in our
reasoning for extensions of the rational function field K (see Singer [27]); so
we will not mention it explicitly in the following.

As mentioned in the Introduction, a key role will be played by Darboux
functions. These are functions of the form

ϕ = exp(g/f)
∏

fai
i , (2)

where the fi and g and f are elements of C[x1, . . . , xn] and ai are complex
numbers. Given a Darboux function ϕ, its logarithmic differential, dϕ/ϕ,

2By the primitive element theorem, this is equivalent to Ki+1 being a finite algebraic
extension of Ki.
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is clearly a closed rational 1-form. Conversely, we shall show that every
closed rational 1-form must be the logarithmic differential of some Darboux
function.

Theorem 1. Consider a 1–form α ∈ C(x1, . . . , xn)′. If α is closed, then
there exist elements g, f, fi ∈ C[x1, . . . , xn] and constants ai ∈ C such that

α = d

(
g

f

)
+
∑

ai
dfi
fi

.

Proof. We proceed by induction on n. The case n = 1 amounts to the
well-known fact that the primitive of a rational function in x1 has the form
r(x1) +

∑
ai log(x1 − bi) with ai, bi ∈ C and a rational function r.

Now suppose that n > 1 and the theorem holds for C(x1, . . . , xn−1). Let
K̄ be a splitting field over C(x1, . . . , xn−1) of a common denominator of the
coefficients of α, and denote the distinct roots of this common denominator
by b1, . . . , br ∈ K̄. Then we can write α as a partial fraction expansion in
xn over C(x1, . . . , xn−1):

α =
r∑

i=1

ni∑
j=1

ai,j
(xn − bi)j

dxn +
N∑
i=0

cix
i
ndxn +

r∑
i=1

mi∑
j=1

Ωi,j

(xn − bi)j
+

M∑
i=0

xinωi,

where the Ωi,j , ωi are elements of C(x1, . . . , xn−1)
′, and ai,j and ci are ele-

ments of C(x1, . . . , xn−1).
By evaluating dα = 0 and comparing coefficients in the partial fraction

expansion we get the following for all i, j ≥ 0, where it is understood that
ai,0 = 0 and Ωi,0 = 0:

dci−(i + 1)ωi+1 =0, (3)

dai,j+1+jai,jdbi−jΩi,j =0, (4)

dωi =0, (5)

dΩi,j+1 + jdbi ∧ Ωi,j =0. (6)

These may be seen as identities in C(x1, . . . , xn−1)
′. In particular, dai,1 =

0, so ai,1 ∈ C. From (5) dω0 = 0 and hence by hypothesis we can write

ω0 = d

(
g̃

f̃

)
+
∑

ãi
df̃i

f̃i
,

for some g̃, f̃ , f̃i ∈ C(x1, . . . , xn−1) and ãi ∈ C. Equations (3) – (6) allow us
to write

α− ω0 =
∑
i

ai,1
d(xn − bi)

(xn − bi)
+
∑
j>1

∑
i

d

(
ai,j

(xn − bi)j−1

(
−1

j − 1

))
+
∑
i

d

(
ci x

i+1
n

i + 1

)
.

(7)
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Now let G be the Galois group of K̄ over C(x1, . . . , xn−1). For any differential
form µ over K̄ and σ ∈ G we denote by σ(µ) the form obtained by letting
σ act on its coefficients. Taking the trace of both sides of equation (7) and
noting that σ and the exterior derivative commute, we have

1

|G|
∑
σ∈G

σ(α− ω0) =
1

|G|
∑
σ∈G

∑
ai,1

d(xn − σ(bi))

(xn − σ(bi))

+
1

|G|
∑
σ∈G

∑∑
d

(
σ(ai,j)

(xn − σ(bi))j−1

(
−1

j − 1

))
+

1

|G|
∑
σ∈G

∑
d

(
σ(ci)x

i+1
n

i + 1

)
.

(8)
Since G is the set of all automorphisms of K̄ fixing C(x1, . . . , xn−1), the left
hand side of this equation is equal to α−ω0, and we obtain α in the desired
form.

The following definition may seem unusual, but it turns out to be the
most convenient for our setting. See also the following remark.

Definition 2. Given a 1-form ω ∈ C(x1, . . . , xn)′, we say that ω is Liouvil-
lian integrable if there exists a 1-form α ∈ L′ for some Liouvillian extension
L of C(x1, . . . , xn) such that dω = α ∧ ω and dα = 0. More specifically, we
will state that ω is Liouvillian integrable over L when the field of definition
is relevant.

Remark 2.

(a) We note:

• If there exists ϕ in some Liouvillian extension L of C(x1, . . . , xn)
such that dϕ∧ω = 0 (which would seem a more obvious definition),
then ω = mdϕ for some m ∈ L and dω = α ∧ ω with α = dm/m.

• Conversely, if the condition in Definition 2 holds then by Remark
1, part (i), there exists m in a Liouvillian extension L1 of L such
that α = −dm/m, whence

d(mω) = dm ∧ ω + mdω = m(−α ∧ ω + dω) = 0,

which implies mω = dϕ for some ϕ in a Liouvillian extension L2 ⊃
L1, hence of C(x1, . . . , xn).

We call m an inverse integrating factor for ω.

(b) In particular, the condition in Definition 2 implies that dω ∧ ω = 0, so
that ω is completely integrable in the usual sense (cf. e.g. Camacho and
Lins Neto [7], Appendix §3).

6



The following theorem is well-known for forms (and vector fields) in two
variables, see [27]. Here, we give an algebraic proof for the general case.

Theorem 2 (Singer’s Theorem for 1-forms). Let ω be a rational 1–form over
C(x1, . . . , xn). Then ω is Liouvillian integrable if and only if there exists a
closed 1–form α ∈ C(x1, . . . , xn)′ such that dω = α ∧ ω.

Proof. We proceed by induction on the tower of fields (1), with K = C(x1, . . . , xn).
Let Ki+1 be a Liouvillian extension of Ki, of one of the types (i)–(iii) in Def-
inition 1, and consider a closed 1–form α ∈ K ′

i+1 such that dω = α∧ ω. We
have to show that there exists α̃ ∈ K ′

i such that dω = α̃ ∧ ω with dα̃ = 0.
We discuss the types from Remark 1 separately.

Type (i). We can suppose that ti = t is transcendental over Ki, else
this falls into type (iii). Then (by Lemma 4) write α as a formal
Laurent series in decreasing powers of t,

α = αrt
r + αr−1t

r−1 + . . . , αr ∈ K ′
i, αr ̸= 0. (9)

Equating powers of t0 in α ∧ ω = dω and dα = 0, we see that

dω = α0 ∧ ω, dα0 = 0.

Therefore, we can choose α̃ = α0 ∈ Ki.

Type (ii). As above, we suppose that ti = t is transcendental over Ki,
and write α in the form (9). From dα = 0 we deduce that dαr = 0.
Furthermore, from dω = α∧ ω, we obtain three cases depending on r:

• If r > 0, then αr ∧ ω = 0. In this case, there exists h ∈ Ki such
that αr = hω, thus we get dω = −dh

h ∧ω. We may take α̃ = −dh
h .

• If r = 0, we have dω = α0 ∧ ω and we may take α̃ = α0.

• If r < 0, we see dω = 0 and we may take α̃ = 0.

Type (iii). There is no loss of generality in assuming that the extension
is Galois, with Galois group G of order N . Take traces of both sides
of dω = α ∧ ω, and of dα = 0, respectively, to obtain

dω =

(
1

N

∑
σ∈G

σ(α)

)
∧ ω, d

(
1

N

∑
σ∈G

σ(α)

)
= 0.

Thus we can choose α̃ = 1
N

∑
σ∈G σ(α) ∈ Ki.

Remark 3. Combining Theorem 2 and Theorem 1, we see that a 1-form
ω is Liouvillian integrable if and only if it admits a Darboux integrating
factor.
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3 Three dimensional vector fields with Liouvillian
first integrals

In this section we will consider three-dimensional rational vector fields

X = P
∂

∂x
+ Q

∂

∂y
+ R

∂

∂z
(10)

in C3; equivalently we will look at the corresponding 2-forms

Ω = P dy ∧ dz + Qdz ∧ dx + Rdx ∧ dy. (11)

Definition 3. A non-constant element, ϕ, of a Liouvillian extension of
C(x, y, z) is called a Liouvillian first integral of the vector field X if it satisfies
Xϕ = 0 or, equivalently, dϕ ∧ Ω = 0.

Remark 4. In view of Remark 2, this property is equivalent to the existence
of some Liouvillian extension L of K and one-forms ω ̸= 0, α in L′ such that

ω ∧ Ω = 0, dω = α ∧ ω, dα = 0. (12)

In this case we will briefly say that Ω is Liouvillian integrable and we will
say specifically that Ω is Liouvillian integrable over L whenever the field of
definition is relevant.

3.1 Extending Singer’s theorem, first version

We seek to generalize Singer’s theorem (see Theorem 2 in the previous sec-
tion) to vector fields (or 2-forms) in dimension three. Our first main result
is the following:

Theorem 3 (First extension of Singer’s theorem for 2-forms in three di-
mensions). Let K = C(x, y, z), and let Ω be the 2–form (11) over K. If
there exists a Liouvillian first integral of Ω, then one of the following holds:

(I) There exist 1–forms ω, α ∈ K ′ such that

ω ̸= 0, ω ∧ Ω = 0, α ∧ ω = dω, dα = 0.

So, using the notion from Definition 2, Ω is Liouvillian integrable over K.

(II) There exists a 1–form β ∈ K ′ such that β ∧Ω = dΩ with dβ = 0. So, Ω
admits an inverse Jacobi multiplier3 of Darboux type over K = C(x, y, z).

Remark 5.

3For the notion of inverse Jacobi multiplier see Berrone and Giacomini [4]. Note that
we permit nonzero constant functions as multipliers.
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(a) Roughly speaking, condition I means there is a first integral of the form
ϕ =

∫
ω

e
∫
α . Note that e

∫
α is of Darboux type by Theorem 1. In the

special case when α = 0, there is a first integral of the form
∫
ω.

(b) In the same way, condition II means that Ω admits an inverse Jacobi
multiplier of the form e

∫
β, with β ∈ K ′, i.e. of Darboux type.

Before turning to the proof of Theorem 3, we state two lemmas, the first
of which is straightforward. The second shows that the existence of two
independent Liouvillian first integrals implies the existence of a Liouvillian
inverse Jacobi multiplier. (We note that this is a special case of Zhang [28],
Theorem 1.2.)

Lemma 1. Let L be a differential extension of K = C(x, y, z), moreover
0 ̸= ℓ ∈ L, 0 ̸= ω ∈ L′ and α ∈ L′ such that dω = α ∧ ω, dα = 0. Then

d
(ω
ℓ

)
=

(
α− dℓ

ℓ

)
∧ ω

ℓ
, d

(
α− dℓ

ℓ

)
= 0. (13)

Lemma 2. Let K = C(x, y, z), let Ω be the 2–form (11) over K, and let L be
a differential extension of K. Assume that there exist linearly independent
ω1, ω2 ∈ L′ (thus ω1 ∧ ω2 ̸= 0) and moreover α1, α2 ∈ L′, such that

ωi ∧ Ω = 0, dωi = αi ∧ ωi and dαi = 0, i = 1, 2.

Then the following hold.

(a) There is ℓ ∈ L∗ so that
ω1 ∧ ω2 = ℓΩ, (14)

hence 1
ℓω1∧ω2 = Ω, and d

(
1
ℓω1

)
= α̃1∧ 1

ℓω1 with α̃1 = α1− dℓ
ℓ , dα̃1 = 0.

Replacing ω1 by ω̃1 :=
ω1

ℓ
, one thus has ω̃1 ∧ ω2 = Ω.

(b) Given that ω1 ∧ ω2 = ℓΩ:

• With β := α1 + α2 − dℓ
ℓ one gets

β ∧ Ω = dΩ, dβ = 0;

and whenever dΩ ̸= 0 then β ̸= 0.

• In case β ̸= 0 but dΩ = 0,
∫
β is a Liouvillian first integral of (11).

• In case β = 0 and dΩ = 0, obviously the constant 1 is an inverse
Jacobi multiplier of (11).

Proof. The space of all two-forms over L has dimension three, and from
ω1 ∧ Ω = ω2 ∧ Ω = 0, one sees that Ω lies in a one-dimensional subspace
which also contains ω1 ∧ ω2. Thus there exists ℓ ∈ L, ℓ ̸= 0, such that
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ω1 ∧ ω2 = ℓΩ, and with Lemma 1 part (a) is proven.
Applying the exterior derivative to (14) gives

d(ω1 ∧ ω2) = dℓ ∧ Ω + ℓ dΩ. (15)

On the other hand

d(ω1 ∧ ω2) = dω1 ∧ ω2 − ω1 ∧ dω2

= α1 ∧ ω1 ∧ ω2 − ω1 ∧ α2 ∧ ω2

= (α1 + α2) ∧ (ω1 ∧ ω2)
= (α1 + α2) ∧ ℓΩ

by (14). Combining this with (15) yields(
α1 + α2 −

dℓ

ℓ

)
∧ Ω = dΩ, (16)

which shows the first statement of part (b). The remaining assertions are
obvious.

Proof of Theorem 3. Since II (with β = 0) is trivially true when dΩ = 0, we
will assume dΩ ̸= 0 in the following. We proceed by induction on the tower
of fields K = K0 ⊂ K1 ⊂ · · · ⊂ Kn. Let Ii and IIi denote Conditions I and II
with K ′ replaced by K ′

i. Clearly, the existence of a Liouvillian first integral
ϕ implies that we are in case In for some n, by taking ω = dϕ, α = 0.

Claim 1. If condition IIi+1 holds then condition IIi or condition Ii holds.
Proof. Let Ki+1 ⊃ Ki be one of the types (i)–(iii) listed in Remark 1.

Assume that β ∈ K ′
i+1 such that β ∧ Ω = dΩ with dβ = 0. We will show

that there exists β̃ ∈ K ′
i such that β̃ ∧ Ω = dΩ with dβ̃ = 0, or there exists

0 ̸= ω̃ ∈ K ′
i such that ω̃ ∧ Ω = 0 and dω̃ = 0, which is a special instance of

case In (with α̃ = 0).
If Ki+1 = Ki(t) with t transcendental over Ki (thus the extension is of

Type (i) or (ii)), then consider β as a formal Laurent series4 in decreasing
powers of t:

β = βℓt
ℓ + . . . , βk ∈ K ′

i, k = ℓ, ℓ− 1, . . . βℓ ̸= 0. (17)

Since β ∧ Ω = dΩ and t is transcendental, we see

βi ∧ Ω =

{
dΩ i = 0,

0 i ̸= 0.
(18)

4See Appendix, Lemma 4.
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Type (i). We may assume that t is transcendental; otherwise see type
(iii). Since β is closed, we obtain (with dt = δt, δ ∈ K ′

i)

ℓ∑
i=−∞

ti(dβi + iδ ∧ βi) = 0,

in particular dβ0 = 0, and β0 ∧ Ω = dΩ. So we can choose β̃ = β0.

Type (ii). As above, we may assume that Ki+1 = Ki(t) with t tran-
scendental, and (by Lemma 4) we have the Laurent series expansion
(17). Since β ∧ Ω = dΩ, equating highest powers of t yields three
possibilities:

1) When ℓ > 0, we have βℓ∧Ω = 0 by (18), and with dt = δ ∈ K ′
i

one finds

0 = tℓ dβℓ + tℓ−1 (ℓ δ ∧ βℓ + dβℓ−1) + · · · ,

omitting terms of lower degree. This implies dβℓ = 0, and we
have case I with ω̃ = βℓ and α̃ = 0.

2) When ℓ = 0, we see β0 ∧ Ω = dΩ, and dβ0 = 0 from dβ = 0.
In this case take β̃ = β0.

3) When ℓ < 0, then dΩ = 0 by (18), contrary to the blanket
assumption dΩ ̸= 0.

Type (iii). In this case, without loss of generality, we assume that
Ki+1 ⊃ Ki is a Galois extension. Denote by G its Galois group, and
by N its order. For σ ∈ G and any differential form µ we denote by
σ(µ) the form obtained by applying σ to its coefficients.

From β ∧ Ω = dΩ and dβ = 0, we see

σ(β) ∧ Ω = dΩ and d(σ(β)) = 0

for all σ ∈ G, and therefore

dΩ =

(
1

N

∑
σ∈G

σ(β)

)
∧ Ω and

1

N
d

(∑
σ∈G

σ(β)

)
= 0.

We can therefore choose

β̃ =
1

N

∑
σ∈G

σ(β) ∈ K ′
i.
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This completes the proof of Claim 1.

Claim 2. If Ii+1 holds then one of Ii or IIi must also hold. Moreover, Ii+1

always implies Ii unless Ω admits two independent Liouvillian first integrals.
Proof. Let ω ̸= 0, α ∈ K ′

i+1 such that ω ∧ Ω = 0, α ∧ ω = dω, dα = 0.
Then we need to show that for all three types (i)–(iii) of Remark 1, there
exists ω̃ ̸= 0, α̃ ∈ K ′

i such that ω̃ ∧ Ω = 0, α̃ ∧ ω̃ = dω̃, dα̃ = 0, or there
exists β̃ ∈ K ′

i such that β̃ ∧ Ω = dΩ with dβ̃ = 0.
When Ki+1 = Ki(t), and t is transcendental over Ki (thus the extension

is of type (i) or (ii)), then (by Lemma 4) we can write ω, α as formal Laurent
series in decreasing powers of t, thus

ω = ωrt
r + ωr−1t

r−1 . . . , ωk ∈ K ′
i (k ≤ r), ωr ̸= 0, (19)

and

α = 0 or α = αst
s + αs−1t

s−1 . . . , αk ∈ K ′
i (k ≤ s), αs ̸= 0. (20)

By hypothesis, for the transcendental case we have ω∧Ω = 0, hence ωk∧Ω =
0 for all k.

Type (i). Since α ∧ ω = dω, one gets (with dt = δ t)

s∑
i=−∞

αit
i ∧

r∑
i=−∞

ωit
i =

r∑
i=−∞

(dωi + i δ ∧ ωi)t
i (21)

(with left hand side understood to be zero when α = 0). Comparing
highest powers of t yields the following three cases:

1) When α = 0 or s < 0 (thus the highest degree on the left hand
side is < r), we just have d(ωrt

r) = dωr + r δ ∧ ωr = 0. In this
case choose α̃ = −r δ (with dα̃ = 0) and ω̃ = ωr.

2) When s = 0, we see α0 ∧ωr = dωr + r δ ∧ωr. In this case take
α̃ = α0 − r δ and ω̃ = ωr. From dα0 = 0 and dδ = 0, is it clear
that dα̃ = 0.

3) When s > 0, we get αs ∧ ωr = 0 and therefore αs = hωr for
some h ∈ Ki. Since ωr ∧ Ω = 0, then αs ∧ Ω = 0. Moreover
d(αst

s) = (dαs + s δ ∧ αs)t
s = 0 from dα = 0. So we may choose

α̃ = −s δ (with dα̃ = 0) and ω̃ = αs.

Type (ii). Here we have again Ki+1 = Ki(t) with t transcendental,
dt = δ, and Laurent expansions for ω and α as in (19), (20). Since
ω∧Ω = 0, then ωk∧Ω = 0 for all k. From the assumption α∧ω = dω,
we obtain three cases by comparing highest powers of t:
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1) When s > 0, we get αs ∧ ωr = 0 and hence αs = h · ωr

for some h ∈ Ki. Since ωr ∧ Ω = 0, then αs ∧ Ω = 0. From
d(αs t

s) = (dαs)t
s + sαs ∧ δ ts−1 and dα = 0 one sees dαs = 0. In

this case take α̃ = 0 and ω̃ = αs.

2) When s = 0, we see α0 ∧ ωr = dωr, and dα0 = 0 from dα = 0.
In this case we choose α̃ = α0 and ω̃ = ωr.

3) When α = 0 or s < 0, then dωr = 0. Take α̃ = 0 and ω̃ = ωr.

Type (iii). Without loss of generality, assume that Ki+1 is a Galois
extension of Ki, with Galois group G of order N . We have two cases:
Either σ(ω) ∧ ω = 0 for all σ ∈ G or there exists τ ∈ G such that
τ(ω) ∧ ω ̸= 0.

1) Let us first assume that σ(ω) ∧ ω = 0 for all σ ∈ G. Choose
η, θ ∈ K ′

i such that η ∧ Ω = θ ∧ Ω = 0, η ∧ θ ̸= 0. Then there
exist k, ℓ ∈ Ki+1 such that ω = kη + ℓθ. With Lemma 1 one sees
that

ω̃ :=
ω

k
= η + ℓ̃θ

satisfies ω̃ ∧ Ω = 0, and dω̃ = α̃ ∧ ω̃, dα̃ = 0 for some α̃ ∈ K ′
i+1.

Moreover σ(ω̃)∧ω̃ = 0 for all σ ∈ G. But σ(ω̃)∧ω̃ = (ℓ− σ(ℓ)) η∧
θ, so σ(ℓ̃) = ℓ̃ for all σ ∈ G, and ω̃ ∈ K ′

i. Finally, forming the
trace of dω̃ = α̃ ∧ ω̃ shows that one may take α̃ ∈ K ′

i.

2) Assume now that τ(ω) ∧ ω ̸= 0 for some τ ∈ G. In this
case there exist two independent Liouvillian first integrals, with
differentials ω and τ(ω). By Lemma 2, there exists β ∈ K ′

i+1 such
that β ∧ Ω = dΩ, dβ = 0, and β ̸= 0 by the blanket assumption
dΩ ̸= 0, hence condition IIi+1 is satisfied. Thus, with Claim 1 we
find that IIi holds.

This finishes the proof of Claim 2. Combining Claim 1 and Claim 2, the
theorem is proven.

The proof of Claim 2 (specifically, case 2 for Type (iii)) makes passage
from Ii+1 to IIi necessary only when Ki+1 ⊃ Ki is algebraic, and Ω admits
two independent Liouvillian first integrals. We restate this observation:

Corollary 1. Let K = C(x, y, z), and let Ω be the 2–form (11) over K.
If Ω admits a Liouvillian first integral, but not two independent Liouvillian
first integrals, then (according to Definition 2) Ω is Liouvillian integrable
over K.

Likewise, Claim 1 and its proof directly imply a noteworthy property of
2–forms that admit a Liouvillian inverse Jacobi multiplier:

13



Corollary 2. Let K = C(x, y, z) and let Ω be the 2–form (11) over K.
Assume that Ω does not admit a Liouvillian first integral, but there exists a
Liouvillian extension L of K and a 1–form β ∈ L′ such that β ∧ Ω = dΩ
with dβ = 0. Then there exists a 1–form β ∈ K ′ such that β ∧ Ω = dΩ with
dβ = 0.

3.2 Extending Singer’s theorem, second version

Our proof of Claim 2 in Theorem 3 does not imply the existence of a first
integral of the 2–form (11) that is defined over K = C(x, y, z). The obstacle
in the argument appears with an algebraic extension Ki+1 ⊃ Ki in the tower
of field extensions, when there exist two independent first integrals. We now
will show that in any case there exists a first integral that is defined over
a finite algebraic extension of K0 = K. Thus one might say that a weaker
version of Singer’s theorem holds, with K replaced by a finite algebraic
extension.

Our argument is based on Lemma 5 in the Appendix. We first note an
auxiliary result. Recall (here and later on) that finite algebraic extensions
of Liouvillian extensions are always Liouvillian.

Lemma 3. Let L0 be a Liouvillian extension of K = C(x, y, z), t transcen-
dental over L0, and q algebraic over L0(t), thus L := L0(t, q) Liouvillian
over L0. Moreover let ω, α ∈ L′ such that ω ̸= 0, ω ∧ Ω = 0, dω = α ∧ ω,
dα = 0.
Then there exists a finite algebraic extension L̃0 of L0, and ω̃, α̃ ∈ L̃′

0 such
that ω̃ ̸= 0, ω̃ ∧ Ω = 0, dω̃ = α̃ ∧ ω̃, dα̃ = 0. Briefly, Ω is Liouvillian
integrable over L̃0.

Proof. By Lemma 5, in the appendix, there exists a finite extension L̃0 ⊃ L0

so that we may write ω, α as formal Laurent series in decreasing powers of
τ = t1/m with some positive integer m, thus

ω = ωrτ
r + ωr−1τ

r−1 . . . , ωk ∈ L̃′
0 (k ≤ r), ωr ̸= 0, (22)

and either α = 0 or

α = αsτ
s + αs−1τ

s−1 . . . , αk ∈ L̃′
0 (k ≤ s), αs ̸= 0. (23)

With t transcendental, we have ω ∧ Ω = 0, hence ωk ∧ Ω = 0 for all k.
We now follow the pattern of the proof of Theorem 3, Claim 2.

• Type (i). Let dt = tδ with dδ = 0, hence

dτ =
1

m
τδ.

We thus obtain the highest degree terms

dω = τ r
( r

m
δ ∧ ωr + dωr

)
+ · · · , dα = τ s

( s

m
δ ∧ αs + dαs

)
+ · · ·

14



unless α = 0. Comparing both sides of α∧ω = dω yields the following
three cases:

– When α = 0 or s < 0 (thus the highest degree on the left hand
side is < r), we just have dωr + r

m δ ∧ωr = 0. In this case choose
α̃ = − r

m δ (with dα̃ = 0) and ω̃ = ωr.

– When s = 0, we see α0 ∧ ωr = dωr + r
m δ ∧ ωr. In this case take

α̃ = α0 − r
m δ (noting dα0 = 0) and ω̃ = ωr.

– When s > 0, we get αs ∧ ωr = 0 and therefore αs = hωr for
some h ∈ L̃0. Since ωr ∧ Ω = 0, then αs ∧ Ω = 0. Moreover
dαs + s

m δ ∧ αs = 0 from dα = 0. So we may choose α̃ = − s
m δ

(with dα̃ = 0) and ω̃ = αs.

• Type (ii). Here we have t transcendental over L̃0, dt = δ, with dδ = 0.
Therefore dτ = 1

mτ1−mδ, hence

d(τ rωr) = τ rdωr +
r

m
τ r−mδ ∧ ωr,

which shows that the leading term of dω is just τ rdωr. Likewise, the
leading term of dα equals τ sdαs unless α = 0. Comparing the leading
terms of α ∧ ω = dω, we obtain three cases:

– When s > 0, we get αs ∧ ωr = 0 and hence αs = h · ωr for some
h ∈ L̃0. Since ωr ∧ Ω = 0, then αs ∧ Ω = 0. From dα = 0 one
sees dαs = 0. In this case take α̃ = 0 and ω̃ = αs.

– When s = 0, we see α0 ∧ ωr = dωr, and dα0 = 0 from dα = 0. In
this case we choose α̃ = α0 and ω̃ = ωr.

– When α = 0 or s < 0, then dωr = 0. Take α̃ = 0 and ω̃ = ωr.

The following is now a direct consequence of Lemma 3.

Theorem 4 (Second extension of Singer’s theorem for 2-forms in three
dimensions). Let K = C(x, y, z), and let Ω be the 2–form (11) over K. If
there exists a Liouvillian first integral of Ω, then there exists a finite algebraic
extension K̃ of K such that Ω is Liouvillian integrable over K̃.

Proof. Consider a tower

K = K0 ⊂ K1 ⊂ . . . ⊂ Km = L,

as in Definition 1 (or Remark 1), and assume that for some i > 1 one has
a finite algebraic extension Ki+1 ⊃ Ki, and ω, α ∈ K ′

i+1 subject to the
conditions in (12). With no loss of generality, Ki ⊃ Ki−1 is then transcen-
dental, and Lemma 3 shows that there exists a finite algebraic extension
K̃i−1 of Ki−1, and ω̃, α̃ ∈ K ′

i−1 as required in (12). Thus all transcendental
extensions can be eliminated by descent.
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With this result we have reached the conclusion of the present paper: If
a rational 2-form in three variables admits a Liouvillian first integral, then
it admits a first integral that is obtained, via (12), from integrating 1-forms
defined over a finite algebraic extension of K. The cases where the further
reduction to K cannot be made are exceptional and a detailed examination
of them will be the subject of forthcoming work.

4 Appendix

4.1 Laurent and Puiseux expansions

Here we collect some pertinent facts about power series expansions. Both
Lemma 4 and Lemma 5 might be considered standard. But we include them
(with proof sketches), for easy reference, and because they are crucial in our
arguments.

Lemma 4. Let L0 be a field, L = L0(t) with t transcendental over L0, and
r ∈ L nonzero. Then there exist an integer m and cj ∈ L0, j ≥ 0, so that
for any integer ℓ ≥ 0 there exists rℓ ∈ L with rℓ(0) ̸= 0 such that

tmr = c0 + tc1 + · · · + tℓcℓ + tℓ+1rℓ.

Moreover, the assertion also holds with t replaced by t−1. Mutatis mutandis,
these statements also hold for elements of any finite dimensional vector space
over L.

Proof. There is an integer m such that

tmr =
a0 + ta1 + · · ·
b0 + tb1 + · · ·

with a0 ̸= 0, b0 ̸= 0.

To determine the cj , proceed recursively, starting with c0 = a0/b0 and

r0 −
a0
b0

=
a0 + ta1 + · · · − a0/b0(b0 + tb1 + · · · )

b0 + tb1 + · · ·
= t r1.

The recursion step works by applying the same argument to rℓ.
The last assertion is immediate from L0(t) = L0(t

−1).

The following lemma is a consequence of the Newton-Puiseux theorem;
see Abhyankar [1], Lecture 12. We cannot directly use the theorem as stated
in [1] for algebraically closed base field, but we will closely trace Abhyankar’s
proof.

Lemma 5. Let L0 be field of characteristic zero, t transcendental over L0,
moreover let q be algebraic over L0(t), and L = L0(t, q). Then there exist a
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finite algebraic extension L̃0 of L0 and a positive integer m, such that every
element of L admits a representation

∞∑
i=N

aiτ
i; τ = t1/m,

with all ai ∈ L̃0((t)). Moreover, this statement also holds for all elements of
any finite dimensional vector space over L, and analogous statements hold
with τ replaced by τ−1.

Proof. It suffices to prove the statement for q, since L = L0(t) [q], and with
q, every polynomial in q with coefficients in L0(t) will have a representation
in L̃0((τ)) as asserted.
Let Q(t, y) ∈ L0(t)[y] denote the minimal polynomial of q over L0(t);

Q = yn + c1y
n−1 + · · · + cn,

with all cj ∈ L0(t) ⊂ L0((t)). Due to Lemma 4 we may assume that n > 1.

We will show the existence of a finite extension L̂0 of L0 such that Q is
reducible over L̂0((τ)). The following arguments (due to Abhyankar) do not
rely on rationality of the cj , or irreducibility of Q.
In case Q = yn reducibility is obvious. Otherwise, following Abhyankar’s
proof there exists a rational number d and a positive integer m, so that with
τ = t1/m one has

Q(t, td(y + c1/n)) =: Q̂(τ, y) = yn +

n∑
j=1

ĉj(τ) yn−j

with all ĉj ∈ L0[[τ ]], and ĉ1 = 0, some ĉj(0) ̸= 0. Note the correspondence

between Q and Q̂.
Now set Q̂0 := Q̂(0, y), and let L̂0 be its splitting field over L0. By the
argument in [1], p. 93,

Q̂0 = P̂0,1 · P̂0,2,

with relatively prime P̂0,i ∈ L̂0[y]. With Hensel’s lemma (as stated in [1],
p. 90) one gets

Q̂ = P̂1 · P̂2

with relatively prime P̂i ∈ L̂0[[τ ]] [y]. By the correspondence between Q and
Q̂ one arrives at

Q = P1 · P2; Pi ∈ L̂0((τ)) [y].

Proceeding by induction on the degree (possibly requiring further field ex-
tensions and increase of m) one obtains a finite field extension L̃0 and a
decomposition

Q(t, y) =
∏

(y − ηj)
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as a product of linear factors, with the ηj ∈ L̃0((t
1/m)). Now Q(t, q) = 0

shows that q = ηk for some k. To prove the assertion for decreasing powers
of τ , start with s = t−1 and repeat the argument over L0(s).
The generalization to finite dimensional vector spaces over L is straightfor-
ward.
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