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Planar quadratic differential systems occur in many areas of applied mathematics. Although
more than one thousand papers were written on these systems, a complete understanding of
this class is still missing. Classical problems, and in particular, Hilbert’s 16th problem, are
still open for this class. One of the goals of recent researchers is the topological classification
of quadratic systems. As this attempt is not possible in the whole class due to the large
number of parameters (twelve, but, after affine transformations and time rescaling, we arrive
at families with five parameters, which is still a large number), many subclasses are considered
and studied. Specific characteristics are taken into account and this implies a decrease in the
number of parameters, which makes possible the study.
In this article we perform a global study (modulo islands) of the class Qwf1sn which is the
closure within real quadratic differential systems, of the family Qwf1sn of all such systems
which have a weak focus of first order and a finite saddle-node. The bifurcation diagram for
this class, done in the adequate parameter space which is the 3-dimensional real projective
space RP3, is quite rich in its complexity since yields 399 subsets with 192 topologically distinct
phase portraits for Qwf1sn, 146 of which have a representative in Qwf1sn. It can be shown
that some of these parts have at least two limit cycles.
The phase portraits are always represented in the Poincaré disc. The bifurcation set is formed
by an algebraic set of bifurcations of singularities, finite or infinite and by a set of bifurcations
which we suspect to be analytic corresponding to global separatrices which have connections,
or double limit cycles. Algebraic invariants were needed to construct the algebraic part of
the bifurcation set, symbolic computations to deal with some quite complex invariants and
numerical calculations to determine the position of the analytic bifurcation set of connections.

Keywords: Quadratic differential systems; finite saddle-node; weak focus of first order;
limit cycle; phase portraits; bifurcation diagram; algebraic invariants.
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1. Introduction

The objective of this section is double: On the one
hand, we present an overview of an actual research
project which has as objective obtaining all the
phase portraits of quadratic differential systems,
modulo limit cycles. On the other hand, we intro-
duce the study realized in this article, whose main
objective is to contribute to the research project
explained in Section 1.1.

1.1. The study of quadratic differential sys-
tems modulo limit cycles

We consider here differential systems of the form

{
ẋ = P (x, y)
ẏ = Q(x, y)

(1)

where P,Q ∈ R[x, y], i.e. P,Q are polynomials in
x, y over R. We call degree of the system (1) the
integer m = max(degP,degQ) and we say that (1)
is a polynomial differential system of degree m. In
particular, the polynomial differential systems of
degree 1 (resp. 2) are called linear systems (resp.
quadratic systems). We denote here by QS the
whole class of quadratic systems.

The family of linear systems was completely
studied by Laplace in 1812, not only in the planar
case, but for any dimension. In fact, the solutions
can be explicitly computed. In [Perko, 2000] you
can find a modern version of the previous results.

After the complete resolution of linear differen-
tial systems, it seemed natural to address the clas-
sification of the family QS. Because, unlike the lin-
ear case, the solutions of a quadratic system cannot
always be explicitly computed, we need a concept
that allows us to compare the behavior of two dif-
ferent quadratic systems in order to be able to clas-
sify the family QS. This concept, of course, is the
topological equivalence between phase portraits (see
[Dumortier et al., 2006]), where we recall that the
phase portraits are always drawn in the Poincaré
disc (see Appendix B.2). In this situation, the ob-
jective is to classify the family QS under the equiv-
alence relation given by the topological equivalence,
i.e. we must obtain a representative of each equiv-
alence class.

Despite the above reductions, the classification
of the family QS under the topological equivalence

is, at least by now, impossible. The main prob-
lem, undoubtedly, are the limit cycles. It is well
known that a quadratic system can have up to two
eyes of limit cycles, each one of which is surround-
ing a unique singularity being a focus (see (ix) and
(xi) in Appendix B.1). However, we cannot as-
sure which is the maximum number of limit cycles
that a quadratic system can have, despite there ex-
ists a conjecture which says: “The maximum num-
ber of limit cycles that S ∈ QS can have is four,
and in case of having four they must appear in con-
figuration (3, 1)”. In fact, not even the individual
finiteness of limit cycles in polynomial systems is
fully demonstrated. Indeed, despite approximately
thirty years ago Ilyashenko and Ecalle presented
independent proofs for a result which imply as a
particular case that a polynomial differential sys-
tem must have a finite number of limit cycles (see
[Ilyashenko, 1991, Ecalle, 1990]), no other special-
ist on dynamical systems has checked these proofs
up to now and hence they cannot be fully accepted
for the moment. However, for n = 2, it is proved
(and checked by the mathematical community) that
a quadratic system must have a finite number of
limit cycles (see [Bamon, 1986]).

In conclusion, if we denote as H(n) the maxi-
mum number of limit cycles that a polynomial dif-
ferential system of degree n can have (known as
Hilbert’s numbers), then the existence of H(n) is
only proved for n = 1 (H(1) = 0). It is also known
that H(2) ≥ 4. Regarding the individual finiteness
of limit cycles, it is only proved for n ≤ 2.

All the previous questions regarding limit cy-
cles grouped together are the famous so-called
Hilbert’s 16th problem (we invite the reader to see
Section 1.2 of [Artés et al., 2021a] for more details).

Since the study of limit cycles is in general a
very difficult problem, it is advisable to separate
the study of limit cycles and consider the prob-
lem of giving the complete set of phase portraits of
quadratic differential systems modulo limit cycles.
Consider a quadratic system S, and let TP (S) be
its topological phase portrait on the Poincaré disc.
We define below the notion of phase portrait modulo
limit cycles of a quadratic system S.

We first consider a quadratic system S with-
out limit cycles. In this case the phase portrait
modulo limit cycles of S is just TP (S). If S has
limit cycles, we introduce an equivalence relation
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on the phase space of TP (S) as follows: Any point
outside the two eyes of limit cycles is equivalent
only to itself, and any two points inside an eye
of limit cycles or on the largest limit cycle of the
corresponding eye are equivalent. This equivalence
relation yields a quotient topological space from
the phase space, call it TP (S)/ ∼ and a quo-
tient map TP (S) → TP (S)/ ∼ transferring the
oriented orbits of TP (S) onto oriented orbits on
TP (S)/ ∼. The topological object obtained in this
way is called the phase portrait modulo limit cycles
of the quadratic system S. The notion of topo-
logical equivalence between phase portraits modulo
limit cycles is clearly easy to define. Two phase por-
traits modulo limit cycles of systems S and S′ are
topologically equivalent modulo limit cycles if there
is a homeomorphism f : TP (S)/ ∼→ TP (S′) / ∼
that carries oriented orbits to oriented orbits, con-
serving or reversing the orientation.

Remark 1.1. In case the polynomial systems were
of higher degree, the equivalence modulo limit cy-
cles should be redefined so as to cover other pos-
sibilities such as having several singularities inside
the limit cycles, or even several nests of limit cycles
inside a bigger one.

In this situation, the objective is to study the
whole class QS under the topological equivalence
modulo limit cycles (which of course is an equiv-
alence relation), that is, we must present a phase
portrait for each equivalence class.

Remark 1.2. The topological equivalence modulo
limit cycles is only a tool created in order to justify
that we can do a complete classification of quadratic
systems tearing apart the Hilbert’s 16th problem
about limit cycles. However, if some day the pre-
vious problem is solved, mathematicians will then
have to go through all the equivalence classes mod-
ulo limit cycles and find all the possible combina-
tions of limit cycles in any case in order to be able to
classify the whole family QS under the topological
equivalence.

A systematic way to study the whole family
QS modulo limit cycles, is to divide it by means
of working from the lower degrees of degeneracy to
the highest ones.

Definition 1.3. A system S ∈ QS is said to be
structurally stable modulo limit cycles (or struc-
turally unstable of codimension 0 modulo limit cy-
cles) if it possesses a neighborhood in the space R12

of coefficients of quadratic differential systems such
that for any system S′ in this neighborhood, S and
S′ are topologically equivalent modulo limit cycles.

Definition 1.4. Let k ∈ N. A system S ∈ QS
is said to be structurally unstable of codimension k
modulo limit cycles if it possesses a neighborhood
in the space R12 of coefficients of quadratic differ-
ential systems satisfying that: (1) Any system S′

in this neighborhood is either structurally unstable
of codimension j < k modulo limit cycles or topo-
logically equivalent modulo limit cycles to S; (2)
Exists at least one perturbation moving S to a sys-
tem which is structurally unstable of codimension
k − 1 modulo limit cycles.

Remark 1.5. Definition 1.4 is correct for k = 0, 1, 2.
However, for k ≥ 3, we need to demand some ex-
tra technical conditions. We point out that Artés
and collaborators are already working on refining
Definition 1.4 (see [Artés et al., 2023]).

Remark 1.6. Notice that, weak foci and multiple
limit cycles are objects of codimension at least one
when working with the usual topological equiva-
lence. However, when working modulo limit cycles,
they become objects of codimension zero.

Notation 1.1. By simplicity, we denote by Σ2
i the

subset of QS formed by all the quadratic systems
which are structurally unstable of codimension i
modulo limit cycles.

Remark 1.7. As observed in [Artés et al., 2021d],
when applying Defs. 1.3 and 1.4, to phase por-
traits with centers, it would say that some phase
portraits with centers would belong to Σ2

i for i as
low as two, while geometrically they occupy a much
smaller region in R12. So, the best way to avoid in-
consistencies in the definitions is to tear apart the
phase portraits with centers, that we know they are
in number exactly 31 (see [Vulpe, 1983]), and just
work with systems without centers.

From article [Artés et al., 1998] we know that
S ∈ Σ2

0 ⇐⇒ all the singularities of S (finite and
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infinite) are elemental without being a center and
S does not present any saddle connection.

The study of the whole family Σ2
0 under the

topological equivalence modulo limit cycles was
fully completed by Artés, Kooij and Llibre in arti-
cle [Artés et al., 1998], who obtained 44 phase por-
traits. For this result they mainly used topolog-
ical and combinatorial methods. First they used
such tools to make a list of possibilities for such
phase portraits. Then for each one of these possi-
bilities, they needed to produce examples showing
that the corresponding phase portrait modulo limit
cycles can be realized in the quadratic class. In the
case that such examples turned out to be impossi-
ble to find, they proved (mainly using the bound of
the number of contact points of orbits with straight
lines, see item (i) in Appendix B.1) that the corre-
sponding possibility cannot actually occur.

In book [Artés et al., 2018], Artés, Llibre and
Rezende classified the family Σ2

1 under the topolog-
ical equivalence modulo limit cycles.

According to Thm. 2.2 in [Artés et al., 2018],
we know that S ∈ Σ2

1 if and only if all objects of
S are stable except one that is either a saddle-node
of multiplicity two (finite or infinite), a separatrix
from one saddle point to another, or a separatrix
forming a loop for a saddle. All the phase portraits
corresponding to the family Σ2

1 are split into four
groups according to the possession of a structurally
unstable element mentioned before:

(A) possessing a finite semi-elemental saddle-node
sn(2).

(B) possessing an infinite semi-elemental saddle-

node
(0
2

)
SN .

(C) possessing an infinite semi-elemental saddle-

node
(1
1

)
SN .

(D) possessing a separatrix connection between
saddles.

Furthermore, the set (D) is split into five subsets
according to the type of connection: (a) finite-finite
(heteroclinic orbit), (b) loop (homoclinic orbit), (c)
finite-infinite, (d) infinite-infinite between symmet-
ric points, and (e) infinite-infinite between adjacent
points.

The study of Σ2
1 was done in approximately 20

years and finally it was obtained at least 204 (and

at most 211) topologically distinct phase portraits
for Σ2

1 (modulo limit cycles). Two recent studies
[Artés, 2023, Artés et al., 2021e] have shown two
mistakes in [Artés et al., 2018] and have reduced
the number of cases to 202 (and a most 209).

This work was also mainly topological and com-
binatorial. The compilation of all possible phase
portraits was relatively easy, but the location of
examples for each one of them, or proofs of their
impossibility, was not so easy. The study of many
new families of quadratic systems (obtained mainly
thanks to polynomial invariants) was needed to ob-
tain a wide collection of realizable phase portraits,
and so reduce the number of those that needed to
be proven impossible. The proofs to show the im-
possibility of some phase portraits in Σ2

1 proceed
by showing that at least one of the phase portraits
that appear in perturbations of the unstable ele-
ment, is not realizable in Σ2

0. Also the bound of
contact points continued to be an important tool
to use, as in the case of Σ2

0.

Once studied the families Σ2
0 and Σ2

1 (modulo
limit cycles), the next step is to study the family
Σ2
2, also modulo limit cycles. According to article

[Artés et al., 2021d], we have that:

Theorem 1.8. A quadratic system belongs to Σ2
2

if and only if all its objects are stable except for the
presence of two unstable objects of codimension one
or one of codimension two.

As a consequence of Thm. 1.8, combining the
classes of the family Σ2

1 one to each other, we obtain
10 classes for the family Σ2

2, where three of them
splits into 5 subsets and one of them splits into
15 subsets, depending on the type of connection
(a), (b), (c), (d) or (e). The previous classes are
presented in Tables 1.1 and 1.2.

(A) (B) (C) (D)

(A) (AA) - - -
(B) (AB) (BB) - -
(C) (AC) (BC) (CC) -
(D) (AD) (5 cases) (BD) (5 cases) (CD) (5 cases) See Table 1.2

Table 1.1: Sets of family Σ2
2 considered from

combinations of the different classes in family Σ2
1.

For a more precise definition of the subsets
(JK) ⊂ Σ2

2, J,K ∈ {A,B,C,D}, we refer the
reader to [Artés et al., 2021d].
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(a) (b) (c) (d) (e)

(a) (aa) - - - -
(b) (ab) (bb) - - -
(c) (ac) (bc) (cc) - -
(d) (ad) (bd) (cd) (dd) -
(e) (ae) (be) (ce) (de) (ee)

Table 1.2: Sets in class (DD) ⊂ Σ2
2 (see Table 1.1).

The approach is the same as used when studying
families Σ2

0 and Σ2
1: In order to study a certain

family (JK) ⊂ Σ2
2, one must start by looking for all

the potential topological phase portraits contained
in such family, and then try to realize all of them
or show that some of them are impossible. In or-
der to “attack” the realization problem, its crucial
to study the bifurcation diagram (constructed via
comitants and invariants for quadratic systems as
used by the Sibirsky’s School) of some “strategic”
families from which we could get examples of our
topological potential phase portraits, thus proving
its realization. In fact, as we explain in Sect. 1.2,
the study developed in this article belongs to this
last type.

The study of the families (AA), (AB) and (AC)
is completely finished (see [Artés et al., 2021e,
Artés et al., 2021d]). The family (BB) it is not
needed to be studied. Indeed, as described in
[Artés et al., 2021d], (BB) it is formed by all the
quadratic systems having all its objects stable ex-

cept for the presence of an infinite triple saddle
(0
3

)
S

or an infinite triple node
(0
3

)
N . This case is irrele-

vant to the production of new phase portraits since
all the possible phase portraits that may produce
are topologically equivalent to a structurally stable
one. The families (AD), (BC), (CC), (BD) and
(CD) either they are already under study or they
have not yet been initiated but it is well known how
to approach them. The (DD) family, which con-
sists of all quadratic systems having all its objects
stable except for the presence of two separatix con-
nections between saddles (see [Artés et al., 2021d]),
will undoubtedly be the most problematic. While
it is true that generating all the potential topolog-
ical portraits should not be too complicated, find-
ing examples to prove the realization of the phase
portraits will be a major problem since there is no
normal form in which generically the systems have
two saddle connections, from which we could study
its bifurcation diagram in order to obtain concrete

examples in (DD).

Remark 1.9. In order to complete the study of the
whole class QS, it is well known that: (1) The
higher codimension k that we will need in order to
cover all the family QS is finite; (2) The codimen-
sion two family will be the hardest to achieve, since
families corresponding to higher codimension either
have already been studied or would be easier to do.
Thus, following this procedure we will be able to
classify the whole class QS modulo limit cycles.

1.2. Objectives and relevance of this article

The main goal of this article is to perform the com-
plete study of the class of all quadratic differen-
tial systems possessing a weak focus of first order
f (1) and a finite saddle-node (see Sect. 3.1 for a
precise definition). We denote the previous class
as Qwf1sn. A first important observation is the
following one: Let S ∈ Qwf1sn. Then S has
a unique finite saddle-node, which must be semi-
elemental and of multiplicity 2 (denoted as sn(2),
see [Artés et al., 2021a]). The previous result will
be proved in detail in Lemma 3.2 (see Sect. 3.1).

Whenever one wants to study a specific family
of differential systems sharing a common property,
it is necessary to select one (or several) normal form
which contains all the phase portraits sharing the
desired property. However, except in some trivial
cases, it is impossible that the normal form does not
contain other phase portraits, normally more de-
generate than the cases under study. These other
phase portraits are very important to understand
the bifurcations that take place inside the chosen
normal form. This is why we always study not just
the family of systems that have the desired prop-
erty, but the closure of the normal form which con-
tains that family. That is, we study all the param-
eter space of the selected normal form, whether if
it leads to the desired property or not. However, it
is possible that a different normal form could have
been chosen and in that case, the generic elements
of the family under study should be the same, but
the elements in the border might not be. That is,
some phase portraits in the border of one normal
form could be common or not, with elements in the
border of the second normal form.

As we will demonstrate in detail in Sect. 3.1,
any S ∈ Qwf1sn can be transformed by means of
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affine changes and a time rescaling to a system of
the form (5) for certain values (l, g,m, h) ∈ R4\{0}.
However, the reciprocal is not true, i.e. not any
system of the form (5) belongs to Qwf1sn (see Re-
mark 3.5). Hence, according to our previous con-
siderations we must study the systems (5) for all
values of the parameters. We call Qwf1sn (clo-
sure of Qwf1sn) the set of all systems (5) for
(l, g,m, h) ∈ R4. Thus, our objective is to study
the family Qwf1sn under the normal form (5).

The principal aim of this article is to contribute
to the research project explained in Sect. 1.1, in
addition to the interest that the study has by itself.

The family (AD) ⊂ Σ2
2, consisting in all the

quadratic systems whose objects are stable except
for the presence of a finite saddle-node sn(2) plus
a separatrix connection (see [Artés, 2023]), is being
studied by Artés. He has obtained all the potential
phase portraits and now he is finding examples to
demonstrate the realization of the maximum pos-
sible number of phase portraits. Despite the sys-
tems in Qwf1sn not necessarily present a connec-
tion between saddles, they generically have a finite
saddle-node sn(2). In addition, there is a subset in
our parameter space whose associated systems be-
long to the family (AD) ⊂ Σ2

2 (see Theorem 2.11).
These phase portraits are needed by Artés in order
to complete the realization problem of the family
(AD) ⊂ Σ2

2 (see Sect. 2).

The systems in familyQwf1sn contained in the
three-dimensional regions of our parameter space
belong to (A) ⊂ Σ2

1 (see Theorem 2.6), as will be-
come clear in Sects. 3, 4. The intersection between
the families Σ2

1 and Qwf1sn allows us to detect
some possible mistakes in one of the two studies.

The study of the class Qwf1sn we have de-
veloped in this article follows the same pattern
as articles [Artés et al., 2006, Artés et al., 2021b,
Artés et al., 2021c]. In many papers of this last
type, where the bifurcation diagrams of families of
phase portraits have been studied, it is quite com-
mon that the authors have missed one or several
phase portraits. This may happen either because
they have not interpreted correctly some of the bi-
furcation parts, or they have missed the existence
of some nonalgebraic bifurcation, or there may ex-
ist some small “islands”. All previous phenomena
are described in Sect. 5. It is clear that previous
“pathologies” are unavoidable, but it is not a prob-

lem. Indeed, the studies of families via bifurcation
diagram help us in the problem of finding exam-
ples of realization, but in any case it is expected
to assure that we have not left any phase portrait.
The objective is to present a coherent bifurcation
diagram in terms of continuity.

This article is organized as follows. In Sect. 2
we present the results that we have obtained.

In Sect. 3 we describe the normal form for the
family of quadratic systems having a weak focus of
first order f (1) and a finite semi-elemental saddle-
node of type sn(2). In addition, we also explain how
we treat our parameter space.

In Sect. 4 we briefly mention some algebraic
and geometric concepts, which are fully explained
in [Artés et al., 2021a], involving comitants and
invariants for quadratic systems as used by the
Sibirsky’s School. Moreover, using the mentioned
concepts as tools, we construct the bifurcation sur-
faces for the class Qwf1sn.

In Sect. 5 we discuss about the possible exis-
tence of “islands” and other phenomena in the bi-
furcation diagram.

In Sect. 6 we introduce a global invariant de-
noted by I, which classifies completely, up to topo-
logical equivalence, the phase portraits that we have
obtained for the systems in the class Qwf1sn. In-
deed, Theorem 6.13 shows clearly that they are
uniquely determined (up to topological equivalence)
by the values of the invariant I.

In Sect. 7 we present some tables grouping all
the regions having the same topological phase por-
trait.

In Appendix A we present some additional ma-
terial that is useful when studying the bifurcation
diagram in Sect. 4.

In Appendix B we group some basic results in
qualitative theory related with this study. These
results will be used during this article when neces-
sary.

Finally, in https://mat.uab.cat/∼artes/
articles/qwf1sn/qwf1sn.html you can find ad-
ditional useful material. During the article we will
indicate which documents the reader can find there.

2. Statement of the obtained results

The objective of this section is to present the results
we have obtained in this article. For the normal
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form (5) defined in Sect. 3, the class Qwf1sn is par-
titioned into 399 parts: 75 three–dimensional ones,
169 two–dimensional ones, 124 one–dimensional
ones and 31 points. As we will explain in detail
in Sect. 4, the partition is obtained by considering
all the bifurcation manifolds of singularities, one
related to the presence of invariant straight lines,
one related to connections of separatrices and one
related to the presence of one double limit cycle.
Moreover, the study is done modulo “islands” (see
Sect. 5.1 for details).

2.1. The main theorem

We start recalling that the phase portraits that we
present in this section are drawn in the Poincaré
disc (see Appendix B.2 for a precise definition).
Strictly speaking, we have not listed the phase por-
traits since these would be impossible to draw, con-
taining all oriented phase curves. Instead we have
listed the completed separatrix skeleton (see Ap-
pendix B.3 for a precise definition). However, the
completed separatrix skeleton suffices. Indeed, it
can be proved that two systems S, S′ are topo-
logically equivalent ⇐⇒ their completed separa-
trix skeletons are topologically equivalent (see Thm.
B.3 for details).

We now introduce the concept of graphic, which
plays an important role when generating limit cy-
cles, as will become clear during this article:

Definition 2.1. A nondegenerate graphic is a sub-
set of the Poincaré disc formed by singular points
pi, i = 1, . . . ,m + 1, where m ≥ 1 and pm+1 = p1,
and orbits sj, j ∈ {1, . . . ,m} connecting them, such
that for each orbit sj the α−limit set of sj is pj, the
ω−limit set of sj is pj+1. If m = 1 it is also called
a loop or homoclinic orbit.

Definition 2.2. A degenerate graphic is a subset
of the Poincaré disc formed by the following three
items: (1) Singular points pi, i = 1, . . . ,m+1, with
m ≥ 1, pm+1 = p1; (2) Orbits sj , j ∈ S, where S
is a strict subset of {1, . . . ,m} (S could be ∅) such
that for each orbit sj the α−limit set of sj is pj,
the ω−limit set of sj is pj+1; (3) Arcs of curves sk,
k ∈ {1, . . . ,m}\S, which connect pk with pk+1 and
which are filled with singular points.

Before giving the obtained result, we point out

that we cannot have a global result about the num-
ber of limit cycles that a phase portrait may have.
But we can assure that, in some places of the bifur-
cation diagram, the corresponding phase portraits
have a specific number of limit cycles or a larger
quantity with identical parity (taking into account
the multiplicity of limit cycles). More precisely, as
we may find an “island” (see Sect. 5.1 for more de-
tails) inside the parameter space for which in its
border there exists a double limit cycle and inside
the island there are two more limit cycles, all the
claims regarding limit cycles always must be for-
mulated with respect to the minimum number of
limit cycles (proved to exist), but always having the
possibility of the existence of “more” limit cycles,
keeping the parity.

Theorem 2.3. We have found a total of 192 topo-
logically distinct phase portraits for the closure of
the family of quadratic systems having a weak fo-
cus of first order and a finite saddle-node (class
Qwf1sn). All these phase portraits are shown in
Figs. 2.1 to 2.6. Also the following statements hold:

(a) We have found 146 topologically distinct phase
portraits in Qwf1sn, and they are in parts: Vi
for i=1 . . . 13, 15 . . . 28, 30 . . . 34, 37, 39, 42, 43,
46, 47, 53, 54, 56, 59, 66, 68, 72, 75; 1Si
for i=1 . . . 10, 12 . . . 15; 4Si for i=1 . . . 4, 7, 8,
12; 5Si for i=1 . . . 8, 10, 11, 14 . . . 16, 18 . . . 23,
28 . . . 31; 7Si for i=1 . . . 17, 19, 23, 24, 26, 28,
29; 10S1, 10S2; 1.4Li for i=1 . . . 3; 1.5Li for
i=1 . . . 8; 1.7Li for i=1 . . . 3; 1.10L1; 4.5Li for
i=1, 2, 4, 5; 5.7Li for i=1 . . . 5, 7, 8; 7.7L1; Pi

for i=2, 9, 10, 16.

(b) We have also found a topological equivalent ver-
sion in Qwf1sn \Qwf1sn of some of the previ-
ous 146 phase portraits. They are listed in Tables
7.1-7.9 in Section 7.

Moreover, the 46 phase portraits corresponding
to parts 2Si for i=1 . . . 4; 9Si for i=1, 3 . . . 6;
11Si for i=3 . . . 5, 9, 12, 14; 1.8L1; 1.9Li for
i=1, 2; 1.11Li for i=1 . . . 3; 2.5Li for i=1 . . . 3;
3.8Li for i=1, 3, 7, 9; 4.8Li for i=1, 4 . . . 6;
5.9Li for i=1, 2; 5.11Li for i=1, 3; 7.9L1; 7.11Li

for i=1, 2, 5; 9.11L1 and Pi for i=5, 15, 19, 23,
28 belong to Qwf1sn\Qwf1sn and cannot have
a topological equivalent version in Qwf1sn.

(c) We have found 28 topologically distinct phase
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portraits possessing exactly one simple limit cycle
(or an odd number of them taking into account
their multiplicities). They are in parts V9, V12,
V16, V17, V18, V23, V26, V34, V42, V46, V53, V56,
V72, 1S8, 1S9, 5S7, 5S14, 5S18, 7S5, 7S6, 7S10,
7S23, 7S24, 11S3, 11S12, 11S14, 1.7L2, 5.11L1.

(d) We have found 3 phase portraits with exactly two
simple limit cycles (or an even number of them
taking into account their multiplicity) surround-
ing the same focus, and they are in the parts V25,
V27, 1S10.

(e) We have found 3 phase portraits possessing one
double limit cycle (and no signs of other limit
cycles), and they are in the parts 10S1, 10S2,
1.10L1.

(f) We have found a total of 27 phase portraits with
exactly one nondegenerate graphic surrounding
a focus. These phase portraits are in the
parts V43, V47, 5S15, 5S16, 5S19, 7S2, 7S4,
7S5, 7S7, 7S9, 7S10, 7S13, 7S15, 7S16, 7S17,
7S19, 1.7L1, 1.7L2, 5.7L2, 5.7L3, 5.7L4, 5.7L5,
5.11L3, 7.7L1, 7.11L1, 7.11L5, P19.

(g) We have found a total of 3 phase portraits pos-
sessing exactly one nondegenerate graphic and
one simple limit cycle, both surrounding the same
focus, and they are in the parts 7S5, 7S10, 1.7L2.

(h) We have found a total of 5 phase portraits
possessing an infinite family of nondegenerate
graphics and without singularities inside the
graphics. They are in parts 1.5L3, 4.8L4, 4.8L5,
4.8L6, P23.

(i) We have found exactly 10 topologically hase
portraits possessing at least one nondegenerate
graphic surrounding a center, and they are in
parts 3.8L1, 3.8L3, 3.8L7, 3.8L9, 4.8L1, 4.8L4,
4.8L5, 4.8L6, P5 and P23 (see Thm. 2.7).

(j) We have found one phase portrait, namely
1.8L1, possessing an infinite number of degener-
ate graphics, some of them surroundig a center
and the rest without singularities inside. In fact,
the system 1.8L1 corresponds to Vul29 (see The-
orem 2.7).

(k) We have found one phase portrait, namely 4S7,
possessing exactly two nondegenerate graphics,
each one of them surrounding a single focus (one
is the origin, which is of first order, and the other
is strong).

Proof of Theorem 2.3. The bifurcation diagram de-
scribed in Sect. 4, plus Tables 6.1 to 6.3 (from
Sect. 6) of the geometrical invariants distinguish-
ing the 192 phase portraits, plus Tables 7.1 to 7.9
giving the equivalences with the remaining phase
portraits lead to the proof of Thm. 2.3.

Corollary 2.4. For the class Qwf1sn, Table 2.1
compares the number of phase portraits possess-
ing some geometrical features between the family
Qwf1sn and its border. We have also added in each
row the total number of topological distinct phase
portraits found which have the particular geometri-
cal feature. We recall that a topological phase por-
trait can appear in both columns due to the reasons
we have mentioned in Thm. 2.3 (b), and hence, the
value in the last column is not necessarily the sum
of those in the second and third columns.

Table 2.1: Comparison between the family Qwf1sn
and its border (the number represent the absolute

value in each subclass).

Qwf1sn
Border of Total top.
Qwf1sn distinct

Distinct phase portraits 146 68 192

Phase portraits with exactly
24 7 28

one simple limit cycle

Phase portraits with exactly
3 0 3

two simple limit cycles

Phase portraits with exactly
3 0 3

one double limit cycle

Phase portraits with exactly
23 11 31

one nondegenerate graphic

Phase portraits with exactly
1 1 2

two nondegenerate graphics

Phase portraits with an infinite
1 4 5

number of nondegenerate graphics

Phase portraits with an infinite
0 1 1

number of degenerate graphics

From the 146 topologically distinct phase portraits
of the family Qwf1sn we have found, 46 occur
in three-dimensional parts, 69 in two-dimensional
parts, 27 in one-dimensional parts and 4 occur in a
zero-dimensional part.

For the border of Qwf1sn, from its 68 topolog-
ically different phase portraits we have found (as
we have specified in Table 2.1), 27 occur in two–
dimensional parts, 35 in one–dimensional parts and
6 occur in zero-dimensional parts.

We point out that when we say that a phase
portrait occurs in a n–dimensional part we mean
that the highest dimension of a part where it oc-
curs is n, since there is the possibility that the same



QS with a f (1) and a sn(2) 9

phase portrait appears in a lower dimensional re-
gion bordering the n dimensional one. All these
situations are described in Tables 7.1-7.9 in Sect. 7.

In Figs. 2.1 to 2.6 we have drawn all the limit
cycles (and loops) possessing a convex shape (see
item (v) in Appendix B.1). The limit cycle is col-
ored in red if it is simple and it is colored in dark
green if it is double. In addition, all the graph-
ics (see Defs. 2.1 and 2.2) are colored in blue. On
the other hand, we have illustrated all the singu-
lar points with a small black disc. We have also
drawn with thicker curves the separatrices and also
the lines filled up with singularities. Finally, we
have added some thinner orbits to avoid confusion
in some required specific cases.

Moreover, we label the phase portraits accord-
ing to the parts of the bifurcation diagram (see Sect.
4) where they appear. Here we call volumes (V )
the three–dimensional ones, surfaces (S) the two–
dimensional ones, curves (L) the one–dimensional
ones, and points (P ) the zero–dimensional ones.
These labels could be different for two topologi-
cally equivalent phase portraits occurring in dis-
tinct parts. An example of this situation occurs
when we have phase portraits in two-dimensional or
one-dimensional parts, coinciding with some phase
portraits situated on their border (either because
a focus has become a node, or because an invari-
ant line not yielding a connection of separatrices
has appeared, or because a finite singularity has
become weak, among others). We recall again that
all these situations have been detailed described in
Tables 7.1-7.9 in Section 7.

Finally, we recall that we use the same pattern
in order to indicate the elements (V ), (S), (L) and
(P ) in the bifurcation diagram studied in Sect. 4.

2.2. Comparison with studied families

Once finished the study of a new family, it is fun-
damental to compare it with those families which
have been already studied. This allows us to find
possible mistakes and to correct them if necessary,
either in the new family that we are studying or in
the already studied ones.

Theorem 2.5. We have found 10 topologically dis-
tinct phase portraits (7 modulo limit cycles) in

Qwf1sn \ Qwf1sn which are topologically equiv-
alent to a phase portrait of the class Σ2

0. They are
described in Table 2.2.

Qwf1sn \Qwf1sn Σ2
0 Qwf1sn \Qwf1sn Σ2

0

2S1 S22,1 2S2 ≡ 11S14 S211,2
2S3 ≡ 11S12 S24,1 2S4 ≡ 11S3 S29,3

11S4 S29,2 11S5 S29,1
11S9 S211,1

Table 2.2: Phase portraits in Qwf1sn \Qwf1sn
belonging to the class Σ2

0. The symbol ≡ means that
two phase portraits are topologically equivalent modulo

limit cycles (see Sect. 1.1). The notation S2j,k
correspond to the one used in [Artés et al., 1998].

Theorem 2.6. We have found 48 topologically dis-
tinct phase portraits (31 modulo limit cycles) in
Qwf1sn belonging to the class (A) ⊂ Σ2

1. They
are described in Table 2.8.

As we have already mentioned in Sect.1.1, all
quadratic systems having a center are completely
studied by Vulpe (see [Vulpe, 1983]). There are
exactly 31 and they are denoted as Vuli for i =
2, . . . , 32 (the name Vul1 is reserved for the linear
center). We also recall that if a quadratic system
has a center then it cannot have limit cycles. In
addition, there is only one quadratic system with
center (which is Vul30) having a (strong) focus. Fur-
thermore, Vuli /∈ Qwf1sn for all i.

Qwf1sn \Qwf1sn Center Qwf1sn \Qwf1sn Center

1.8L1 Vul29 3.8L1 Vul7
3.8L3 Vul19 3.8L7 Vul20
3.8L9 Vul2 4.8L1 Vul31
4.8L4 Vul22 4.8L5 Vul24
4.8L6 Vul23 P5 Vul13
P23 Vul14

Table 2.3: Systems with centers in Qwf1sn\Qwf1sn.

Theorem 2.7. We have found 11 topologically dis-
tinct phase portraits with centers in Qwf1sn \
Qwf1sn. They are described in the Table 2.3:
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Qwf1sn \Qwf1sn (AA) ⊂ Σ2
2 Qwf1sn \Qwf1sn (AA) ⊂ Σ2

2

9S1 U2
AA,3 9S3 U2

AA,2

9S4 U2
AA,4 9S5 U2

AA,15

9S6 U2
AA,11

Table 2.4: Phase portraits in the class
Qwf1sn \Qwf1sn belonging to the class (AA) ⊂ Σ2

2.
The notation U2

AA,j correspond to the one introduced
in [Artés et al., 2021e].

Theorem 2.8. We have found 5 topologically dis-
tinct phase portraits in the class Qwf1sn\Qwf1sn
belonging to the class (AA) ⊂ Σ2

2. They are de-
scribed in the Table 2.4:

Theorem 2.9. We have found 14 topologically dis-
tinct phase portraits (11 modulo limit cycles) in
Qwf1sn belonging to the class (AC) ⊂ Σ2

2. They
are listed in Table 2.5.

Theorem 2.10. We have found 23 topologically
distinct phase portraits (20 modulo limit cycles) in
Qwf1sn belonging to the class (AB) ⊂ Σ2

2. They
are listed in Table 2.6.

Qwf1sn (AC) ⊂ Σ2
2 Qwf1sn (AC) ⊂ Σ2

2

1S1 U2
AC,2 1S2 U2

AC,18

1S3 U2
AC,23 1S4 U2

AC,24

1S5 U2
AC,26 1S6 ≡ 1S9 U2

AC,38

1S7 ≡ 1S8, 1S10 U2
AC,20 1S12 U2

AC,30

1S13 U2
AC,3 1S14 U2

AC,25

1S15 U2
AC,1

Table 2.5: Phase portraits in Qwf1sn belonging to
the class (AC) ⊂ Σ2

2. The symbol ≡ means that two or
three phase portraits are topologically equivalent

modulo limit cycles (see Sect. 1.1). The notation U2
AC,j

correspond to the one used in [Artés et al., 2021d].

Qwf1sn (AB) ⊂ Σ2
2 Qwf1sn (AB) ⊂ Σ2

2

5S1 U2
AB,10 5S2 U2

AB,9

5S3 U2
AB,16 5S4 ≡ 5S14, 5S18 U2

AB,65

5S5 U2
AB,19 5S6 U2

AB,22

5S7 ≡ 5S8 U2
AB,37 5S10 U2

AB,30

5S11 U2
AB,64 5S15 U2

AB,71

5S16 U2
AB,69 5S19 U2

AB,54

5S20 U2
AB,55 5S21 U2

AB,14

5S22 U2
AB,12 5S23 U2

AB,11

5S28 U2
AB,59 5S29 U2

AB,66

5S30 U2
AB,18 5S31 U2

AB,70

Table 2.6: Phase portraits in Qwf1sn belonging to
the class (AB) ⊂ Σ2

2. The symbol ≡ means that two or
three phase portraits are topologically equivalent

modulo limit cycles (see Sect. 1.1). The notation U2
AB,j

correspond to the one used in [Artés et al., 2021d].

As we have already mentioned, one of the rea-
sons for which this article is relevant is because it
gives us concrete examples which are used in or-
der to attack the realization problem for the family
(AD) ⊂ Σ2

2. Artés has already produced all the
potential topological phase portraits for the fam-
ily (AD) (the article is not published yet), many of
which have a representative in the family Qwf1sn,
as described in the following result.

Theorem 2.11. We have found 30 topologically
distinct phase portraits (25 modulo limit cycles) in
the family Qwf1sn belonging to the class (AD) ⊂
Σ2
2. All of them are described in Table 2.7.

The production of this study has coincided in
time with the study of the class (AD) ⊂ Σ2

2 done by
Artés (already at a preprint level, see [Artés, 2023]).
Artés found time ago all the potential phase por-
traits of class (AD) and he had finally found 76
topologically distinct phase portraits modulo limit
cycles, and there remained some which would have
ended in a conjecture about its impossibility. But
Artés decided to delay its publication until the
completion of this study since there was the pos-
sibility that some of the conjectured impossible
could appear here. As it has finally happened.
Phase portrait 7S13 coincides with phase portrait
U2
AD,77 (which initially was conjectured as impos-

sible) which is the dual of U2
AD,8. In fact, phase

portrait U2
AD,8 does not appear in Qwf1sn but its

dual does. Artés obtains U2
AD,8 by bifurcation from

class (AB). So both possibilities are realizable. Un-
luckily, no more of the conjectured impossible phase
portraits has appeared here. In particular, neither
U2
AD,9 nor its still unfound dual U2,I

AD,9 appear here.

We point out that, as will become clear in the
subsequent sections, the study developed in this ar-
ticle is complete modulo ”islands” (see Sect. 5). In
particular, we cannot guarantee that we have not
left any phase portrait. What we can guarantee is
that the bifurcation diagram obtained in Sect. 4 is
coherent and that with a very high percentage of
certainty, is complete (and in case of being incom-
plete, at most remain to be detected some small iso-
lated islands which have never been detected before
in any of the previous studies of this typology). In
view of the previous observations and the obtained
results, we conjecture the following.
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Conjecture 2.1. A system S ∈ Qwf1sn can have
at most two limit cycles (taking into account multi-
plicities), and in case of having two then both must
surround the unique f (1).
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Qwf1sn (AD) ⊂ Σ2
2 Qwf1sn (AD) ⊂ Σ2

2 Qwf1sn (AD) ⊂ Σ2
2 Qwf1sn (AD) ⊂ Σ2

2

4S1 U2
AD,3 4S2 U2

AD,41 4S3 U2
AD,61 4S4 U2

AD,27

4S7 U2
AD,14 4S8 U2

AD,31 4S12 U2
AD,13 7S1 U2

AD,1

7S2 U2
AD,10 7S3 U2

AD,43 7S4 U2
AD,59 7S5 ≡ 7S7 U2

AD,55

7S6 ≡ 7S8 U2
AD,68 7S9 ≡ 7S10 U2

AD,40 7S11 ≡ 7S23 U2
AD,4 7S12 ≡ 7S24 U2

AD,6

7S13 U2
AD,77 7S14 U2

AD,5 7S15 U2
AD,25 7S16 U2

AD,34

7S17 U2
AD,12 7S19 U2

AD,36 7S26 U2
AD,2 7S28 U2

AD,75

7S29 U2
AD,33

Table 2.7: Phase portraits in Qwf1sn belonging to the class (AD) ⊂ Σ2
2. The symbol ≡ means that two or three

phase portraits are topologically equivalent modulo limit cycles (see Sect. 1.1). The notation U2
AD,j is the one used

by Artés in [Artés, 2023].

Qwf1sn (A) ⊂ Σ2
1 Qwf1sn (A) ⊂ Σ2

1 Qwf1sn (A) ⊂ Σ2
1 Qwf1sn (A) ⊂ Σ2

1 Qwf1sn (A) ⊂ Σ2
1

V1 U1
A,4 V2 U1

A,3 V3 U1
A,23 V4 U1

A,28 V5 ≡ V42, V53 U1
A,66

V6 U1
A,31 V7 U1

A,2 V8 U1
A,5 V9 ≡ V10 U1

A,6 V11 U1
A,34

V12 ≡ V13 U1
A,46 V15 ≡ V18, V25, 10S1 U1

A,26 V16 ≡ V19 U1
A,40 V17 ≡ V20 U1

A,54 V21 ≡ V26 U1
A,68

V22 ≡ V23, V27, 10S2 U1
A,67 V24 U1

A,69 V28 U1
A,39 V30 U1

A,65 V31 U1
A,11

V32 ≡ V72 U1
A,7 V33 ≡ V34 U1

A,8 V37 U1
A,9 V39 ≡ V46, V56 U1

A,12 V43 U1
A,70

V47 U1
A,13 V54 U1

A,57 V59 U1
A,58 V66 U1

A,24 V68 U1
A,61

V75 U1
A,30

Table 2.8: Phase portraits in Qwf1sn belonging to the class (A) ⊂ Σ2
1. The symbol ≡ means that two or three

phase portraits are topologically equivalent modulo limit cycles (see Sect. 1.1). The notation U1
A,j correspond to

the one used in [Artés et al., 2018].
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V1 V2 V3 V4 V5

V6 V7 V8 V9 V10

V11 V12 V13 V15 V16

V17 V18 V19 V20 V21

V22 V23 V24 V25 V26

V27 V28 V30 V31 V32

V33 V34 V37 V39 V42

Fig. 2.1: Phase portraits for quadratic vector fields with a finite saddle-node and a weak focus of first order.
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V43 V46 V47 V53 V54

V56 V59 V66 V68 V72

V75 1S1 1S2 1S3 1S4

1S5 1S6 1S7 1S8 1S9

1S10 1S12 1S13 1S14 1S15

2S1 2S2 2S3 2S4 4S1

4S2 4S3 4S4 4S7 4S8

Fig. 2.2: Continuation of Figure 2.1.
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4S12 5S1 5S2 5S3 5S4

5S5 5S6 5S7 5S8 5S10

5S11 5S14 5S15 5S16 5S18

5S19 5S20 5S21 5S22 5S23

5S28 5S29 5S30 5S31 7S1

7S2 7S3 7S4 7S5 7S6

7S7 7S8 7S9 7S10 7S11

Fig. 2.3: Continuation of Figure 2.2.
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7S12 7S13 7S14 7S15 7S16

7S17 7S19 7S23 7S24 7S26

7S28 7S29 9S1 9S3 9S4

9S5 9S6 10S1 10S2 11S3

11S4 11S5 11S9 11S12 11S14

1.4L21.4L1 1.4L3 1.5L1 1.5L2

1.5L3 1.5L4 1.5L5 1.5L6 1.5L7

Fig. 2.4: Continuation of Figure 2.3.
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4.5L2

1.5L8 1.7L1 1.7L2 1.7L3 1.8L1

1.9L1 1.9L2 1.10L1 1.11L1 1.11L2

1.11L3 2.5L1 2.5L2 2.5L3 3.8L1

3.8L3 3.8L7 3.8L9 4.5L1

4.5L4 4.5L5 4.8L1 4.8L4 4.8L5

4.8L6 5.7L1 5.7L2 5.7L3 5.7L4

5.7L5 5.7L7 5.7L8 5.9L1 5.9L2

Fig. 2.5: Continuation of Figure 2.4.
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5.11L1 5.11L3 7.7L1 7.9L1 7.11L1

7.11L2 7.11L5 9.11L1 P2 P5

P9 P10 P15 P16 P19

P23 P28

Fig. 2.6: Continuation of Figure 2.5.
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3. QS with a finite saddle-node sn(2) and a

weak focus of first order f (1)

The aim of this section is double. On the one
hand, we construct the normal form for systems
in Qwf1sn. On the other hand, we explain in de-
tail how our parameter space will be treated. The
procedures used are very similar to those given in
[Artés et al., 2006].

3.1. Constructing the normal form for the
class Qwf1sn

We start describing new definitions and designa-
tions for singular points which make part of a set
of new definitions more deeply related to the ge-
ometry of the singular points, their multiplicities
and, especially, their Jacobian matrices. We sum-
marize here the definitions, but the entire new des-
ignation is completely explained in Chapter 3 of
[Artés et al., 2021a]. Let X ∈ QS and let p ∈ R2

a singular point of X. We denote by DX(p) the
Jacobian matrix of X at p. Let λ1, λ2 ∈ C the two
eigenvalues ofDX(p). We denote the singular point
p in one of the following four ways, depending on
λ1 and λ2, as explained in the following diagram:





Elemental : λ1 6= 0, λ2 6= 0
Semi-elemental : Exactly one eigenvalue is 0

Nilpotent : λ1 = λ2 = 0 but DX(p) 6= 0
Intricate : λ1 = λ2 = 0 and DX(p) = 0

We also need to recall some additional nota-
tion: A singular point p ∈ R2 of X ∈ QS is said
to be a linear center if the eigenvalues of its lin-
ear part, DX(p), are pure imaginary numbers, i.e.
±iβ with β ∈ R \ {0}. We say that p ∈ R2 is a
center of X if p is an isolated singularity such that
there exists an open neighborhood U of p satisfying
that p is the unique singular point contained in U
and all orbits of X different from p contained in U
are periodic. It is well known that a linear center
p is either a center, or a focus. In this last case
p is called a weak focus. We recall that p ∈ R2 is
a strong focus if the eigenvalues of its linear part
are of the form α ± iβ with αβ 6= 0. Finally,
we say that p ∈ R2 is a saddle-node if there ex-
ists a small neighborhood of p formed by the union
of two hyperbolic sectors and one parabolic sector
(see [Dumortier et al., 2006, Artés et al., 2021a] for
more details).

The next result is due to Shi (see [Shi, 1981,
Shi, 1984]). We point out that this lemma is better
stated in [Schlomiuk, 1993] where the rings involved
are explicitly written, and where a sketch of the
proof is also given. For the sake of completeness we
give below the statement.

Lemma 3.1. Consider the planar polynomial dif-
ferential system of degree m:

{
ẋ = P (x, y) = −y + P2(x, y) + · · ·+ Pm(x, y)
ẏ = Q(x, y) = x+Q2(x, y) + · · ·+Qm(x, y)

(2)

where m ≥ 2 and

Pi(x, y) =

i∑

j=0

aijx
i−jyj, Qi(x, y) =

i∑

j=0

bijx
i−jyj

∀ i ∈ {2, . . . ,m}. Then there exists a formal power
series F ∈ (Q[a20, . . . , amm, b20, . . . , bmm])[x, y],

F =
1

2
(x2 + y2) + F3(x, y) + F4(x, y) + . . .

and there exists polynomials V1, V2, V3, . . . belonging
to the ring Q[a20, . . . , amm, b20, . . . , bmm] and satis-
fying that

dF

dt
=
∂F

∂x
P (x, y)+

∂F

∂y
Q(x, y) =

+∞∑

i=1

Vi(x
2+y2)i+1

The quantities Vi are called the Poincaré-
Lyapunov coefficients and are not uniquely de-
termined. In fact, for each i ∈ N \ {0}
there is an infinite number of possibilities for a
Vi. But according to a result also proven by
Shi, all such V ′

i s are in the same coset mod-
ulo the ideal generated by V1, ..., Vi−1 in the ring
Q[a20, . . . , amm, b20, . . . , bmm]. From the work of
Poincaré (see [Poincaré, 1885]) it follows that sys-
tem (2) has a center at the origin if and only if
Vi = 0 for all i. By Hilbert’s basis theorem, the
ideal I = 〈V1, V2, V3, . . . 〉 has a finite basis. It fol-
lows from the work of Bautin (see [Bautin, 1962])
that for quadratic systems (m = 2) this ideal is de-
termined by the values of Vi with i ≤ 3. The above
result implies that V1 = V2 = V3 = 0 if and only if
Vi = 0 for all i and the origin is a center.

It is easy to see that any S ∈ QS having a linear
center, say p ∈ R2, can be transformed by an affine
change of variables (which sends p to the origin) and
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a time rescaling into a quadratic differential system
of the form (2), say S′, for certain coefficients aij , bij
and with m = 2. Taking this fact into account, we
say that p is

(a) A weak focus of first order (and we denote it by
f (1)) if V1 6= 0.

(b) A weak focus of second order (and we denote it
by f (2)) if V1 = 0, V2 6= 0.

(c) A weak focus of third order (and we denote it
by f (3)) if V1 = 0, V2 = 0, V3 6= 0.

where of course the values V1, V2 and V3 corre-
sponds to the ones introduced in Lemma 3.1 as-
sociated to the system S′.

Lemma 3.2. Let S ∈ Qwf1sn. Then S has a
unique finite saddle-node. Moreover, it must be
semi-elemental and must have multiplicity two.

Proof. By assumption, S has at least one finite
saddle-node, say sn. Since S ∈ QS, it is known that
sn must be nilpotent or semi-elemental (see Ap-
pendix A of [Artés et al., 2021a]). If sn were nilpo-
tent, then its multiplicity would be four (see again
Appendix A of [Artés et al., 2021a]) but since S has
another finite singularity, which is a f (1), the total
finite multiplicity of S would be at least five, which
is impossible, and hence snmust be semi-elemental.
Once again by Appendix A of [Artés et al., 2021a],
we know that a finite semi-elemental saddle-node
must have multiplicity 2 or 4. If the multiplicity
were four, then an analogous reasoning to the pre-
vious one leads us to contradiction. Hence, must be
two. The uniqueness of the finite saddle-node sn is
clear since otherwise S would have finite multiplic-
ity at least five.

Finally, according to the notation introduced
in [Artés et al., 2021a], we denote a finite semi-
elemental saddle-node of multiplicity 2 as sn(2).

The next result is due to Ye Yanqian (see
[Yanqian et al., 1986]).

Lemma 3.3. Any S ∈ QS having a linear center
at the origin can be transformed, by affine changes
of variables and a time rescaling, into a system of
the form

{
ẋ = −y + gx2 + 2hxy + ky2

ẏ = x+ lx2 + 2mxy
(3)

for a certain values (l, g,m, h, k) ∈ R5. Further-
more, the transformation into the form (3) depends
continuously on the parameters.

Proof. Since S has at least one linear center, say
p ∈ R2, we know that S can be transformed by
an affine change of variables (which sends p to the
origin) and a time rescaling into a quadratic system
of the form (2), say S′, for certain coefficients aij , bij
and with m = 2. Hence, we know that ~0 is a linear
center of S′. Now, we can consider the system S′′

obtained from S′ performing the following linear
change (in fact, a rotation on angle θ)

(
X
Y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)

It is easy to see that S′′ is of the form
{

Ẋ = −Y + a′20X
2 + a′11XY + a′02Y

2

Ẏ = X + b′20X
2 + b′11XY + b′02Y

2

with (a′20, a
′
11, a

′
02, b

′
20, b

′
11, b

′
02) ∈ R6 \ ~0. Moreover,

the expression of b′02 is:

b′02 = b02 cos
3 θ + (a02 + b11) cos

2 θ sin θ
+(a11 + b20) cos θ sin

2 θ + a20 sin
3 θ

Now, observe that the previous expression corre-
sponds to a cubic trigonometric polynomial, and
therefore it must have at least one real root (which
depends continuously on the parameters). Thus,
we can choose θ so that b′02 = 0. Finally, notice
that all the transformations we have performed are
continuous. The claim is proved.

The next calculations are due to Chengzhi Li (see
[Li, 1983]). Suppose that we have a system (3).
Then we have: V1 = L1, V2 = L2(mod V1) and
V3 = L3(mod V1, V2), where

L1 = 2h(g + k)− 2l(m+ g)
L2 = 2hl(5l− 2h)

[
(g + k)2(k + 2m)− l2(2m+ 2g + k)

]

L3 = 2hl2
[
2l2 + k(g + 2k)

]
[
(g + k)2(k + 2m)− l2(2m+ 2g + k)

]

(4)

Finally, we get the following result:

Proposition 3.4. Any S ∈ Qwf1sn can be writ-
ten, by a time rescaling and affine changes of vari-
ables, as

{
ẋ = −y + gx2 + 2hxy − 2my2 =: p(x, y)
ẏ = x+ lx2 + 2mxy =: q(x, y)

(5)



QS with a f (1) and a sn(2) 21

for a certain values (l, g,m, h) ∈ R4 satisfying that
m 6= 0 and L1 = V1 = 2h(g − 2m)− 2l(m+ g) 6= 0.
Furthermore, the transformation into the form (5)
depends continuously on the parameters.

Proof. Let S ∈ Qwf1sn. By Lemma 3.3, we know
that S is topologically equivalent to a system S′ ∈
Qwf1sn of the form (3) with (l, g,m, h, k) ∈ R5.
Moreover, performing a rotation if necessary we can
assume that k 6= 0 and that the unique finite saddle-
node of S′ is placed in (0, 1/k). Furthermore, we
have

DS′(0, 1/k) =

(
2h/k 1

1 + 2m/k 0

)

By Lemma 3.2 we know that the point (0, 1/k) must
be semi-elemental, and a necessary condition for
this to happen is that detDS′(0, 1/k) = 0. We
observe that

detDS′(0, 1/k) = 0 ⇐⇒ k = −2m

The rest of the proof is straightforward.

Remark 3.5. The reciprocal of Proposition 3.4 is
not true, that is, not any system of the form (5)
with m 6= 0 and L1 = V1 6= 0 belongs to Qwf1sn.
The reason is simple: Of course the condition L1 =
V1 6= 0 tells us that the origin is a f (1). More-
over, the condition m 6= 0 tells us that (0,−1/2m)
is a finite singularity (not necessarily isolated) and
from the proof of Proposition 3.4 we know that at
least one of its eigenvalues must be 0. Reasoning by
multiplicities we deduce that it cannot be an intri-
cate singularity, but it can be nilpotent and semi-
elemental. However, generically it is a sn(2), as will
become clear in the subsequent sections.

3.2. Determination of the parameter space

As explained in Section 1, in order to study the clo-
sure of the family Qwf1sn with respect to the nor-
mal form (5), that is Qwf1sn, we need to consider
all the values of the parameters in (5), including
those which satisfy L1 = V1 = 0 or m = 0.

We observe that systems (5) depend on the
parameter λ = (l, g,m, h) ∈ R4. Then, the cor-
responding bifurcation diagram is actually in the
four-dimensional Euclidean space R4, which is of
course very difficult to study because we cannot
plot it. In what follow we reduce the parameter
space in order to be able to study it.

We start noticing that the case λ =
(l, g,m, h) = 0 corresponds to a linear system and
it does not belong to our family. Hence we con-
sider systems (5) which are nonlinear, i.e. λ =
(l, g,m, h) 6= 0. That is, here we exclude the lin-
ear center V ul1 included in Vulpe’s classification
(see [Vulpe, 1983]). In this case a system (5) can
be rescaled, with the transformation (x, y, t) →
(αx, αy, t), α 6= 0. In fact, applying this trans-
formation we obtain:

{
ẋ = −y + αgx2 + 2αhxy − 2αmy2

ẏ = x+ αlx2 + 2αmxy
(6)

Then, this transformation takes the systems with
parameters (l, g,m, h) to systems with parame-
ters (αl, αg, αm,αh). We consider now the 3-
dimensional projective space RP3, which can be
viewed as the quotient space (R4)∗/ ∼ of (R4)∗,
(R4)∗ := R4 \ ~0, by the equivalence relation:
(l, g,m, h) is equivalent to (αl, αg, αm,αh) for any
α 6= 0. The elements of RP3 are [λ] = [l : g : m : h]
for λ = (l, g,m, h) ∈ (R4)∗, where by definition:

[λ] = [l : g : m : h] = {α(l, g,m, h) | α ∈ R \ 0}

In view of the previous observations, we may con-
sider RP3 as our parameter space in the sense that
each element α(l, g,m, h), α 6= 0, of the equivalence
class [λ] = [l : g : m : h] ∈ RP3 = (R4)∗/ ∼ leads
us topological equivalent systems (5) by means of a
simple rescaling, and hence all the elements of the
class [l : g : m : h] can be identified.

Remark 3.6. Due to the symmetry (x, y, t) →
(−x, y,−t) we have (l, g,m, h) → (−l, g,m,−h).
Indeed, after applying the symmetry (x, y, t) →
(−x, y,−t) in (5) we obtain the following quadratic
system

{
ẋ = −y + gx2 − 2hxy − 2my2

ẏ = x− lx2 + 2mxy
(7)

This fact implies that it suffices to consider only
h ≥ 0 or l ≥ 0, and in fact we choose to consider
only the case h ≥ 0. In other words, we identify the
classes [l : g : m : h] and [−l : g : m : −h] of RP3,
which are different elements of RP3 if h 6= 0 or if
l 6= 0.

Since our parameter space is RP3, is conve-
nient to choose adequate representatives of each
class [l : g : m : h] ∈ RP3 in order to transform
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our parameter space into a compact set where the
bifurcation diagram can be completely studied.

Parameter space as a half ball

First of all, notice that each class [λ] ∈
RP3 has one or two representatives in (S3)+ ={
λ = (l, g,m, h) ∈ R4 | ‖λ‖ = 1,m ≥ 0

}
depending

on whether the coordinate m of λ is 0 or not. Since
for points (l, g,m, h) ∈ (S3)+ ⊂ S3 we have l2+g2+
m2+h2 = 1 and we can assumem ≥ 0, we can write
m =

√
1− (l2 + g2 + h2) where 0 ≤ l2+g2+h2 ≤ 1.

From the previous observations and taking into ac-
count the identification between classes explained in
Remark 3.6, it follows directly that each [λ] ∈ RP3

corresponds to at least one point in the half-ball
B1/2 = {(l, g, h) ∈ R3 | l2 + g2 +h2 ≤ 1 , h ≥ 0}. In
this sense we can view RP3 as B1/2.

Definition 3.7. We call equator to the subspace
h = m = 0 in RP3, i.e. the set of points of the form
[l : g : 0 : 0] ∈ RP3. We call base to the subspace
h = 0 of RP3, i.e. the set of points of the form
[l : g : m : 0] ∈ RP3.

It is clear that we can identify the equator de-
fined in Def. 3.7 with the equator of B1/2, that is,
S1 = {(l, g) ∈ R2 | l2+g2 = 1}, where of course two
opposite points of S1 are identified because they
correspond to the same element in RP3. If we take
a point in the base, say [l : g : m : 0] ∈ RP3, then
can be identified with [l : g : m] ∈ RP2. So the base
defined in Def. 3.7 can be identified to RP2 which
in turn can be viewed as the base of B1/2, that is
{(l, g, 0) ∈ R3 | l2 + g2 ≤ 1}. See Fig. 3.1.

h

h = 0

m = 0

Fig. 3.1: The parameter space B1/2.

Definition 3.8. We call affine part of RP3 to the
set of points of the form [l : g : m : h] ∈ RP3

with m 6= 0, and we call infinite part of RP3 to the
subspace m = 0 of RP3, i.e. the set of points of the
form [l : g : 0 : h] ∈ RP3.

Affine part of RP3 viewed as (R3)+

By our previous considerations we can identify
the infinite part of RP3 with S2 ∩ B1/2, where S2 =
{(l, g, h) ∈ R3 | l2 + g2 + h2 = 1}. On the other
hand, the affine part of RP3 can be identified with
B(~0, 1)∩B1/2, where B(~0, 1) = {(l, g, h) ∈ R3 | l2 +
g2 + h2 < 1}.

There is, however, another way to identify the
affine part of RP3, which will be also essential in
Sect. 4. Let a point [λ] ∈ RP3 \ {m = 0}. We can
take as a representative of [λ] the unique point of
the form αλ with coordinatem = 1. More precisely,
we have the affine chart:

RP3 \ {m = 0} ↔ R3

[l : g : m : h]→
(
l

m
,
g

m
,
h

m

)
= (l, g, h)

[l : g : 1 : h]← (l, g, h)

From the previous observations and taking into ac-
count the identification between classes explained
in Remark 3.6, it follows directly that each [λ] ∈
RP3 \ {m = 0} corresponds to at least one point
in (R3)+ =

{
(l, g, h) ∈ R3 | h ≥ 0

}
. In this sense

we can identify the affine part of RP3 with (R3)+,
which in fact justifies the terminology affine.

Relating the two points of view of the affine
part of RP3

The two identifications of RP3\{m = 0} can be
transformed from one to another by means of the
bijection defined as follows

(R3)+ ↔ B(~0, 1) ∩ B1/2

(l, g, h)↔
(
l

k
,
g

k
,
h

k

)

with k =

√
l
2
+ g2 + h

2
+ 1. More precisely, if

(l, g, h) is an identification in (R3)+ of the class

[λ] ∈ RP3 \ {m = 0}, then
(

l
k ,

g
k ,

h
k

)
is an iden-

tification in B(~0, 1) ∩ B1/2 of [λ], and vice versa.

How do we study the parameter space?

To study the bifurcation diagram (see Sect. 4),
we will take B1/2 as a representative of our param-
eter space since is a compact set in which we can
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check that the regions studied have a coherence as
we approach to the boundary of B1/2.

First of all, in order to study the affine part of
RP3, we note that we can pass from B(~0, 1) ∩ B1/2
to (R3)+ by means of the bijection previously given.
Hence when studying the affine part of RP3 we can
study its identification in (R3)+ by taking m = 1
in (5) and considering the parameters (l, g, h) with
h ≥ 0, and then the return to B(~0, 1) ∩ B1/2. As
we will explain in detail in Sect. 4, we do not
have to study all (R3)+ but only certain planes
in (R3)+ of the form h = h0 (where h0 is a non-
negative constant), which will be called slices. It
is clear that each plane of the form h = h0 ≥ 0 in
(R3)+ corresponds to a certain set in B(~0, 1)∩B1/2.
From the bijection between B(~0, 1)∩B1/2 and (R3)+

given before it is easy to check that the plane
h = h0 > 0 corresponds to the half ellipsoid{
h2(1 + h0)

2/h20 + l2 + g2 = 1
}
∩ {h > 0}, and the

plane h = 0 corresponds to the interior of the
base of B1/2, i.e.

{
(l, g) ∈ R2 | l2 + g2 < 1

}
(see Fig.

3.2).

Fig. 3.2: Correspondence between planes and ellip-
soides

In order to study the infinite part of RP3 we can
consider separately the equator and the set points
of the form [l : g : 0 : h] with h 6= 0, called ∞\ Eq,
where of course ∞ \ Eq ⊂ RP3 ∩ {m = 0}. By our
previous considerations we know that ∞ \ Eq can
be identified with S2 ∩ {h > 0}. However, we can
also identify it with R2 by means of taking as a rep-
resentative of each [λ] ∈ ∞\Eq the unique element
of the form αλ with coordinate h = 1. Similarly to
what have happened before, we can pass from one
identification to another through the normalization:

R2 ↔ S2 ∩ {h > 0}

(l, g, 1) ≡ (l, g)↔
(
l

k
,
g

k
,
1

k

)

with k =

√
l
2
+ g2 + 1. Hence we can perform the

study of ∞ \ Eq when identified with R2 and then
return to S2 ∩ {h > 0}. We also note that ∞ \ Eq
can also be interpreted as the slice h = +∞.

Finally, we point out that in order to study the
equator visualized into B1/2 we only need to study
S1. As we will see in Sect. 4, the equator has a big
importance since it allows us to check if the regions
encountered in the considered slices are coherent
when we go to infinity (see Fig. 3.2).

4. The bifurcation diagram of the systems
in Qwf1sn

The objective of this thesis is to perform the study
of the bifurcation diagram of Qwf1sn. This is a
global work and as such it uses global methods. In
particular it uses algebraic and topological invari-
ants. The algebraic invariants make results inde-
pendent of specific normal forms. They also dis-
tinguish the phase portraits as the topological in-
variants also do. In this section we use the con-
cepts of algebraic invariant and comitant as formu-
lated by the Sibirsky’s School for differential equa-
tions. For a summary of the general theory of these
polynomial invariants and their relevance in work-
ing with polynomial differential systems see Sec-
tion 7 of [Artés et al., 2006]. For a more detailed
explanation see the Chapter 5 of the recently pub-
lished book [Artés et al., 2021a]. We start this sec-
tion presenting the value of the algebraic invariants
and comitants (with respect to normal form (5))
which are relevant in our study.

4.1. Algebraic bifurcation surfaces at the
affine part of RP3

From book [Artés et al., 2021a] we get the formulas
which give the bifurcation surfaces of singularities
in R12, produced by changes that may occur in the
local nature of some or all the singular points, ei-
ther finite or infinite. These bifurcation surfaces are
all algebraic. Before describing them, we need an
important observation:

Remark 4.1. We are considering systems of the
form (5) and our parameter space is RP3. Hence,
we are not considering the linear center l = g =
m = h = 0. Moreover, the following hold:



24 J.C. Artés, C. Trullàs

(a) The system (5) is degenerate (i.e. gcd(p, q) 6=
constant) only for values of the parameters be-
longing to the set {[−2h : 0 : 1 : h] | h ∈ R} (con-
tained in the affine part of RP3) plus the point
[−2 : 0 : 0 : 1] (in the infinite part of RP3). In
such cases, the system (5) is of the form

{
ẋ = −y(1− 2αhx+ 2αmy)
ẏ = x(1 − 2αhx+ 2αmy)

(8)

with α being non-zero and taking m = 1 for the
set in the affine part of RP3 andm = 0, h = 1 for
the point in the infinite part of RP3. Hence, the
phase portrait of (8) consists on a linear center
with the line of singularities (1−2αhx+2αmy) =
0, which does not contain the origin (see 1.8L1

in Thm. 2.3).

(b) The systems (5) do not have any degeneracy at
infinity. Indeed, if we compute the comitant:

C2 = −lx3 − 2mx2y + gx2y + 2hxy2 − 2my3

which clearly is always different from the null
polynomial if (l, g,m, h) 6= 0. Therefore, by
Lemma 6.1 of [Artés et al., 2021a] our claim is
proved.

We start observing that by construction, systems
(5) always have (0, 0) as a finite isolated singular
point, which could be a f (1), f (2), f (3) or a cen-
ter. Hence, by Theorem 6.2 of [Artés et al., 2021a]
we know that the invariant polynomial T4 vanishes
for all the values of the parameters for which the
system (5) is quadratic and non-degenerate (i.e.
gcd(p, q) = constant). We start constructing our
bifurcation surfaces:

Bifurcation surface in RP3 due to the origin
being a weak singularity of order > 1.

(S8) This bifurcation surface will contain the points
of the parameter space where the origin is a f (i)

for i = 2, 3 or a center. A computation shows that
σ = 0 implies F1 = 0 in (5). Hence, we deduce from
Thm. 6.2 of [Artés et al., 2021a] that a quadratic
non-degenerate system of the form (5) has a weak
singularity of order greater than one at the origin
being either a f (i) for i = 2, 3 or a center if and only
if the invariant polynomial F1 satisfy F1 = 0. In
our normal form (5) we have:

F1 = −2(gh − gl − 2hm− lm)

Hence, according to our previous observations we
define:

(S8) : gh− gl − 2hm− lm = 0

Remark 4.2. In the subspace [l : g : 1 : 0]
(placed in the affine part of RP3) we have that
T3 = 0 and hence, according to Thm. 6.2 of
[Artés et al., 2021a] (and Remark 4.1), if the ori-
gin is a weak singularity of order greater than one
in such subspace, then must be of infinite order (i.e.
must be a center).

Bifurcation surface in RP3 due to the pres-
ence of a second weak singularity (generically
a f (1) or a s(1)).

(S3) This bifurcation surface will contain the points
of the parameter space for which there is a second
finite weak singularity apart from the origin, which
generically will be a f (1) or a s(1). According to
Thm. 6.2 of [Artés et al., 2021a], we know that a
necessary condition for a quadratic non-degenerate
system of the form (5) to have two finite weak sin-
gularities is that T4 = T3 = 0. Since in our case the
origin is always a weak singularity (focus or center)
the unique possibility of having two weak singular-
ities with the origin being a focus is that the origin
is a f (1) and there exists another finite singularity
being either a f (1) or a s(1). In our normal form (5)
we have:

T3 = −8h2(gh + gl + 2hm+ lm)

Hence, according to our previous observations we
define:

(S3) : h(gh + gl + 2hm+ lm) = 0

We observe that we get a weak singularity when the
trace of a strong focus or a strong saddle becomes
zero. We also highlight that this bifurcation can
produce a topological change if the weak point is a
focus (appearance of limit cycle due to Hopf bifur-
cation), but if the weak point is a saddle produce
just a C∞ change except in some situations, as for
example when this bifurcation coincides with a loop
bifurcation associated to the same saddle, in which
case the change may be topological. In principle
this last situation does not occur in our family (see
Sect. 5.3), but occurs in [Artés et al., 2021c], for in-
stance.
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Remark 4.3. In the subspace [l : g : 1 : 0] (in the
affine part of RP3) the surface (S3) should be rede-
fined. Indeed, for all values of this plane we have
Ti = 0 for i = 2, 3, 4. Moreover,

(a) If l 6= 0 and g 6= 0 system (5) is non-degenerate
and satisfies T1 6= 0. Hence, by Thm. 6.2 of
[Artés et al., 2021a] we have a unique weak sin-
gularity which is the origin being a f (1).

(b) We consider now the set [0 : g : 1 : 0], g ∈ R. If
g = 0, see Remark 4.1. If g 6= 0 then system (5)
is non-degenerate and satisfies T1 = 0. We have
two options:

(b1) If g 6= −1 then σ 6= 0 and F1 = 0. Hence we
have a unique weak singularity (the origin
being a center).

(b2) If g = −1 then σ = D = T = P = 0, R 6= 0
and µ0 > 0. Hence we have a unique weak
singularity which is the origin being a center.

(c) We consider now the set [l : −1 : 1 : 0], l ∈
R. If l = 0 see case (b). For all values of this
set with l 6= 0 the system (5) is non-degenerate
and satisfies σ = 0, µ0 > 0, D = 0 and T 6=
0. Hence we have two weak singularities: The
origin (center) and a finite saddle.

In conclusion, in the subspace [l : g : 1 : 0] the
surface (S3) must be redefined as [l : −1 : 1 : 0]
with l 6= 0.

In addition, if we are in the equator [l : g : 0 : 0]
(contained in the infinite part of RP3) the system
(5) is non-degenerate and satisfies that Ti = 0 for
i = 1, 2, 3, 4. If g 6= 0 then σ 6= 0 and hence we
have a unique weak singularity which is the origin
being a f (1) if l 6= 0 (because F1 6= 0 in this case)
and being a center if l = 0 (because F1 = 0 in this
case). If g = 0 then σ = µ0 = D = 0 and hence
we have two weak singularities: the origin (center)
and a finite saddle.

Bifurcation surface in RP3 due to a at least
one finite singularity has escaped to infinity.

(S1) This is the bifurcation surface due to multi-
plicity of infinite singularities, which contains the
values of the parameters for which at least one fi-
nite point collides with at least one infinite point.
This phenomenon is detected by the invariant poly-
nomial µ0 (see Lemma 5.5 of [Artés et al., 2021a])

whose expression with respect to our normal form
(5) is given by:

µ0 = −4m2(−2hl − l2 + 2gm)

Hence, according to our previous observations we
define:

(S1) : m(−2hl − l2 + 2gm) = 0

Bifurcation surface in RP3 due to at least two
infinite singularities have collided.

(S5) This is the bifurcation surface due to mul-
tiplicity of infinite singularities, which contains
the values for which at least two infinite singu-
lar points collide. This phenomenon is detected
by the invariant polynomial η (see Lemma 5.5 of
[Artés et al., 2021a]) which in our normal form (5)
is given by:

η = 4(g2h2 + 8h3l + 2g3m− 4gh2m

+ 18ghlm− 12g2m2 + 4h2m2

− 36hlm2 − 27l2m2 + 24gm3 − 16m4)

Hence, we define the surface (S5) by the equation:

(S5) : g2h2 + 8h3l + 2g3m− 4gh2m

+ 18ghlm− 12g2m2 + 4h2m2

− 36hlm2 − 27l2m2 + 24gm3 − 16m4 = 0

Before introducing the next surface, we recall that
a quadratic non-degenerate system of the form (5)
with m 6= 0 satisfies that

(
0,− 1

2m

)
is a singu-

larity of multiplicity at least 2 (see Appendix A
of [Artés et al., 2021a]). From the previous fact
and noticing that we have also a simple singu-
larity at the origin, we know by Prop. 6.1 of
[Artés et al., 2021a] that the invariant D vanishes.

Bifurcation surface in RP3 due to the exis-
tence of a triple finite collision.

(S2) This bifurcation surface will contain the points
of the parameter space for which at least three finite
singularities have collided. If we consider now a
quadratic non-degenerate system of the form (5),
then Prop. 6.1 of [Artés et al., 2021a] tells us that
a necessary condition (and also sufficient if µ0 6= 0,
i.e. if we are outside (S1)) to have a triple finite
collision is that the comitant T vanishes. In our
normal form (5) we have:

T = −48(2h+ l)2m4x2(gx+ 2hy + ly)2(lx+ 2my)2
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Hence, according to our previous observations we
define:

(S2) : (2h+ l)m = 0

Remark 4.4. We note that we do not need to con-
sider the possibility of having two finite singularities
of multiplicity two. Indeed, since in (5) the origin
is always a weak focus or a center (and hence it
has multiplicity one), if we would have two finite
singularities of multiplicity two then the total finite
multiplicity would be at least five, which is impos-
sible.

However, this is a situation that can happen
if we use a normal form for Qwf1sn different from
(5), in which we allow that the origin may be a dou-
ble point. In fact, previous observation is a proof
that we are not studying the whole set clousure of
Qwf1sn in the whole parameter space.

Bifurcation surface in RP3 due to the possible
existence of invariant straight lines.

(S4) This surface will contain the points of the pa-
rameter space where invariant straight lines may
appear. These straight lines may contain connec-
tions of separatrices from different singularities or
not. So, in some cases, it may imply a topological
bifurcation (the invariant line is a separatrix con-
nection) and, in others, just a C∞ bifurcation (the
invariant line is not a separatrix connection). Ac-
cording to [Artés et al., 2021a] the equation of this
surface is given by the invariant polynomial B1. It
is worth mentioning that B1 = 0 is only a necessary
condition for the existence of an invariant straight
line, but it is not sufficient, i.e. we may find some
component of B1 = 0 that does not represent an
invariant straight line. For normal form (5) the in-
variant polynomial B1 is:

B1 = 2l2(g2 + 4h2 + 4hl + l2)(−gh+ 2hm+ lm)

We define the surface (S4) by the equation:

(S4) : l(g2 + 4h2 + 4hl+ l2)(−gh+ 2hm+ lm) = 0

The bifurcation surfaces above are all algebraic and
except surface (S4), they are the bifurcation sur-
faces of finite and infinite singularities of systems
(5) in the parameter space. We will detect other
two bifurcation surfaces not necessarily algebraic.
On one of them the systems have global connection
of separatrices different from that given by (S4) and

on the other the systems possess a double limit cy-
cle. The equations of these bifurcation surfaces can
only be determined approximately by means of nu-
merical tools. Using arguments of continuity in the
phase portraits we can prove the existence of these
components not necessarily algebraic in the part
where they appear, and we can check them numeri-
cally. We shall name them surfaces (S7) (connection
of separatrices) and (S10) (double limit cycles).

The surface of C∞ bifurcation due to a node
( 6= from the origin) becoming a focus

(S6) This surface will contain the points of the pa-
rameter space where a finite node different from the
origin turns into a focus. That is, in a neighborhood
of (S6), there is a singular point which changes in
a continuous way from a node to a focus, or vice
versa. This surface is a C∞ but not a topological
bifurcation surface. In fact, when we only cross the
surface (S6) in the bifurcation diagram, the topolog-
ical phase portraits do not change. However, this
surface is relevant to localize the regions where a
limit cycle surrounding a finite antisaddle (different
from the origin) cannot exist, as we will see later in
detail. Using Thm. 6.1 of [Artés et al., 2021a], we
must consider the polynomial invariant W4, whose
expression is:

W4 =− 256h4(g2h2 + 2g2hl + 8h3l + g2l2 + 12h2l2

+ 6hl3 + l4 − 4gh2m− 2ghlm+ 4h2m2

+ 4hlm2 + l2m2)

Hence, we define (S6) as:

(S6) : h(g2h2 + 2g2hl + 8h3l + g2l2 + 12h2l2

+ 6hl3 + l4 − 4gh2m− 2ghlm+ 4h2m2

+ 4hlm2 + l2m2) = 0

Remark 4.5. The whole subspace [l : g : 1 : 0]
(in the affine part of RP3) is contained in (S6)
since W4 = 0 in such set. Using Theorem 6.1 of
[Artés et al., 2021a] we deduce that in such sub-
space cannot exist a focus different from the origin,
or in other words, if exists an antisaddle (in this
thesis, by an antisaddle we mean either a node or
a focus) different from the origin, must be a node
(and hence there are no limit cycles surrounding it).

In Appendix A.1 we present pictures of the
algebraic surfaces (Si) in the three-dimensional
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affine space which is the hyperplane m = 1
in R4. If the reader prefers, the images are
also available in the Mathematica file surfaces.nb
at link https://mat.uab.cat/∼artes/articles/
qwf1sn/qwf1sn.html.

Remark 4.6. Systems corresponding to surface
(S10) have at least one double limit cycle. Although
this surface is obtained numerically, we know that
must be placed near the points of the bifurcation
diagram where the origin is a weak focus of order
higher than one (i.e. the surface (S8)). As we will
realize in soon, knowing which points of (S8) corre-
spond to f (2), f (3) and centers will help us incred-
ibly to understand where and why limit cycles ap-
pear. According to Thm 6.2 of [Artés et al., 2021a],
if we have a quadratic non-degenerate system of the
form (5) satisfying that T4 = 0 and T3 6= 0 (T3 6= 0
means we are outside (S3)) then we have a unique
weak singularity (in our case the origin, being focus
or center) which is:

• f (1) ⇐⇒ F1 6= 0 (outside (S8)).

• f (2) ⇐⇒ F1 = 0, F2 6= 0.

• f (3) ⇐⇒ F1 = F2 = 0, F3F4 6= 0.

• center ⇐⇒ F1 = F2 = F3F4 = 0.

Since the previous result is not valid when T3 =
T4 = 0 and we always have T4 = 0, we should study
the region defined as F1 = T3 = 0 (i.e. the region
of (S8) where the previous result is not valid, apart
from the intersections of (S8) with the degenerate
regions studied in Remark 4.1). We get four lines
and four points:

(a) The first line (placed in the affine part of RP3) is
[0 : g : 1 : 0], g ∈ R, which arrives to infinity at
[0 : 1 : 0 : 0] (located in the equator). Both are
studied in Remark 4.3.

(b) The second line (in the affine part of RP3) is de-
fined as [l : −1 : 1 : 0], l ∈ R, which arrives to
infinity at the point [1 : 0 : 0 : 0] (located in
the equator). Both regions are already studied
in Remark 4.3.

(c) The third line (in the affine part of RP3) is de-
fined as [−2h : 0 : 1 : h], with h ∈ R, which ar-
rives to infinity at the point [−2 : 0 : 0 : 1]. Both

regions correspond to degenerate regions studied
in Remark 4.1.

(d) The fourth line (in the infinite part of RP3) is
defined as [l : 0 : 0 : 1], with l ∈ R, which arrives
to the equator at the point [1 : 0 : 0 : 0]. This
last point is studied in Remark 4.3. Regarding
to the infinite line, if l = −2 see Remark 4.1. If
l 6= −2 the system (5) is non-degenerate and we
have three options:

(d1) If l = 0, Ti = 0 for i = 1, 2, 3, 4, F1 = 0 and
σ 6= 0. Hence, in this case the origin is the
unique weak singularity being a center.

(d2) If l ∈ (−2, 0), F = T3 = 0, T2 < 0, F1 = 0.
Hence we have two weak singularities, both
centers.

(d3) If l ∈ R \ [−2, 0], F = T3 = 0, T2 > 0, F1 =
0. Hence we have two weak singularities, one
center (the origin) and one finite saddle.

If we compute the solutions of F1 = F2 = 0 we
obtain two affine lines plus their corresponding in-
tersection points with the infinite part of RP3 (plus
the four previous lines and the four previous points,
which also satisfy F1 = F2 = 0):

(e) The first line is [0 : 2 : 1 : h], h ∈ R. For
h = 0 this line intersect the one described in
(a) at [0 : 2 : 1 : 0]. For the rest of values the
system is non-degenerate and satisfies T3 6= 0,
F1 = F2 = F3F4 = 0. Hence the unique weak
singularity is the origin (which is a center). The
previous line arrives at infinity at [0 : 0 : 0 : 1],
a value for which (5) is non-degenerate and sat-
isfies: Ti = 0 = F1 for i = 1, 2, 3, 4 and σ 6= 0.
Hence, in this last point the system has a unique
weak singulatity (which is a center).

(f) The second line is [2h/5 : 4 : 1 : h], h ∈ R.
For values of this line with h 6= 0 the systems of
family (5) are non-degenerate and satisfy T3 6= 0,
F3F4 6= 0 and F1 = F2 = 0. Hence the unique
weak singularity is the origin (which is a f (3)).
For h = 0 the line intersect the one described in
(a) at the point [0 : 4 : 1 : 0]. The previous line
arrives at infinity at [2/5 : 0 : 0 : 1], for which (5)
is non-degenerate and satisfies: T3 = 0, T2 > 0
and F1 = 0. Hence in this last point the system
has two weak singularities: the origin (center)
and a finite saddle.



28 J.C. Artés, C. Trullàs

We note that the previous facts grouped together
tell us all the information regarding weak singular-
ities in surface (S8). We also remark that we have
not named the previous lines and points in order
not to be confused with the notation that we will
establish in the study of the bifurcation diagram.
In fact, some of the previous lines shall be sepa-
rated in some parts due to our numeration rules,
as we will explain soon. However, we will use the
previous results later.

If the reader would like to check if the expres-
sions of the surfaces we have given in this sec-
tion are correct, she/he can do it by means of a
program made by Joan C. Arthat allows to cal-
culate the comitants and invariants described in
[Artés et al., 2021a] for a general quadratic system.
The program is available at link https://mat.uab.
cat/∼artes/articles/qwf1sn/qwf1sn.html (in-
side a Mathematica file called comitants.nb).
Moreover, in Appendix B of [Artés et al., 2021a]
you can find an usage tutorial.

Remark 4.7. Even though we can draw a two-
dimensional picture of the algebraic bifurcation sur-
faces of singularities in the three-dimensional affine
space (corresponding the hyperplane m = 1 in R4)
as we did in Appendix A.1, it is pointless to see a
single two-dimensional image of all these bifurca-
tion surfaces because, as we shall see later, the par-
tition of the parameter space obtained from these
bifurcation surfaces has a large number of parts:
Precisely 399.

Due to the last remark, in order to study the
bifurcation diagram in the affine part of RP3 (which
can be identified with (R3)+ as explained in Sect.
3.2) we shall foliate (R3)+ by the planes h = h̃,
with h̃ being a non-negative constant, and we shall
give pictures of the resulting bifurcation diagram
on these planar sections or in the planar projection
of the half elliposides contained in B(~0, 1) ∩ B1/2
corresponding to the previous planes, as explained
in Sect. 3.2. We recall that in the planes h = h̃
contained in (R3)+, the coordinates are (l, g) where
the horizontal line is the l–axis. We also recall from
Sect. 3.2 that in order to study the identification in
(R3)+ of the affine part of RP3 we must take take
m = 1 in (5) and consider as a parameter (l, g, h)
with h ≥ 0.

As the final bifurcation diagram is quite com-
plex, it is useful to introduce some colors which will
be used to refer to the bifurcation surfaces:

(a) Surface (S1) is drawn in dark blue (contains the
points in which one finite singularity escapes to
infinity).

(b) Surface (S2) is drawn in green (contains the
points in which there is a triple finite collision).

(c) Surface (S3) is drawn in yellow (there is a second
weak singularity). We draw it as a continuous
curve if it implies a topological change or as a
dashed curve otherwise.

(d) Surface (S4) is drawn in purple (possible exis-
tence of an invariant straight line). We draw it
as a continuous curve if it implies a topologi-
cal change (the invariant line corresponds to a
separatrix connection) or as a dashed curve oth-
erwise (the invariant line does not correspond to
a separatrix connection).

(e) Surface (S5) is drawn in red (contains the points
in which at least two infinite singularities coa-
lesce).

(f) Surface (S6) is drawn in black (an antisaddle is
on the edge of turning from a node to a focus
or vice versa). Despite it is crucial for isolating
regions where a limit cycle surrounding the fi-
nite antisaddle different from the origin cannot
exists, and it helps in the understanding of some
other degeneracies when combined with other bi-
furcations, we draw it as a dashed curve since it
does not imply a topological change.

(g) Surface (S7) is also drawn in purple (contains
the points in which there is a connection of sep-
aratrices).

(h) Surface (S8) is drawn in cyan (origin is a weak
focus of order > 1 or a center (i.e. a weak focus
of infinite order)).

(i) Surface (S10) is drawn in gray (contains the
points whose associated phase portrait has a
double limit cycle).

We point out that we use the same color for (S4)
and (S7) since both surfaces deal with connections
of separatrices mostly.

At this point, we need some observations. First
of all, if we want to study the slices h = h̃ where h̃
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is a non-negative constant it is clear that we cannot
study every value h̃ ≥ 0. Hence, our first task must
be to find all the values h ≥ 0 in which there are
topological changes of the bifurcation surfaces (we
call them singular slices), that is, if ha > hb are
two consecutive singular slices then for each pair of
values h, h′ ∈ (hb, ha) the slices h and h′ are topo-
logically identical but both topologically different
from ha and hb. Once we find the singular slices,
the study of the affine part of RP3 will be reduced
to study in detail all the singular slices, plus one
slice from each interval determined for two consec-
utive singular slices. Thus, it is clear that the sin-
gular slices correspond to those slices h in which
the intersection among at least three surfaces or
other equivalent phenomena happen. The problem
is that we do not have an explicit expression for the
surfaces (S7) and (S10) and hence finding the sin-
gular slices in a systematic way it is not possible.
Hence, in order to find all the singular slices in a
feasible way we must start finding the values h in
which at least three bifurcation surfaces intersect
(or other equivalent phenomena) but only taking
into account the algebraic surfaces. Such values are
called algebraic singular slices, which of course
are also singular slices. The rest of singular slices
(those which involve changes related with (S7) and
(S10)) are called non-algebraic singular slices
and the non-singular slices are called generic.

Roughly speaking, to find the algebraic sin-
gular slices we must start by finding all possible
intersections between two distinct algebraic sur-
faces and also the singularities of those surfaces.
Once we have them, the next step is to deter-
mine the values h in which at least three distinct
surfaces intersect. These values h determine the
singular algebraic slices. In the first article of
this typology (see [Artés et al., 2006]), the above
calculations were made by hand. However, Joan
C. Artés and collaborators developed a system-
atical way of doing the calculations implemented
in Mathematica. This general procedure is eas-
ily adaptable to the quadratic family which is be-
ing studied. In particular, we have adapted it to
our family. Due to the very large extension of
the previous computations, we have decided not
to include here any of the calculations done with
the previous program. Anyway, you can check
all the calculations directly in the program, called

Qwf1sn.nb, at https://mat.uab.cat/∼artes/
articles/qwf1sn/qwf1sn.html.

Lemma 4.8. There are a total of 10 algebraic sin-
gular slices in the bifurcation diagram of the family
Qwf1sn, which are:

h1 = +∞, h3 = 3
√
3,

h5 =
√

3
4
√

2

√
69 +

√
302797 − 7696

√
37 +

√
302797 + 7696

√
37,

h13 = 3, h17 = 5/
√
3, h19 = 2

√
2, h21 =

√
243
32

,

h23 = 2, h25 = 1, h29 = 0
(9)

We have also detected some negative slices but they
are not needed since we are working in (R3)+, as
explained before.

We observe that the numeration in (9) is not
consecutive since we reserve numbers for generic
and singular non-algebraic slices, as the reader can
observe in (10).

Once we have found the algebraic singular
slices, we must find the non-algebraic ones. In order
to do it, we start considering a value h̃ not corre-
sponding to an algebraic singular slice. For this
value h̃ (in principle we do not know if this slice is
generic or non-algebraic singular) we draw all the
algebraic bifurcation surfaces. However, as it will
be discussed later, the presence of non-algebraic
bifurcations will be detected and hence the non-
algebraic singular slices will be approximately de-
termined. In addition, as we have explained before,
we add to each interval of singular values of h an
intermediate value (generic slice) for which we rep-
resent the bifurcation diagram. In (10) we present
all the slices needed for the bifurcation diagram of
the class Qwf1sn.

h1 = +∞ h16 = 3− ǫ5
h2 = 6 h17 = 5/

√
3 ≈ 2.88

h3 = 3
√
3 ≈ 5.19 h18 = 2.85

h4 = 5 h19 = 2
√
2 ≈ 2.82

h5 ≈ 4.361 (see (9)) h20 = 2.8

h6 = 4.2 h21 =
√

243
32 ≈ 2.75

h7 = 4.2− ǫ∗1 h22 = 2.5
h8 = 4.2− ǫ1 h23 = 2
h9 = 4.2− ǫ∗2 h24 = 1.5
h10 = 4.2− ǫ2 h25 = 1
h11 = 4.2− ǫ∗3 h26 = 0.3
h12 = 4.2− ǫ3 h27 = 0.3− ǫ∗6
h13 = 3 h28 = 0.3− ǫ6
h14 = 3− ǫ4 h29 = 0
h15 = 3− ǫ∗5

(10)
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In fact, to be completely precise we must say
that the above non-algebraic singular slices are suf-
ficient for the transition from slice h1 = +∞ to
h29 = 0 to be completely coherent, since there exists
the theoretical possibility of having some infinitesi-
mal topological changes regarding the non-algebraic
surfaces (which would produce more singular non-
algebraic slices). See Sect. 5.2.

On the other hand, we observe that the values
indexed by positive even indices in (10) correspond
to generic slices and those indexed by odd indices
to singular slices, which are necessary to the co-
herence of the bifurcation diagram. In addition,
due to the presence of many (and very close to-
gether) non-algebraic slices, sometimes it is difficult
(and unnecessary) to predict the concrete value of
h where the changes in the parameter space hap-
pen. Thus, with the purpose to set an order for
these changes in the parameter space, we introduce
the following notation. If the bifurcation happens
between two concrete values of h > h′, then we sub-
tract a sufficiently small positive value ǫi or ǫ

∗
j from

h (which is a reference value) thus obtaining non-
concrete values h − ǫi, h − ǫ∗j ∈ (h′, h). The repre-
sentation ǫi means that the h−ǫi refers to a generic
slice, whereas ǫ∗j means that the h − ǫ∗j refers to a
singular slice. Moreover, considering the values ǫ∗i ,
ǫi, ǫ

∗
i+1 and ǫi+1 it means that ǫ∗i < ǫi < ǫ∗i+1 < ǫi+1

meanwhile the slices corresponding to the previous
values belong to the same interval determined by
the two concrete values of h. In (10) we have used
the previous notation.

4.2. Bifurcation surfaces due to connec-
tions (non-algebraic) at the affine part
of RP3

We now begin the analysis of the bifurcation dia-
gram by studying completely one generic slice and
after by moving from slice to slice and explain-
ing all the changes that occur. As an exact draw-
ing of the curves produced by intersecting the sur-
faces with the slices gives us very small parts which
are difficult to distinguish, and points of tangency
are almost impossible to recognize, we have pro-
duced topologically equivalent figures where parts
are enlarged and tangencies are easy to observe.
The reader may find the exact pictures of the 10
algebraic singular slices (containing only the al-
gebraic surfaces) described in (10) in a PDF file

called slices.pdf available at https://mat.uab.

cat/∼artes/articles/qwf1sn/qwf1sn.html, or
even better, you can use the plotter in the Mathe-
matica file Qwf1sn.nb (also available in the previ-
ous link) in order to create your own pictures.

We now describe the labels used for each part
of the bifurcation diagram. As we have mentioned
in the previous sections, the subsets of dimensions
3, 2, 1 and 0 of the partition of the parameter space
will be denoted respectively by V , S, L and P for
Volume, Surface, Line and Point, respectively. The
surfaces are named using a number which corre-
sponds to each bifurcation surface which is placed
on the left side of the letter S. To describe the por-
tion of the surface we place an index. The curves
that are intersection of surfaces are named by using
their corresponding numbers on the left side of the
letter L, separated by a point1. To describe the seg-
ment of the curve we place an index. Finally, Vol-
umes and Points are simply indexed (since three or
more surfaces may be involved in such an intersec-
tion). We consider an example: surface (S2) splits
into 4 different two–dimensional parts labeled as
2S1, 2S2, 2S3 and 2S4, plus some one–dimensional
arcs labeled as 2.iLj (where i denotes the other sur-
face intersected by (S2) and j is a number), and
some zero–dimensional parts. In order to simplify
the labels in all figures we see V1 which stands
for the TEX notation V1. Analogously, 2S1 (resp.
2.5L1) stands for 2S1 (resp. 2.5L1).

With the purpose to explain all the changes in
the bifurcation diagram, we would have to present
two versions of the picture of each slice: one of them
without labels and the other with labels in each new
part. However, as the number of slices is consider-
ably large, we will do it only in the first studied slice
(h2 = 6) and in the others we will present only a
labeled drawing containing the algebraic and non-
algebraic bifurcation surfaces, but only of the slice’s
sub-regions in which a topological change of the po-
sition of the bifurcation surfaces w.r.t the neighbor-
hood slices has occurred.

Remark 4.9. Wherever two parts of equal dimen-
sion d are separated only by a part of dimen-
sion d − 1 of the black bifurcation surface (S6),

1When three or more surfaces intersect at the same line,
we have chosen the numbers of the most geometrically rep-
resentative surfaces.



QS with a f (1) and a sn(2) 31

their respective phase portraits are topologically
equivalent since the only difference between them
is that a finite node different from the origin
has turned into a focus without change of stabil-
ity and without appearance of limit cycles. We
denote such parts with different labels, but in
Thm. 2.3 we have drawn only one of the two ver-
sions of the phase portrait (the one associated to
the corresponding region appearing in Thm. 2.3),
which in some cases is the version with node
and in some others the one with focus. Anyway,
in the file PhasePortraits.pdf (which is avail-
able in https://mat.uab.cat/∼artes/articles/
qwf1sn/qwf1sn.html) you can find the phase por-
traits of all the 399 regions of the parameter space,
including topological repetitions between distinct
regions and making the distinction between the ver-
sions with node and focus previously mentioned.

We also recall that in Sect. 6 neither do we
give specific invariant description distinguishing be-
tween these nodes and foci, even though we could
easily introduce one.

Now we start studying the generic slice h2 =
6, which is presented in Fig. 4.1 but only showing
the algebraic bifurcation surfaces. We note that in
Fig. 4.1 we have also shown the planar projection in
the unit disk of the half ellipsoid in B(~0, 1) ∩ B1/2
corresponding to the plane h = h2 of (R3)+ (see
Sect. 3.2 for more details).

Remark 4.10. As we can appreciate in Figs. 4.1 and
4.9, the equator is colored in orange. In order to ex-
plain the notation used in the equator, we need an
observation. Since the slice h = +∞ (resp. h = 0)
is a special slice, we will denote the generic parts in
this slice as 11Sj (resp. 9Sj), where j is a number.
Therefore, since the equator is the intersection be-
tween the slices h = 0 and h = +∞ (see Sect. 3.2),
the lines in the equator will be denoted as 9.11Lj ,
where j is a number (see Sects. 4.3 and 4.4). Fi-
nally, a point in the equator will be denoted as in
the affine part, i.e. Pj where j is a number.

We recall that in this slice we will make a com-
plete study of all its parts, whereas in the next slices
we will only describe the changes. In addition, in
this section we also study the equator. It is clear
that the equator only must be studied once and,

as explained in Sect. 3.2, it is crucial in order to
check that the regions found in each slice (includ-
ing those in the slices h = +∞ and h = 0) are
coherent when we go to infinity, fact that cannot
be checked if we consider the finite slices in (R3)+

and the slice h = +∞ in R2 (see Sect. 3.2).
We also point out that the gray dots that ap-

pear in surface (S8) indicate weak focus of third
order or center (denoted respectively as f (3) and
c), according to Remark 4.6.

We now place for each set of the partition on
this slice the local behavior of the flow around
the singular points. For a specific value of the
parameters of each one of the sets in this parti-
tion we compute the global phase portrait with the
numerical program P4 (see Chapters 9 and 10 of
[Dumortier et al., 2006]).

In this slice we have a partition in two–
dimensional parts bordered by curved polygons, all
of them bounded when viewed in B(~0, 1) ∩ B1/2.
From now on, we use lower?case letters provision-
ally to describe the sets found algebraically in order
to do not interfere with the final partition described
with capital letters.

For each two-dimensional part we obtain a
phase portrait which is coherent with those of all
their borders; except 17 parts, which are shown in-
side a small square in Fig. 4.1 and named as follows:

• v9a: the topological triangle bordered by purple,
cyan and red curves;

• v9b: the topological triangle bordered by cyan, red
and yellow curves;

• v12: the topological pentagon bordered by purple,
cyan, yellow and red curves;

• v15: the topological pentagon bordered by cyan,
purple and dark blue curves and infinity;

• v20: the topological ellipse bordered by cyan and
dark blue curves;

• v22a: the topological triangle bordered by cyan,
purple and dark blue curves;

• v23: the topological quadrilateral bordered by
cyan, dark blue and purple curves;

• v29: the topological triangle bordered by cyan,
red and dark blue curves;

• v34: the topological ellipse bordered by yellow and
cyan curves;
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• v35: the topological ellipse bordered by yellow and
purple curves;

• v42: the topological triangle bordered by yellow,
red and black curves;

• v46: the topological triangle bordered by yellow,
red and purple curves;

• v49: the topological triangle bordered by blue,
purple and black curves;

• v53: the topological triangle bordered by yellow,
red and black curves;

• v61: the topological ellipse bordered by blue and
black curves;

• v63: the topological triangle bordered by purple
and red curves and infinity;

• v64: the topological pentagon bordered by purple,
yellow, red and dark blue curves;

The study of these parts is quite important for the
coherence of the bifurcation diagram and hence we
must carry out a very detailed study of all non-
algebraic bifurcation surfaces.

Remark 4.11. Despite most of the diagrams in this
section are drawn by simplicity in planar sections
of (R3)+, the previous definitions of the 17 previous
parts and all the results regarding the surfaces that
we give in this section are stated thinking B1/2 as
our parameter space. This is because, as we have
explained in Sect. 3.2, we take as a representative
of our parameter space the half ball B1/2 since is a
compact set in which we can fully study the bifur-
cation diagram and check the coherence when we
approach to its borders. We only use the identifi-
cation of the affine part of RP3 with (R3)+ in order
to simplify the study and the computations.

In Figures 2.1 to 2.6 in Section 2 the reader
can find all the topological phase portraits that
we have found. However, as mentioned before, in
such pictures do not appear all the regions stud-
ied since there are different regions with topolog-
ical equivalent phase portraits. All such equiv-
alences are described in detail in Tables 7.1-7.9
of Section 7. Hence, we recommend the reader
to print both the tables and the phase portraits
in order to follow the explanation easily. You
can also use the file PhasePortraits.pdf (avail-
able in https://mat.uab.cat/∼artes/articles/

qwf1sn/qwf1sn.html) which contains the phase
portraits of all the 399 regions found, including
topological repetitions between distinct regions.

Remark 4.12. Before starting, we recall that limit
cycles in planar polynomial systems can only be
generated from multiple limit cycles, graphics, Hopf
bifurcations and centers.

Due to the great number of regions of the slice
h2 = 6, we must show the complete bifurcation di-
agram divided in five parts described in Figs. 4.2,
4.4, 4.5, 4.6 and 4.7, plus some extra pictures and
diagrams that are very useful in order to emphasize
bifurcations occurring in some specific regions.

Remark 4.13. We have added in the bifurcation di-
agram a label associated to each part of the bifur-
cation (S7) indicating the type of connection pro-
duced by this bifurcation. The possibilities are
“(loop)”, “(f−f)” (for a connection between differ-
ent finite singularities), “(f−∞)” (for a connection
between a finite singularity and an infinite one), and
“(∞−∞)” (for a connection between different infi-
nite singularities). These labels are indicated only
in the first time that the corresponding nonalge-
braic bifurcation is detected.

We begin the analysis of parts v29, v34 and v35.
We consider the segment 8s9 in Fig. 4.1. By Re-
mark 4.6 we know that the origin is a weak focus
of order two in this segment and, consequently, this
branch of surface (S8) corresponds to a Hopf bifur-
cation. This means that either in v29 or in v34 we
must have a simple limit cycle, and in fact it is in
v34.

If we take a point in 8s9, enough close to 1.8l1,
the phase portrait is equivalent to the one in 8S9.
Moreover, if we perturb it by entering to v29 (resp.
v34) we get a phase portrait equivalent to the one
in V33 (resp. V34).

If we keep moving away from 1.8l1 through 8s9,
at some moment we get a phase portrait equivalent
to the one in 8S13. Moreover, if we perturb it by
entering to v29 (resp. v34) we get a phase portrait
equivalent to the one in V32 (resp. V72).

Finally, if we keep moving away from 1.8l1
through 8s9 even more, at some moment we get a
phase portrait equivalent to the one in 8S14. More-
over, if we perturb it by entering to v29 (resp. v34)
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we get a phase portrait equivalent to the one in V29
(resp. V71).
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Fig. 4.1: Slice of parameter space when h = 6 (only algebraic surfaces). In the lower right corner we also show a
small picture of the slice h = 6 (with only algebraic surfaces) in the unit disk, where the equator is drawn in orange.
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Let’s extract the consequences of the previous
facts. On the one hand, clearly there must exist two
elements 7S12 and 7S11 of surface (S7) which split
part v29 into three “new” parts: V29, V32 and V33
(see Fig. 4.2). On the other hand, clearly there must
exist two elements 7S23 and 7S24 of surface (S7)
which split part v34 into three “new” parts: V34, V71
and V72 (see Fig. 4.2). Furthermore, the parts 7S11
and 7S23 (resp. 7S12 and 7S24) must have a com-
mon endpoint in 8s9, namely 7.8L4 (resp. 7.8L5).
Notice also that all the previous portions of surface
(S7) correspond to a (f −f) connection, as we have
indicated in Fig. 4.2.

If we are in V71 (resp. V34) and from there we
approach to 3s1 the limit cycle has been lost in both
cases, which implies (by Remark 4.12) the existence
of at least one element 7S25 (resp. 7S13) of surface
(S7) separating part V71 (resp. V34) from a “new”
sub-region V73 (resp. V36) of v34, which represents
a bifurcation due to existence of an homoclinic or-
bit (loop) connecting two separatrices of the finite
saddle. See Fig. 4.2 for a graphical representation
of the situation.

Lemma 4.14. Parts 7S13, 7S25, 7S23 and 7S24
have a common endpoint, namely 7.7L1, as you can
appreciate in Fig. 4.2.

Proof. Notice that a system in region V72 cannot
lose the limit cycle through a loop unless more than
one connection occur at the same time, since one
separatrix of the finite saddle-node is between the
two separatrices of the finite saddle that must con-
nect to form the loop in which the limit cycle must
die. Therefore, since 7S23 and 7S24 are bordering
V72, we conclude that 7S23 and 7S24 must inter-
sect at a point, say 7.7L1, and clearly the unique
possible phase portrait is the one corresponding to
region 7.7L1 in Fig. 2.6. Finally, just notice that by
perturbing 7.7L1 we can obtain the phase portraits
corresponding to regions 7S25, V71, 7S23, V72, 7S24,
V34 and 7S13. This concludes the proof.

An important observation is the following:

Remark 4.15. In principle, 7S13 and 7S25 should
be located between 8s9 and 3s1 without intersect-
ing 3s1 (see Figs. 4.2 and 4.9), because we have
parametrized the part 3s1 and “walked” on it and in
all the cases we have obtained a phase portrait cor-

responding to 3S1, 3.7L3 and 3S12. However, there
exists the theoretical possibility that 7S13 (resp.
7S25) crosses completely 3s1 in some small places
that we have not detected numerically. In this case
a second limit cycle will be generated due to the
weakness of the finite saddle in 3s1, as discussed in
detail in Sect. 5.3.

If we now take a point in 3s1, enough close to
1.8l1, the phase portrait is equivalent to the one in
3S1. Moreover, if we perturb it by entering to v34
(resp. v35) we get a phase portrait equivalent to the
one in V36 (resp. V35).

If we keep moving away from 1.8l1 through 3s1,
at some moment we get a phase portrait equivalent
to the one in 3S12. Moreover, if we perturb it by
entering to v34 (resp. v35) we get a phase portrait
equivalent to the one in V73 (resp. V74).

Clearly, the previous facts imply that there
must exist one element 7S26 (resp. 7S27) of surface
(S7) which splits part v34 (resp. v35) into two “new”
parts: V36 and V73 (resp. V35 and V74). See Fig. 4.2.
Furthermore, the parts 7S26 and 7S27 must have a
common endpoint in 3s1, namely 3.7L3. Notice also
that all the previous portions of surface (S7) corre-
spond to a (f −f) connection, as we have indicated
in Fig. 4.2.

Lemma 4.16. Part 7S26 has 7.7L1 as endpoint.
See Fig. 4.2.

Proof. Just observe that the phase portrait in 7.7L1

is compatible with the ones in V73, 7S26 and V36
under perturbations, that is, perturbing 7.7L1 we
can get the ones in V73, 7S26 and V36.

Remark 4.17. In principle, 7S27 should be located
between 3s1 and 4s5 without intersecting 4s5 (see
Figs. 4.2 and 4.9), because we have parametrized
the part 4s5 and “walked” on it and in all the cases
we have obtained a phase portrait corresponding to
4S5. However, there exists the theoretical possibil-
ity that 7S27 crosses 4s5 in some small places that
we have not detected numerically. Anyway, this hy-
pothetical situation is irrelevant since it wouldn’t
produce any new phase portrait.

Remark 4.18. As explained in Remark 4.11, all the
results given in this section regarding the bifurca-
tion surfaces are stated thinking B1/2 as our param-
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eter space. It is clear that in B1/2 all the considered
regions are bounded, but it is not true when think-
ing the affine part of RP3 as (R3)+; in this case
it depends on the considered region. For example,
7S25 is not bounded if we think it in (R3)+.

To proceed, we need the following definition.

Definition 4.19. By a basin we understand a re-
gion bordered by two separatrices of one same sin-
gularity which have the same limit-object, most
commonly, they end at an infinite singularity and
we call it an infinite basin or they end at a finite
singularity and we call it a finite basin.

Now we can start performing the study of v29.
If we are sufficiently close to part 5s10, the respec-
tive phase portrait is topologically equivalent to the
one in V29, which has two disjoint infinite basins
(one generated by the finite saddle and the other
by finite saddle-node).

If we take a point of 1s13 and we perturb it by
entering to v29 we get a phase portrait equivalent
to the one in V37, which has one finite basin and
also an infinite one (and the finite one is inside the
infinite one). If we keep moving to the left we get
a phase portrait equivalent to V32, which has no
basin. This fact implies the existence of one element
7S14 of surface (S7), which represents a connection
between two finite singularities, separating V32 from
a “new” sub-region of v29 called V37 (see Figs. 4.2
and 4.9).

Now we study how 7S11, 7S12 and 7S14 are po-
sitioned. We start giving an important observation.

Remark 4.20. Numerical analysis suggest that
parts 7S12 and 7S14 do not intersect each other (see
Figs. 4.2 and 4.9). However, there exists the theo-
retical possibility that they intersect in some small
places that we have not detected numerically. In-
deed, in such intersection we would have the follow-
ing phase portrait

whose existence in our family cannot be ruled out in
principle. Since after a careful numerical analysis

we have no evidence about its existence and the
bifurcation diagram doesn’t need its existence in
order to be coherent, we conjecture that 7S12 and
7S14 do not intersect.

Notice that this is not just a problem to check
if in this slice they intersect or not. It may not
happen in this slice, but it could happen in other
slices forming a band as narrow as wished, and so,
very difficult to detect numerically.

Lemma 4.21. The parts 7S11 and 7S14 do not in-
tersect each other and neither the parts 7S11 and
7S12. See Figs. 4.2, 4.9.

Proof. Numerical analysis suggests our claims. In
what follow we prove them. Firstly, we note that
7S11 and 7S14 cannot intersect since otherwise for
values in such intersection the two stable separatri-
ces of the finite saddle-node must coincide. Analo-
gously, 7S11 and 7S12 cannot intersect since other-
wise for values in such intersection the two unstable
separatrices of the finite saddle must coincide.

Remark 4.22. Careful numerical analysis suggest
two facts: (1) Parts 7S12 and 7S14 have 1.8l1 as
a common endpoint; (2) Parts 7S11 and 7S14 have
1.5l4 as a common endpoint. If we assume both
previous numerical evidences, then the situation is
the one shown in Figs. 4.2 and 4.9. Despite the
complete coherence of our numerical intuitions, it
is theoretical possible that some of them are not
true. For example, it could happen that 7S14 has
an endpoint in 1s13 instead of in 1.5l4. Anyway, as
one can realize very easily, none of the previous hy-
pothetical situations would give us any new phase
portrait that the ones we already have. Therefore,
since the final objective is to get a complete coher-
ent diagram, we work conjecturing our numerical
evidences.

In Fig. 4.2 we have shown the complete bifurcation
diagram of part 1 of the slice h = 6 (which con-
tains the regions v29, v34 and v35). In Fig. 4.9 we
have also illustrated the previous regions. We have
also shown the sequence of phase portraits in re-
gion v29 in Fig. A.8 and we have shown in Fig. A.7
the sequence of phase portraits in v34 bifurcating
from 1.8L1, both in Appendix A.2. The previous
sequences are very useful in order to understand the
transitions of phase portraits when we move from
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one region to another because we can see step by
step which changes are taking place.

Finally, in Fig. 4.3 we have shown the sequence
of phase portraits around 7.7L1

Remark 4.23. In Figs. 4.2 and 4.4 we have labeled
as 2S1 two apparently different parts of (S2). This
is not a mistake since in fact both regions are the
same, as will become clear when we move from slice
to slice in Sect. 4.4.
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Fig. 4.2: Complete bifurcation diagram for slice h = 6 (Part 1, contained in second and third quadrant). When a
two-dimensional region is colored in yellow means the existence of one simple limit cycle in such region.
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Fig. 4.3: Amplification of neighboring regions of part 7.7L1.

Now, we carry out the analysis of part v53 (see
Figs. 4.1, 4.4 and 4.9). In part v5 the phase por-
trait is equivalent to the one in V5, which has two
finite antisaddles (one is the origin, which is a f (1),
and the other is an unstable node). As explained in
Sect. 4.1, when we cross 6s5 the finite node turns
into a focus, and hence the phase portrait in v52 is
topologically equal than the one in v5 but with the
difference that in v52 the finite antisaddle different
from the origin is an unstable strong focus instead
of an unstable node. We recall that in 6s5 the finite
antisaddle different from the origin must be a node
which is “near” to be a focus, as for example a star
node n∗ or a one-direction node nd (see Appendix A
of [Artés et al., 2021a]). In 3s4 the phase portrait is

the same that the one in v52 but with the finite an-
tisaddle different from the origin being an unstable
f (1) instead of an unstable strong focus. In addi-
tion, in v53 the finite antisaddle different from the
origin is a stable strong focus. Hence, this branch
of surface (S3) corresponds to a Hopf bifurcation
and consequently in v53 we have a limit cycle. If
we are sufficiently close to part 3s4 the respective
phase portrait is topologically equivalent to the one
in V53. However, when we get close to 6s6 the limit
cycle has been lost, which implies (by Remark 4.12)
the existence of at least one element 7S19 of surface
(S7) dividing v53 into two “new” parts, V53 and V54,
which must represents a bifurcation surface due to
the connection of two infinite separatrices.



40 J.C. Artés, C. Trullàs
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Fig. 4.4: Complete bifurcation diagram for slice h = 6 (Part 2, contained in third quadrant). When a
two–dimensional region is colored in yellow means the existence of one simple limit cycle in such region.

Let’s discuss how portion 7S19 is positioned.

Lemma 4.24. The element 7S19 of surface (S7)
has 1.5l2 as endpoint. The other endpoint is in 5s19,
namely 5.7L5 (see Figs. 4.1, 4.4 and 4.9).

Proof. Numerical analysis suggests our claims. In
what follow we prove them. Firstly, if an endpoint
of 7S19 is any point of 3s4, then a portion of 3s4
must not refer to a Hopf bifurcation, which is a con-
tradiction. Secondly, part 7S19 cannot intersect 6s6
since otherwise for the values in such intersection we
must have a nondegenerate graphic surrounding a
unique point being a node, which contradicts item
(vii) in Appendix B.1. However, we can also give a
direct argument: If the previous hypothetical situa-
tion were possible, then we would be able to gener-

ate a quadratic system with a limit cycle surround-
ing a node by breaking the graphic with quadratic
perturbations, thus contradicting item (ix) in Ap-
pendix B.1. Thirdly, if we take a value of 5s19 near
3.5l2 and we perturb it by entering to v53 we get a
phase portrait equivalent to one in V53. However,
if we do the same but taking a point in 5s19 near
1.5l3 we get a phase portrait equivalent to the one
in V54. The three previous observations prove our
statements.

In Fig. 4.4 we show the complete bifurcation dia-
gram of part 2 of the slice h = 6, which contains the
region v53 we have just studied. In Fig. 4.9 we have
also illustrated the previous regions. In addition, in
Fig. A.9 in Appendix A.2 we show the sequence of
phase portraits along the planar region v53.
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Remark 4.25. We note that V56 (see Fig. 4.4) is
a region completely bordered by algebraic surfaces
whose associated phase portrait has a simple limit
cycle. This fact is completely coherent with Re-
mark 4.12. Indeed, the part 3S5 corresponds to
a Hopf bifurcation and in the part 5S19 we have a
phase portrait with a graphic, although it was not a
necessary fact according to the definition of surface
(S5) given in Sect. 4.1.

We now perform the study of parts v49 and v61
(see Figs. 4.1, 4.5 and 4.9). We consider the seg-
ments 8s10 and 8s11 in Fig. 4.1. By Remark 4.6
we know that in both parts the origin is a weak fo-
cus of order two, and consequently both branches of
surface (S8) corresponds to a Hopf bifurcation. In
fact, the unique difference between both previous
regions is that the finite antissadle different from
the origin is a strong focus in 8s10 and a node in
8s11 (see Remark 4.9). As a consequence, it is easy
to check that in v49 and in v61 we have a simple
limit cycle. If we are sufficiently close to part 8s10
(resp. 8s11) the respective phase portrait is topo-
logically equivalent to the one in V49 (resp. V61).
However, when we get close to 4s7 the limit cycle
has been lost, which implies (by Remark 4.12) the
existence of at least two elements 7S18 and 7S20 of
surface (S7) such that 7S18 (resp. 7S20) divides v49
(resp. v61) into two “new” parts, V48 and V49 (resp.
V61 and V62). In addition, both segments represent
a bifurcation due to existence of an homoclinic or-
bit (loop) connecting two separatrices of the finite
saddle-node. See Figs. 4.5 and 4.9.

Remark 4.26. There is a slight inaccuracy in the
above argument that should be qualified. Despite
the existence of 7S18 is clear, we cannot assure at
all the existence of 7S20 (and therefore neither that
of V62). The difficulties that we have are the follow-
ing ones: (1) As mentioned before, in Fig. 4.1 we
have produced a topological equivalent version of
the slice h = 6 (with only algebraic surfaces) since
some regions are very small. This is the case of v61,
since it is so small that it is practically impossible
for us to test numerical values of its interior. (2)
The existence of 7S20 is not needed for the coher-
ence of the bifurcation diagram. For example, it
would be completely coherent that 7S18 did not in-
tersect 6s8 and that it had as endpoints 1.8l1 and

4.8l1. However, certain arguments based on tangen-
cies of surfaces make us conjecture the existence of
7S20 (fully contained in v61, as explained before)
and that one of its endpoints is 1.8l1. Anyway, no-
tice that independently on which of the previous
situations is the real one, the topological phase por-
traits we obtain are exactly the same. Therefore,
since the objective is to obtain a coherent bifur-
cation diagram and previous facts are completely
coherent, we work assuming our conjectures previ-
ously explained.

Lemma 4.27. Part 7S18 has one of its two end-
points in 4.8l1. Moreover, 7S20 and 7S18 have an
endpoint in common in part 6s8, namely 6.7L1 (see
Figs. 4.1, 4.5 and 4.9).

Proof. If the endpoint of 7S18 (resp. 7S20) is in 8s10
(resp. 8s11) then a portion of 8s10 (resp. 8s11) must
not refer to a Hopf bifurcation, which contradicts
Remark 4.6. Using the previous fact and taking
into account the assumptions done in Remark 4.26,
it is clear that 7S18 (resp. 7S20) must have an end-
point in 4.8l1 (resp. 1.8l1) and also that both must
have the other endpoint in 6s8. In addition, the two
previous endpoints in 6s8 must coincide since 7S18
is the continuation of 7S20 through 6s8. Hence, our
claims are proved.

Now, we carry out the analysis of parts v42 and v46
(see Figs. 4.1, 4.5 and 4.9). In the part v38 (resp.
v39) the phase portrait is topologically equivalent to
the one in V38 (resp. V39), both possessing two finite
antisaddles (one is the origin, which is a f (1), and
the other is a stable node). As explained in Sect.
4.1, when we cross the part 6s1 (resp. 6s2) the fi-
nite node turns into a focus, and hence the phase
portrait in v40 (resp. v41) is topologically equiva-
lent to the one in part v38 (resp. v39) but with the
difference that in v40 (resp. v41) the finite antisad-
dle different from the origin is a stable strong focus
instead of a stable node. We recall again that in
6s1 and in 6s2 the finite antisaddle different from
the origin must be a node which is “near” to be a
focus.

In part 3s2 (resp. 3s3) the phase portrait is
the topologically equivalent to the one in v40 (resp.
v41) but with the finite antisaddle different from
the origin being a stable f (1) instead of a stable
strong focus. Moreover, in v42 and in v46 the finite
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antisaddle different from the origin is an unstable
strong focus. Therefore, the branches 3s2 and 3s3
of surface (S3) corresponds to a Hopf bifurcation,
and consequently, in v42 and in v46 we must have a
simple limit cycle surrounding the finite antisaddle
different from the origin.

If we are sufficiently close to part 3s2 (resp.
3s3) the respective phase portrait is topologically
equivalent to the one in V42 (resp. V46). However,
when in v46 we get close to the part of 5s14 near
4.8l1, the limit cycle has been lost, which implies
(by Remark 4.12) the existence of at least one el-
ement 7S17 of surface (S7) dividing v46 into two
“new” parts, V46 and V47, which represent a bifur-
cation surface due to the connection of two separa-
trices of the finite saddle-node.

The situation in v42 is more complicated. If we

trace a straight line from 3s2 to 6s3 (fully contained
in v42) and we walk on it we realize that if we are
near 3s2 the phase portrait is equivalent to the one
in V42. If we move away from 3s2 we have a phase
portrait equivalent to the one in V43. Moreover, if
we continue moving away from 3s2 and we go near
6s3 the phase portrait is equivalent to the one in
V44. The previous facts imply the existence of at
least two elements 7S15 and 7S16 of surface (S7)
dividing v42 into three “new” parts, V42, V43 and
V44. Moreover, 7S15 must represent a connection
between two separatrices of the finite saddle-node
(loop) and 7S16 must represent a bifurcation due to
the connection of separatrices between a finite and
an infinite singularity (see Figs. 4.1, 4.5 and 4.9).

In what follows we study how parts 7S15, 7S16
and 7S17 are positioned in regions v42 and v46.
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Fig. 4.5: Complete bifurcation diagram for slice h = 6 (Part 3, contained in the second quadrant). When a
two–dimensional region is colored in yellow means the existence of one simple limit cycle in such region.
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Lemma 4.28. Part 7S17 has an endpoint in 1.8l1
and the other is in 5s14, namely 5.7L3. Part 7S15
has its endpoints in p5 (placed in the equator) and
in 5.7L3. Finally, part 7S16 has one of its endpoints
in p5 and the other is in 5s14, namely 5.7L4 (with
5.7L4 6= 5.7L3). See Figs. 4.1, 4.5 and 4.9.

Proof. Numerical analysis suggests our statements.
In what follow we prove them. Firstly, if 7S15 has
an endpoint in 3s2 then a portion of 3s2 must not
refer to a Hopf bifurcation, which is a contradic-
tion. Secondly, 7S16 cannot intersect 6s3 since oth-
erwise for values in such intersection we must have a
phase portrait with a node inside a non-degenerate
graphic, which contradicts item (vii) in Appendix
B.1. Thirdly, if we take a value in 5s14 near 3.5l1
and we perturb it by entering to v42 we get a phase
portrait equivalent to V42. If we do the same but
taking a point in 5s14 near 4.8l1 we get a phase
portrait equivalent to V44. In addition, there is a
central region in 5s14 in which if we take a value
in such region and we perturb it by entering to v42
we get a phase portrait equivalent to V43. Previous
facts prove that 7S15 and 7S16 have one of its end-
points in p5 and the other in 5s14, namely 5.7L3 and
5.7L4 respectively, with 5.7L3 6= 5.7L4. Fourthly, if
we take a value in 5s14 near 3.5l1 and we perturb it
by entering to v46 we get a phase portrait equivalent
to V46, but if we do the same taking a point in 5s14
near 4.8l1 we get a phase portrait equivalent to V47.
Fifth, if 7S17 has an endpoint in 3s3 then a portion
of 3s3 must not refer to a Hopf bifurcation, which is
a contradiction. The two previous facts prove that
7S17 has one of its ends in 1.8l1 and the other in
5s14. Finally, we note that the endpoints in 5s14 of
7S17 and 7S15 must coincide since one part is the
continuation of the other through (S5). Hence, our
claims are proved.

In Fig. 4.5 we show the complete bifurcation dia-
gram of part 3 of the slice h = 6 (which contains the
regions v49, v61, v42 and v46). In Fig. 4.9 we have
also illustrated the previous regions. We have also
shown the sequence of phase portraits along regions
v49 and v61 in Fig. A.10 and also along regions v42
and v46 in Fig. A.11, both in Appendix A.2.

We now perform the analysis of parts v9a, v9b,
v12 and v64 (see Figs. 4.1, 4.6, 4.7 and 4.9). The
meaning of the subscripts “a” and “b” is explained
in Remark 4.33. We start by considering the seg-

ments 8s2, 8s1a and 8s1b in Fig. 4.1. By Remark
4.6 we know that in all three parts the origin is a
weak focus of order two, and consequently all three
branches of surface (S8) corresponds to a Hopf bi-
furcation. As a consequence, one can easily verify
that in v9a, v9b and v12 we must have a simple limit
cycle.

If we are sufficiently close to part 8s1b the re-
spective phase portrait is topologically equivalent
to the one in V9. However, when we get close to 3s10
the limit cycle has been lost, which implies (by Re-
mark 4.12) the existence of at least one element 7S2
of surface (S7) dividing v9b into two “new” parts, V8
and V9, which must represent a bifurcation due to
existence of an homoclinic orbit (loop) connecting
two separatrices of the finite saddle (see Figs. 4.6
and 4.9).

Remark 4.29. Similarly to what we have exposed in
Remark 4.15, in principle 7S2 should be located be-
tween 8s1b and 3s10 without intersecting 3s10 (see
Figs. 4.6 and 4.9), because we have parametrized
the yellow surface 3s10 and “walked” on it and in
all the cases we have obtained a phase portrait cor-
responding to 3S10, which is topologically distinct
to those in 7S2. However, there exists the theoret-
ical possibility that 7S2 crosses completely 3s10 in
some small places that we have not detected nu-
merically. In this case a second limit cycle will be
generated due to the weakness of the finite saddle
in 3s10, as discussed in detail in Sect. 5.3.

If we assume that 7S2 and 3s10 do not inter-
sect, the following result holds (otherwise we could
adapt it):

Lemma 4.30. The surface 7S2 has p4 (placed in
the equator) as endpoint. Moreover, its other end-
point in in part 5s7b, namely 5.7L2 (see Figs. 4.1,
4.6 and 4.9).

Proof. Numerical analysis suggests our claims. In
what follow we prove them. Firstly, if 7S2 has an
endpoint in 8s1b, then a portion of 8s1b must not
refer to a Hopf bifurcation, which contradicts the
fact that on 8s1b the origin is a weak focus of order
two (see Remark 4.6). Secondly, if we take a value
on 5s7b near 5.8l1b and we perturb it by entering to
v9b we get a phase portrait equivalent to V9. How-
ever, if we do the same but taking a value in 5s7b
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near 3.5l3 we get a phase portrait equivalent to V8.
Using the previous two facts and that by assump-
tion 7S2 does not intersect 3s10 (see Remark 4.29)
our initial claims are proved.

Now we move to part v9a. If we trace a straight
line from 8s1a to 4s1 (fully contained in v9a) and we
“walk” on it we realize that if we are near 8s1a the
phase portrait is equivalent to the one in V9, which
has a limit cycle. However, if we move away from
8s1a we have a phase portrait equivalent to the one
in V8, in which the limit cycle has been lost. More-
over, if we keep moving away from 8s1a and we go
near 4s1 the phase portrait is equivalent to the one
in V7. The previous facts imply the existence of
at least two elements 7S1 and 7S2 of surface (S7)
dividing v9a into three “new” parts, V9, V8 and V7.
Moreover, 7S1 (resp. 7S2) must represent a connec-
tion between two separatrices of two different finite
singularities (resp. of the same finite saddle, i.e. a
loop). See Figs. 4.1, 4.6 and 4.9.

Remark 4.31. Notice that parts 7S1 and 4s1 do not
intersect each other (see Figs. 4.6 and 4.9). Indeed,
if both previous surfaces intersect, then the phase
portrait for a point in such intersection must be

which has an invariant line colored in red and a
f (1) in the origin. The previous system cannot ex-
ist in the family QS since otherwise using Hopf by
means of adding the trace in (5) and breaking the
green connection, we can produce an example of a
quadratic system with two limit cycles and an in-
variant straight line, thus contradicting item (xiv)
in Appendix B.1.

Lemma 4.32. Parts 7S1 and 7S2 do no intersect
each other. Part 7S1 has one of its endpoints in
5s7a, namely 5.7L1. Part 7S2 has one of its end-
points in 5s7a, namely 5.7L2, with 5.7L1 6= 5.7L2.
The other endpoint of 7S1 and of 7S2 is p5, which
is placed in the equator. See Figs. 4.1, 4.6, 4.9.

Proof. Numerical analysis suggests our previous
claims. In what follow we prove them. Firstly, if

7S1 intersect 7S2 then for a point in such intersec-
tion we must have a phase portrait equivalent to
the one shown in Remark 4.31. But by item (v) in
Appendix B.1 the system in such intersection must
have an invariant line (the line passing through the
finite saddle and the finite saddle-node, which be-
longs to the graphic). But as we have reasoned in
Remark 4.31, the previous situation is not possi-
ble. Therefore, 7S1 and 7S2 cannot intersect, as we
wanted to show. Secondly, part 7S2 cannot end in
8s1a since otherwise a part of 8s1a must not refer
to a Hopf bifurcation, which contradicts Remark
4.6. Thirdly, if we take a value in 5s7a near 4.5l1
and we perturb it by entering to v9a we get a phase
portrait equivalent to V7. If we do the same but
taking a value in 5s7a near 5.8l1a we get a phase
portrait equivalent to V9. In addition, there is a
central region in 5s7a in which if we take a value in
such region and we perturb it by entering to v9a we
get a phase portrait equivalent to V8 (see Fig. 4.6).
Using the three previous facts and taking into ac-
count that parts 7S1 and 4s1 do not intersect each
other (see Remark 4.31), our claims are proved.

Remark 4.33. As the reader may have noticed, in
Figs. 4.6, 4.7 and 4.9 there are some apparently dif-
ferent parts which are labeled with the same name.
This is not a mistake since in fact they are the same
regions, as will become clear in Sect. 4.4. As a con-
sequence, we have used the notation v9a and v9b in
order be coherent with the fact that region V9 in
v9a and region V9 in v9b are exactly the same. The
other cases in this section where we have used the
subscripts “a” and “b” have identical justifications.

Finally, we move to parts v12 and v64. We start by
v12. If we trace a straight line from 8s2 to 4s2 (not
intersecting neither 3s9 nor 5s7a) and we “walk” on
it we realize that if we are near 8s2 the phase por-
trait is equivalent to the one in V12. However, if we
move away from 8s2 we have a phase portrait equiv-
alent to the one in V11, in which the limit cycle has
been lost. Moreover, if we keep moving away from
8s2 and we go near 4s2 the phase portrait is equiv-
alent to the one in V6. The previous facts imply
the existence of at least two elements 7S3 and 7S4
of surface (S7) dividing v12 into three “new” parts,
V6, V11 and V12. Moreover, 7S4 must represent a
connection between two finite separatrices of the
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same finite saddle (loop) and 7S3 must represent
a bifurcation due to the connection of separatrices
between a finite saddle and a finite saddle-node (see
Figs. 4.6 and 4.9).

Regarding to v64, if we take a value near 1s5
or 4s9 we get a phase portrait equivalent to V64.
However, if we take a value in v64 near 5s9 we get

a phase portrait equivalent to V65. This fact imply
the existence of at least one element 7S21 of surface
(S7) dividing v64 into two “new” parts, V64 and V65,
which must represent a connection of separatrices
between two different finite singularities, as one can
appreciate in Figs. 4.6, 4.7 and 4.9.

V9

V10

V8

V7

V6

V64

V11

V65

V12

V13

V14

V8

V9

5S8
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5S7

7S2

5S6
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(loop)
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Fig. 4.6: Complete bifurcation diagram for slice h = 6 (Part 4, fourth quadrant complete). When a
two–dimensional region is colored in yellow means the existence of one simple limit cycle in such region.

Remark 4.34. Analogously to Remark 4.31, we can
assure that part 7S3 does not intersect 4s2 and that
7S21 does not intersect 4s9. Indeed, the phase por-
trait in such intersections would be

which has an invariant line colored in red and a
f (1) placed in the origin. An analogous argument
than the one in given in Remark 4.31 proves that
previous system cannot exist in QS.

Lemma 4.35. Parts 7S3 and 7S4 do not intersect
each other. Part 7S4 has one endpoint in 5.7L2 of
5s7a (see Lemma 4.32), and the other in part 5.7L2

in 5s7b (see Lemma 4.30). We recall that 5.7L2 in
5s7a and 5.7L2 in 5s7b are in fact the same curve,
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see Remark 4.33. Part 7S3 has 5.7L1 in 5s7a as
endpoint (see Lemma 4.32) and its other endpoint
is in 3s9, namely 3.7L1. Part 7S21 has also 3.7L1

as endpoint and its other endpoint is in 1.4l2. See
Figs. 4.1, 4.6, 4.7 and 4.9.

Proof. Careful numerical analysis suggests our
claims. In what follow we prove them. The ar-
gumentation follows in several steps: (1) If 7S3 and
7S4 intersect then for a point in such intersection
we must have a phase portrait equivalent to the
one shown in Remark 4.34. But by item (v) in
Appendix B.1 the system in such intersection must
have an invariant line (the line passing through the
finite saddle and the finite saddle-node, which be-
longs to the graphic). But as we have reasoned in
Remark 4.34, the previous situation is not possi-
ble. Therefore, 7S3 and 7S4 cannot intersect, as we
wanted to show; (2) Part 7S4 cannot have an end
in 8s2 since otherwise a part of 8s2 must not refer
to a Hopf bifurcation, which contradicts Remark
4.6; (3) If we take a value in 5s7b (resp. 3s9) near
3.5l3 and we perturb it by entering to v12 we get a
phase portrait equivalent to V11, but if we do the
same taking a point in 5s7b (resp. 3s9) near 5.8l1b
(resp. 3.4l1) we get a phase portrait equivalent to
V12 (resp. V6); (4) If we take a value in 5s7a near
5.8l1a and we perturb it by entering to v12 we get a
phase portrait equivalent to V12. If we do the same
but taking a point in 5s7a near 4.5l1 we get a phase
portrait equivalent to V6. In addition, there is a
central region in 5s7a in which if we take a value
in such region and we perturb it by entering to v12
we get a phase portrait equivalent to V11. The four
previous facts plus the result given in Remark 4.34
prove that part 7S4 has one endpoint in 5s7a and
the other in 5s7b and also that part 7S3 has an end-
point in 5s7a (different from the corresponding to
7S4) and the other in 3s9.

(5) Part 7S21 cannot intersect 4s3 since other-
wise for points in such intersection we must have a
phase portrait in which a finite saddle’s separatrix,
a finite saddle-node’s separatrix and an infinite sep-
aratrix must coincide, which is impossible; (6) If we
take a value in 3s9 near 3.5l3 and we perturb it by
entering to v64 we get a phase portrait equivalent
to V65, but if we do the same taking a point in 3s9
near 3.4l1 we get a phase portrait equivalent to V64;
(7) If we perturb the region 1.4l2 by entering to v64

we can get a phase portrait equivalent to the one
in V64, in V65 and in 7S21. Using the three previous
facts and taking into account Remark 4.34 we con-
clude that 7S21 has one of its two endpoints in 3s9
and the other in 1.4l2.

Finally, the fact that all the endpoints of which
we have demonstrated the existence in this proof
are exactly the ones given in the statement of this
lemma is clear because the branches 7S21, 7S3 and
7S1 of (S7) are in fact a single branch which crosses
through (S3) and (S5). Analogously, the branches
7S4 and 7S2 of (S7) are in fact a single branch which
crosses through (S5).

In Figs. 4.6 and 4.7 we have shown the complete
bifurcation diagram of parts 4 and 5 of the slice
h = 6, which contains the regions v9a, v9b, v12 and
v64. In Fig. 4.9 we have also illustrated the previous
regions. We have also shown the sequence of phase
portraits along regions v9a and v9b in Fig. A.12,
along region v64 in Fig. A.13 and along region v12
in Fig. A.14, all three in Appendix A.2.

We now perform the analysis of part v63 (see
Figs. 4.1, 4.7 and 4.9). If we take a value in v63
near 4s10, we get a phase portrait equivalent to
V63, which has one infinite basin generated by the
finite saddle. However, if we take a point in 5s30
enough far from 4.5l2 and we perturb it by enter-
ing to v63 we get a phase portrait equivalent to the
one in V75, which has two infinite basins (one gen-
erated by the finite saddle and the other by the
finite saddle-node). The previous facts imply the
existence of at least one branch of surface (S7), de-
noted as 7S28, which splits v63 into two “new” parts:
V63 and V75. Moreover, 7S28 must correspond to a
bifurcation surface due to the connection of sepa-
ratrices between a finite singularity and an infinite
one (precisely, the finite saddle-node and a infinite
saddle). See Fig. 4.7.

Lemma 4.36. Part 7S28 has an endpoint in 5s30,
namely 5.7L7. See Figs. 4.1, 4.7 and 4.9.

Proof. Just observe that if we take a point in 5s30
close enough to 4.5l2 and we perturb it by entering
to v63 we get a phase portrait equivalent to the one
in V63. But if we do the same taking a point in
5s30 far enough from 4.5l2 we get a phase portrait
equivalent to the one in V75.
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Fig. 4.7: Complete bifurcation diagram for slice h = 6 (Part 5, first quadrant complete). When a two–dimensional
region is colored in yellow (resp. green) means the existence of one (resp. two) simple limit cycle in such region. We

also recall that on the branches 10S1 and 10S2 of surface (S10) we have one double limit cycle.

We now perform the analysis of parts v15, v22a,
v20 and v23 (see Figs. 4.1, 4.7 and 4.9). We start
by considering the parts 8s7, 8.10l1 and 8s3. Ac-
cording to Remark 4.6, we know that the origin is
a weak focus of third order f (3) (stable) in 8.10l1
and a weak focus of second order f (2) in 8s7 and in
8s3 (unstable in 8s7 and stable in 8s3). Hence, part
8.10l1 of (S8) corresponds to a Hopf bifurcation in-
side (S8). As a consequence, in 8s7 we must have a
simple limit cycle.

On the other hand, by Remark 4.6 we know
that in 8s3, 8s5, 8s7 and in 8s8 the origin is a weak
focus of order two f (2), and hence all three branches
of surface (S8) correspond to a Hopf bifurcation. As
a consequence, since in 8s3∪8.10l1 and in v15 (resp.

in 8s5 and in v22b) the origin is stable we know that
in v20 (resp. v23) we must have a simple limit cy-
cle generated by Hopf when crossing from v15 (resp.
v22b) to v20 (resp. v23) through 8s3 ∪ 8.10l1 (resp.
8s5). Analogously, since in 8s8 and in v23 (resp. in
8s7 and in v20) the origin is unstable we know that
in v22a (resp. v15) we must have a simple limit cy-
cle generated by Hopf when crossing from v23 (resp.
v20) to v22a (resp. v15) through 8s8 (resp. 8s7). But
that is not all, since we can assure the existence of
two limit cycles (both simple) in a certain subset of
v15. Indeed, as explained before must exist a sub-
set of 8s7 adjacent to 8.10l1, namely 8S7, in which
we have a limit cycle (simple) generated as a conse-
quence of the Hopf bifurcation in (S8). Moreover,
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according to our previous observations, if we cross
from v20 to v15 through 8S7 then a second simple
limit cycle must be generated, again by Hopf, thus
giving birth to a subset of v15 possessing two simple
limit cycles.

Once studied where the regions with limit cy-
cles must appear (using only Hopf arguments), we
must study how these regions are positioned and
where and how they end. For example, as we will
see soon, there exists a subset of v22a with two sim-
ple limit cycles which is a “natural continuation”
of the region with two limit cycles in v15 (see Figs.
4.7, 4.9).

If we are in v23 and sufficiently close to part
8s5 the respective phase portrait is topologically
equivalent to the one in V23, which has a limit cy-
cle. However, when we move away from 8s5 the
limit cycle has been lost, which implies (by Remark
4.12) the existence of at least one element 7S9 of
surface (S7) dividing v23 into two “new” parts, V21
and V23, which represents a bifurcation due to the
connection of separatrices between two infinite sin-
gularities (see Figs. 4.7,4.9).

Remark 4.37. Parts 7S9 and 4s6 do not intersect
each other (see Figs. 4.7 and 4.9). The proof is
very similar to the one given in Remark 4.31: If
7S9 and 4s6 would intersect, then the phase portrait
corresponding to a point in such intersection would
have an invariant straight line (not being a sep-
aratrix connection) joining two infinite nodes and
also would have a graphic surrounding a f (1). Us-
ing Hopf by means of adding the trace in (5) and
breaking the graphic, we can get a phase portrait
with two limit cycles and an invariant straight line,
thus contradicting item (xiv) in Appendix B.1.

Lemma 4.38. Part 7S9 has p5 as endpoint (placed
in the equator). Its other endpoint is in 1s6, namely
1.7L1. See Figs. 4.1, 4.7 and 4.9.

Proof. Numerical analysis suggests our claims. In
what follow we prove them. Firstly, 7S9 cannot
have an end in 8s5 since otherwise a portion of 8s5
must not refer to a Hopf bifurcation, which contra-
dicts Remark 4.6. Secondly, if we take a value in
1s6 near 1.8l2 and we perturb it by entering to v23
we get a phase portrait equivalent to V23, but if we
do the same taking a point in 1s6 near 1.8l3 we get

a phase portrait equivalent to V21. Using the pre-
vious facts and taking into account the results we
have given in Remark 4.37 the rest of the proof is
straightforward.

If we are in v20 and we trace a straight line from
8s3 to 1s6 (fully contained in v20 and with its in-
tersection with part 1s6 enough far from 1.8l2) and
we “walk” on it we realize that if we are near 8s3
the phase portrait is equivalent to the one in V18,
which has a limit cycle. However, if we move away
from 8s3 we have a phase portrait equivalent to the
one in V19, in which the limit cycle has been lost.
Moreover, if we keep moving away from 8s3 and we
go near 1s6 the phase portrait is equivalent to the
one in V20. The previous facts imply the existence
of at least two elements 7S8 and 7S7 of surface (S7)
dividing v20 into three “new” parts, V18, V19 and
V20. Moreover, 7S7 represents a bifurcation due to
the connection between two separatrices of the fi-
nite saddle and 7S8 represents a bifurcation due to
the connection of separatrices between a finite and
an infinite singularity (see Fig. 4.7).

Lemma 4.39. Parts 7S7 and 7S8 do not intersect
each other and have 1.7L1 (see Lemma 4.38) as a
common endpoint. The other endpoint of 7S8 (resp.
7S7) is in 8s7, namely 7.8L1 (resp. 7.8L2), with
7.8L1 6= 7.8L2. See Figs. 4.1, 4.7, 4.9.

Proof. Careful numerical analysis suggests our
claims. In what follow we prove them. Firstly,
7S7 cannot intersect 7S8 since otherwise in a point
of such intersection we must have a phase portrait
with two separatrices of the finite saddle coincid-
ing with an infinite separatrix, which is impossible.
Secondly, 7S7 cannot have an end in 8s3 since oth-
erwise a portion of 8s3 must not refer to a Hopf bi-
furcation, which contradicts Remark 4.6. Thirdly,
if we take a point in 8s7 near 1.8l3 and we perturb
it by entering to v20 we get a phase portrait equiva-
lent to V20, but if we do the same taking a point in
8s7 near 8.10l1 we get a phase portrait equivalent
to V18. In addition, there is a central region in 8s7
in which if we take a value in such region and we
perturb it by entering to v20 we get a phase portrait
equivalent to V19. Fourthly, if we take a value in 1s6
near 1.8l2 and we perturb it by entering to v20 we
get a phase portrait equivalent to V18, but if we do
the same taking a point in 1s6 near 1.8l3 we get a
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phase portrait equivalent to V20. The previous four
facts prove that: (1) 7S7 and 7S8 must have one of
their two endpoints in different points of part 8s7.
(2) 7S7 and 7S8 must have their other endpoint in
1s6. Of course both endpoints in 1s6 must coincide
with 1.7L1 since otherwise we can easily arrive to
some false topological equivalences when crossing
from v20 to v23 through 1s6. Hence, our claims are
proved.

If we are in v22a and we trace a straight line from
8s8 to 4s4 (fully contained in v22a) and we “walk”
on it we realize that if we are near 8s8 the phase
portrait is equivalent to the one in V26, which has a
limit cycle (simple). However, if we move away from
8s8 we have a phase portrait equivalent to the one
in V27, in which a second limit cycle has appeared
(both simple). Moreover, if we keep moving away
from 8s8 and we go near 4s4 the phase portrait is
equivalent to the one in V22, in which both limit
cycles have been lost. The previous facts imply the
existence of at least one element 7S10 of surface (S7)
and one element 10S2 of surface (S10) dividing v22a
into three “new” parts, V26, V27 and V22. More-
over, 7S10 must represent a bifurcation due to the
connection between two separatrices of two differ-
ent infinite singularities and 10S2 must represent a
bifurcation due to the existence of a double limit
cycle (see Figs. 4.1, 4.7 and 4.9).

Remark 4.40. In principle there exists the theoret-
ical possibility that 10S2 intersects 7S10. How-
ever, it is very unlikely to happen. The reason
is the following one: If 10S2 crosses 7S10 in some
small places then we would have an example of a
quadratic system with four limit cycles surrounding
the same focus, as discussed in Sect. 5.4. Despite it
is not proved that a quadratic system cannot have
four limit cycles surrounding the same focus, no-
body has found an example of such situation up to
now. In fact, there exist a conjecture which says
that: A quadratic system can have at most four
limit cycles, and in case of having four they must
appear in configuration (3, 1). We note that S. Shi
found an example of quadratic system with a con-
figuration (3, 1). See [Shi, 1980].

We must say that, after a careful numerical
analysis, we have no evidences about the existence
of the previous hypothetical intersection.

Lemma 4.41. Parts 7S10 and 10S2 have 4.8l1 as
a common endpoint. The other endpoint of 7S10
(resp. 10S2) is in 1s7a, namely 1.7L2 (resp.
1.10L1), 1.7L2 6= 1.10L1. See Figs. 4.1, 4.7, 4.9.

Proof. Careful numerical analysis suggests our
claims. In what follow we prove them. Firstly,
7S10 cannot have an end in 8s8 since otherwise a
portion of 8s8 must not refer to a Hopf bifurcation,
which contradicts Remark 4.6. Secondly, if we take
a point in 1s7a near 1.8l3 and we perturb it by en-
tering to v22a we get a phase portrait equivalent
to V26. If we do the same but taking a point in
1s7a near 1.4l2 we get a phase portrait equivalent
to V22. In addition, there is a central region in 1s7a
from which if we take a point in such region and
we perturb it by entering to v22a we get a phase
portrait equivalent to V27. This last fact prove that
7S10 and 10S2 must have one of their two endpoints
in different points of 1s7a. Finally, part 10S2 can-
not intersect 4s4 since otherwise the phase portrait
corresponding to a point in such intersection must
have one double limit cycle and an invariant line,
but this is impossible since contradicts item (xiv)
in Appendix B.1. All previous facts grouped to-
gether prove our claims.

If we are in v15 and we trace a straight line from
8s7 to 4s3 (fully contained in v15 and with its inter-
section with part 8s7 enough close to 1.8l3) and we
“walk” on it we realize that if we are near 8s7 the
phase portrait is equivalent to the one in V17, which
has one simple limit cycle. However, if we move
away from 8s7 we have a phase portrait equivalent
to the one in V16, in which the simple limit cycle is
maintained. If we keep moving away from 8s7 we
have a phase portrait equivalent to the one in V25, in
which a second limit cycle has appeared (both sim-
ple). Moreover, if continue moving away from 8s7
and we go near 4s3 the phase portrait is equivalent
to the one in V15, in which both limit cycles have
been lost. The previous facts imply the existence
of at least two elements 7S5 and 7S6 of surface (S7)
and an element 10S1 of surface (S10) dividing v15
into four “new” parts, V17, V16, V25 and V15. More-
over, 7S5 must represent a bifurcation due to the
connection between two separatrices of the finite
saddle (loop), 7S6 must represent a bifurcation due
to the connection of separatrices between a finite
and an infinite singularity, and 10S1 must repre-



50 J.C. Artés, C. Trullàs

sent a bifurcation due to the existence of a double
limit cycle (see Figs. 4.1, 4.7, 4.9).

Remark 4.42. Analogously to what we have ex-
posed in Remark 4.40, it is also theoretical possi-
ble that 10S1 crosses 7S5 despite it is very unlikely

to happen, since it would imply the existence of
a phase portrait with four limit cycles surround-
ing the same focus, as discussed in Sect. 5.4. After
a careful numerical analysis, we have no evidences
about the existence of the previous hypothetical in-
tersection.

8S3

8S7

8.10L1

7.8L2

8S6

7.8L1

8S4

f (3)

V20

V19

7S8

V18

7S7

V17

V16 V25

V15

7S6

7S5
10S1

Fig. 4.8: Amplification of regions v15 and v20. We recall that the phase portraits in 8S3 and in 8.10L1 are
equivalent to the one in V15 (resp. 8S7 to V18; 7.8L2 to 7S7; 8S6 to V19; 7.8L1 to 7S8 and 8S4 to V20.)

Lemma 4.43. Parts 7S5 and 7S6 do not intersect
each other and have 1.7L2 (see Lemma 4.41) as a
common endpoint. The other endpoint of 7S5 (resp.
7S6) is in 8s7, namely 7.8L2 (resp. 7.8L1), with
7.8L1 6= 7.8L2 (see Lemma 4.39). Part 10S1 has
its endpoints in 1.10L1 (see Lemma 4.41) and in
8.10l1. See Figs. 4.1, 4.7 and 4.9.

Proof. Numerical analysis suggests our claims. In

what follow we prove them. Firstly, 7S6 cannot in-
tersect 7S5 since otherwise in a point of such inter-
section we must have a phase portrait in which two
separatrices of the finite saddle must coincide with
an infinite separatrix, which is impossible. Sec-
ondly, clearly part 10S1 must have 8.10l1 as end-
point since as a consequence of Remark 4.6 we know
that in 8.10l1 the origin is a f (3), and the unfolding
of a f (3) contains a surface in which a double limit
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cycle exists. Thirdly, part 10S1 cannot intersect 4s3
since otherwise the phase portrait corresponding to
a point in such intersection must have one double
limit cycle and an invariant straight line, but this
previous fact is impossible since contradicts item
(xiv) in Appendix B.1. Fourthly, if we take a value
in 1s7a near 1.4l2 and we perturb it by entering to
v15 we get a phase portrait equivalent to V15. How-
ever, there is a central region in 1s7a in which if we
take a point in such region and we perturb it by

entering to v15 we get a phase portrait equivalent
to V25. The previous facts prove that 10S1 has its
other endpoint in 1s7a. Finally, we note that the
endpoint of 7S6 (resp. 7S5) in 8s7 must coincide
with the endpoint of 7S8 (resp. 7S7) in 8s7 since in
fact 7S6 (resp. 7S5) is a continuation of 7S8 (resp.
7S7) trough 8s7. In a similar way we can conclude
that the endpoint of 7S6 and 7S5 (resp. 10S1) in
1s7a must coincide with the endpoint of 7S10 (resp.
10S2) in 1s7a.

P4
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P5
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V63

V15
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V1

V28
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4S10
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V8
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V74
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V2

V57

7S2
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7S25
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1S12

2S2
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6S1

V40

3S2

V42

7S15

V43

V21

4S6

7S16

6S3

V45

V44
7S9

V22

V23

1S7

8S5

9.11L1

9.11L1
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V71

V35

7S27

V73

9.11L1

9.11L1

9.11L1

9.11L1

5.7L7

5S30

7S28

V75

V13

Fig. 4.9: Complete bifurcation diagram for slice h = 6 in the disc with labels only in a boundary of the equator.
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In Fig. 4.7 we show the complete bifurcation
diagram of part 5 of the slice h = 6, which con-
tains the regions v15, v20, v22a and v23. In Fig. 4.9
we have also illustrated the previous regions. In
Fig. 4.8 we show an amplification of regions v15 and
v20 with the objective to clarify how the limit cycles
behave in both previous regions.

In Fig. 4.9 we have drawn the complete bifur-
cation diagram of the slice h = 6 in the planar
projection in the unit disk of the half ellipsoid in
B(~0, 1) ∩ B1/2 corresponding to the plane h = 6 of
(R3)+ (see Sect. 3.2 for more details). The bound-
ary of the unit disk, which is S1, corresponds to the
equator. We recall that in Fig. 4.9 we have only la-
beled the regions adjacent to the equator due to the
great number of regions that we have encountered
in the slice h = 6.

As we have explained in Sect. 3.2, two diamet-
rically opposite points in S1 correspond to the same
point in RP3 and hence also to the same region in
our bifurcation diagram, as one can appreciate in
Fig. 4.9. In fact, the differences between the phase
portraits of two diametrically opposite points in
S1 are principally symmetries and changes of time.
Moreover, as we have mentioned in Sect. 3.2, the
equator is the common boundary of all the slices
(including the slice h = +∞) when we compact-
ify them in B1/2, and hence we only need to study
it once. In addition, studying it is very important
since it allows us to check if the bifurcation diagram
of the corresponding slice we are studying is coher-
ent when we approach to infinity. In order to do
it, it is enough to check if the phase portraits cor-
responding to the regions adjacent to the equator
are coherent with those in the equator. If this is
the case, then we can assure that we have not left
anything out, or at least, that no further region is
necessary for the bifurcation diagram to make sense
in the slice that we are considering.

We recall that by Remark 4.1 we know that
all the phase portraits corresponding to the equa-
tor do not have any degeneracy (neither finite nor
infinite). Moreover, the weak singularities of the
systems in the equator have been completely stud-
ied in Remark 4.3 of Section 4.1.

We make a couple of observations regarding
Figure 4.9: (1) From the point P5 bifurcate 38 dif-
ferent regions and 19 from P4; (2) There are 3 dif-
ferent regions with limit cycles which arrive to the

point P5 and two to P4.

Remark 4.44. Notice that in Figure 4.9 we have la-
beled as 9.11L1 many apparently different parts of
the equator. Let us justify that is fact they are the
same part. Indeed, in the affine part (that is, we are
takingm = 1) the surface (S4) has two components:
The plane l = 0 and the helicoid −gh + 2h + l = 0
(see Fig. A.3 in Appendix A.1). Of course the re-
striction of the previous helicoid to each slice h is
a straight line. When h = 0, it corresponds to the
line l = 0, and when h = ±∞ to the line g = 0.
Therefore, for h ∈ [−∞,+∞] the helicoid has ro-
tated 180◦. Of course, the previous fact implies
that the intersection of (S4) with the equator is the
whole equator.

Similar arguments apply with parts 7S28 and
7S27 in Figure 4.9, as will become clear in the sub-
sequent sections.

Having analyzed all the parts of the generic
slice h2 = 6 and explained the existence of the non-
algebraic surfaces in such parts (modulo islands,
see Sect. 5.1), we have finished the study of the
generic slice h2 = 6. However, we cannot assure
that these are all the additional bifurcation surfaces
in this slice, since there is the theoretical possibil-
ity of the existence of islands, i.e. there could exist
closed non-algebraic surfaces placed in the three-
dimensional parts of B1/2 and small enough to es-
cape our numerical research (see Sect. 5.1). In ad-
dition, as we explain in Sect. 5, there are other
phenomena implying more non-algebraic bifurca-
tion surfaces that are also theoretical feasible.

For all other two-dimensional parts of the par-
tition of the slice h2 = 6 (different from those listed
in pages 30 and 31), whenever we join two points
which are close to different borders of the part,
the two phase portraits are topologically equivalent.
Hence, in such regions no non-algebraic surface is
needed in order the bifurcation diagram to be coher-
ent, despite the presence of islands and other phe-
nomena is also theoretical feasible in such regions.
In short, it is expected that the complete bifurca-
tion diagram for the slice h2 = 6 is the one shown
in Fig. 4.9, or at least, no other non-algebraic bifur-
cation surface is needed in order for the bifurcation
diagram in Fig. 4.9 to be completely coherent.



QS with a f (1) and a sn(2) 53

4.3. Studying the bifurcation surfaces at
the infinite part of RP3

As explained before, see list (10), the highest finite
slice needed is h2 = 6. To justify the previous, we
have to check that there are not more non-algebraic
singular slices in the range (h2,+∞). In order to do
this we must study in detail the slice h1 = +∞, just
as we have done with slice h2 = 6. Once done, we
must study if the slice h2 = 6 is coherent (in terms
of continuity) with the slice h1 = +∞. If so (as it
will be the case), we will have proved that no other
singular slice is needed in the range (6,+∞) for
the bifurcation diagram to be coherent and hence
the range [6,+∞] will be completely studied. If
not (it will not be the case), then we will have
proved the existence of non-algebraic singular slices
in the range (6,+∞) and hence we must find them
in order to complete the study of the whole range
[6,+∞].

Remark 4.45. We recall that the slice h = +∞ cor-
respond to the infinite part of RP3 except the equa-
tor, as explained in Sect. 3.2. Just as the equator al-
lows us to verify the coherence of the regions found
in each slice as we take l and g to ∞, the slice
h = +∞ is also necessary in order to verify that
the regions found in the affine part of RP3 are also
coherent when we take h→ +∞. We observe that,
as mentioned in Sect. 3.2, the compactness of our
parameter space B1/2 is essential in order to verify
the coherence of its interior with its borders, since
using a non bounded representative of our parame-
ter space could not be verified.

So let’s start the study of the slice h1 = +∞.
First of all, notice that in the limit to infinity, the bi-
furcation diagram (of the algebraic surfaces) tends
to be the one shown in Fig. 4.10.

The slice h1 = +∞ is an algebraic bifurcation
surface which has, as we will see in a moment, some
particularities.

For completeness, recall that the slice h = +∞
is obtained by considering h = 1 and m = 0 in the
normal form (5), which becomes:

{
ẋ = −y + gx2 + 2xy
ẏ = x+ lx2

(11)

Lemma 4.46. The change (x, y, t) → (x,−y,−t)

transforms a system (11) with parameters (l, g) into
a system (11) with parameters (l,−g). Therefore,
the bifurcation diagram in the slice h1 = +∞ is
symmetric with respect to the l-axis.

Proof. Direct computation. Left to the reader.

Fig. 4.10: Transition from h ≥ h2 = 6 to infinity. The
orange arrows show the movement that the surfaces do

as h→ +∞.

Another crucial fact to take into account is that,
when studying the slice h1 = +∞, some of the sur-
faces (Si) defined in Sect. 4.1 must be redefined.

First of all, notice that if we are in h1 = +∞
(that is, we take m = 0 and h = 1), then we
have µ0 = µ1 = 0. Therefore, by Lemma 5.5 and
Prop. 6.3 of [Artés et al., 2021a] we know that in
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the slice h1 = +∞ a double singularity have es-
caped to infinity (precisely, the finite saddle-node).
Consequently, the surface (S1) must be redefined at
h1 = +∞.

Bifurcation surface in h1 = +∞ due to a
a second finite singularity has escaped to in-
finity

(S ′1) This surface will contain the points of the slice
h1 = +∞ in which a second finite singularity has es-
caped to infinity. Since the origin cannot escape to
infinity and the saddle-node has already escaped to
infinity, the unique possibility is that a second sin-
gularity different from the origin (with multiplicity
one) escapes to infinity. Therefore, we can have two
distinct situations:

• A second finite singularity escapes to infinity in
a different direction that the finite saddle-node.
According to Lemma 5.5 of [Artés et al., 2021a],
we must consider the comitant K̃, which has the
following expression w.r.t the normal form (11):

K̃ = −4l2x2 = 0 ⇐⇒ l = 0

• A second finite singularity escapes to infinity but
in the same direction that the finite saddle-node.
Thus, by Prop. 6.3 in [Artés et al., 2021a], we
must consider the comitant µ2, which has the fol-
lowing expression w.r.t normal form (11):

µ2 = l(2 + l)x2 = 0 ⇐⇒ l(2 + l) = 0

From Prop. 6.3 in [Artés et al., 2021a] we see that
in fact µ2 also contains the cases in which a sec-
ond finite singularity has escaped to infinity in a
different direction as the finite saddle-node, that
is, µ2 also contains the information given by K̃.

Hence, in h1 = +∞ we must redefine the surface
(S1) as:

(S ′1) : l(2 + l) = 0

Moreover, from the previous arguments we conclude
that in the line l = −2 a second finite singularity
has escaped to infinity in the same direction as the
finite saddle-node and in the line l = 0 in a distinct
direction.

Parts in Parts in Parts in Parts in
slice h2 = 6 slice h1 = +∞ slice h2 = 6 slice h1 = +∞

V1 11S22 V2 1.11L4, P5

V3 1.11L5 V4 1.11L6

V5 11S24 V6 11S8
V7 P5 V8 P4, P5

V9 P4, P5 V10 9.11L2

V11 11S7 V12 11S6
V13 11S2 V14 P4

V15 11S1 V16 3.8L4, 3.8L6

V17 3.8L6 V18 11S3
V19 11S4 V20 11S5
V21 1.11L1 V22 P5, P23

V23 P5 V25 3.8L4, 3.8L6

V26 P23 V27 P23

V28 11S16 V29 5.11L5

V30 1.11L2 V31 1.11L3

V32 11S18 V33 3.8L9

V34 3.8L9 V35 3.8L9

V36 3.8L9 V37 1.11L3

V38 11S15 V39 11S17
V40 11S13 V41 11S11
V42 11S14 V43 7.11L5

V44 11S10 V45 11S9
V46 11S12 V47 3.8L7, 5.11L3, P23

V48 3.8L7, 3.8L8 V49 3.8L7, 3.8L8

V50 11S20 V51 11S21
V52 11S25 V53 11S26
V54 11S27 V55 11S28
V56 11S19 V57 P5

V58 P23 V59 P23

V60 P23 V61 P29

V62 P29 V63 P4

V64 3.8L6 V65 3.8L3, 3.8L4, 3.8L5, 3.8L6

V66 11S23 V68 P23

V71 P4 V72 P4

V73 P4 V74 P4

V75 P4

Table 4.1: Transition from slice h2 = 6 to h1 = +∞.
Here we present the correspondence between the

volumetric regions from slice h2 = 6 and the respective
parts from slice h1 = +∞.

Remark 4.47. Notice that the surface (S2) is irrele-
vant in the slice h1 = +∞. Indeed, since generically
a finite saddle-node has escaped to infinity and the
origin cannot collide with any finite singularity, we
cannot have finite collisions in h1 = +∞ (and in
particular neither triple collisions).

Remark 4.48. Notice that the l-axis of h1 = +∞ is
a special region, since belongs to (S3) and also to
(S8). However, it was already studied in detail in
Remark 4.6, and in fact we concluded that it is a
region with centers.

We now have finished describing the algebraic
curves appearing in the slice h1 = +∞. In Fig. 4.11
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we present this slice completely and properly la-
beled. We draw special attention to the fact that
the nonalgebraic curves (numerically detected and
which existence was proved before) still remain in

this slice and they maintain the same relative po-
sitions with respect to the algebraic curves in the
transition from slice h2 = 6 to slice h1 = +∞; nu-
merical tools support this claim.
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Fig. 4.11: Complete bifurcation diagram for slice h1 = +∞.

Remark 4.49. As explained in Remark 4.10, addi-
tional notation also will be used in the slice h1 =
+∞. Precisely, as in slice h1 = +∞ we are in a
surface, we point out that all the “generic” parts
in this slice are labeled as 11Sj and the points as
Pj . Regarding the lines, they are labeled as i.11Lj

except in one situation: The lines in the l-axis of
h1 = +∞ are denoted as 3.8Lj . The reason is the
following: The l-axis is a special region with cen-
ters (see Remark 4.48), as mentioned before. Of
course we could have denoted such regions as 3.11Lj

or 8.11Lj , but both previous notations are already
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used in the slice h1 = +∞ for regions without cen-
ters. Finally, notice that we have used the orange
color for the equator.

In Table 4.1 we indicate the “death” of all vol-
umetric parts from slice h2 = 6 to h1 = +∞. Then,
we have established the correspondence between the
phase portraits of the slices h2 = 6 and h1 = +∞.
Therefore, the convergence from slice h2 = 6 to
h1 = +∞ is completely coherent.

To finish this section, let us make a couple of
comments on the complete bifurcation diagram pre-
sented in Fig. 4.11.

First of all, despite in Fig. 4.11 we have drawn
the parts 7.11Lj as straight lines for simplicity, a
careful numerical analysis confirms that they are
not. We recall that, despite surface (S7) is generi-
cally non-algebraic, it could contain some sub-parts
which are algebraic, as for instance some curves. Of
course, if in any slice one suspect that a curve might
be algebraic, we have to use numerical methods to
reinforce/disprove our suspicions. In case the nu-
merical methods reinforce our theory, then we have
to prove formally that the curve under considera-
tion is indeed algebraic.

On the other hand, notice that the point P21 is
colored in gray in Fig. 4.11. The reason of doing so
is that the point P21 is where the line 8.10L1 (see
Fig. 4.7) ends. In fact, we can give an explicit ex-
pression for P21. According to Remark 4.6, the line
8.10L1 has the expression [2h/5 : 4 : 1 : h], h ∈ R,
which of course arrives to infinity at [2/5 : 0 : 0 : 1],
that is, (l, g) = (2/5, 0). However, since the pre-
vious point is an algebraic value and parts 7.11L1

and 7.11L3 are not algebraic, we cannot assure that
the common endpoint of 7.11L1 and 7.11L3 in the
l-axis is exactly (l, g) = (2/5, 0) (notice that in the
set {(l, 0) | l > 0} ⊂ {h = +∞} the phase portrait
is always the same). However, a careful numerical
analysis suggest that in fact the common endpoint
of 7.11L1 and 7.11L3 in the l-axis is (l, g) = (2/5, 0),
denoted as P21 in Fig. 4.11.

4.4. Transition from slice to slice at the
affine part of RP3

Since there is coherence (modulo islands, as dis-
cussed in Sec. 5) between the slices h1 = +∞ and
h2 = 6, no more slices h > 6 are needed. Therefore,

the range h ∈ [6,+∞] is completely studied.

Having finished the complete study of slice
h = 6 and having presented the transition from
h = 6 to h = +∞, the next step is to decrease the
values of h, according to equation (10), and make
an analogous study for each one of the slices that we
need to consider and also search for changes when
going from one slice to the next one.

Remark 4.50. As we have already mentioned in
Sect. 4.2, in the slices listed in (10) different from
h2 = 6 we will present only a labeled drawing con-
taining the algebraic and non-algebraic bifurcation
surfaces, but only of the slice’s sub-regions in which
a topological change of the bifurcations surfaces’
position w.r.t the neighborhood slices has occurred.
Moreover, in pictures presented in this section the
red labels correspond to parts which have appeared
in previous slices and black labels correspond to the
“new” parts.

We now start decreasing the values of the pa-
rameter h, according to the list of slices (10), in
order to explain as much as we can the bifurcations
in the parameter space.

V1

V2

V2

V3

2S1

2S1
5S2

5S1

P1

V51

Fig. 4.12: Sub-region of the algebraic singular slice
h3 = 3

√
3 in which the topological changes have

appeared.

We start considering the curved triangle V66 in
the part 1 of slice h2 = 6 (see Fig. 4.2), having
5.5L1, 2.5L2 and 2.5L3 as a vertexes. As we move
down from h2 = 6 to h3 = 3

√
3 (which is an alg.
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sing. slice), this triangle collapses to a single point
in slice h3 = 3

√
3, denoted by P1 in Fig. 4.12.

The remaining sub-regions of the slice h3 =
3
√
3 remain topologically unchanged w.r.t the

generic slice h2 = 6. We also point out that the
phase portrait in P1 is equivalent to those in 2S1,
and hence the slice h3 = 3

√
3 does not bring us any

new topological phase portrait.

V1

V2

V3

2S1

5S2

5S1

V51

5.5L2

1.5L2

1.5L1

5.6L2

Fig. 4.13: Sub-region of the generic slice h4 = 5 in
which the topological changes have appeared.

When we go to the next slice in (10), which is
the generic slice h4 = 5, we observe that the point
P1 has detached from the green surface (S2), giving
rise to the birth of a “new” line denoted as 5.5L2,
as we can appreciate in Fig. 4.13. The rest of the
slice h4 = 5 remains topologically unchanged re-
spect the slice h3 = 3

√
3. In addition, we note that

the phase portrait corresponding to the “new” part
5.5L2 is topologically equivalent to the one in V2.
Therefore, the slice h4 = 5 does not bring us any
new topological phase portrait.

Remark 4.51. As mentioned in Remark 4.23, in
Figs. 4.2, 4.4 and 4.12 we have labeled as 2S1 two
apparently different parts of (S2). We observe that
Fig. 4.13 justifies that both regions are the same.
Indeed, the restriction of the surface 2S1 in the slice
h4 = 5 consists in a half straight line (see Fig. 4.13).
However, when we move from slice h4 = 5 to h2 = 6,
a portion of the curved triangle V3 (in Fig. 4.13)
crosses the green surface (S2), thus causing that the
restriction of the surface 2S1 in the slice h2 = 6 con-

sist in two disconnected segments (see Figures 4.2
and 4.4).

We move now to the next slice listed in (10),
which corresponds to the algebraic singular slice
h5 ≈ 4.361 (see Fig. 4.14). For the algebraic ex-
pression of the value h5, see (9).

We start noticing that the topological changes
in the slice h5 ≈ 4.361 appear in a distinct region
from the one in which have appeared in the two
previous slices (see Fig. 4.14).

In order to describe the topological changes oc-
curred in the slice h5, we consider the curved ellipse
V13 in the part 4 of the slice h2 = 6 (see Figs. 4.6
and 4.9), which also exists in the slices h3 = 3

√
3

and h4 = 5. As we move down from h2 = 6 to h5,
the previous ellipse collapses to a single point, say
b, in the slice h5, which belongs to curve 5.8L1 as
explained in the following remark:

Remark 4.52. In Fig. 4.6 we have labeled as 5.8L1

two apparently different curves. The existence of
the point b justifies that both previous curves la-
beled as 5.8L1 are in fact the same curve (see Re-
mark 4.33), and of course the point b belongs to the
curve 5.8L1. See Fig. 4.14.

V10

8S18S15S7

V9

V9

V12

5S7

8S1

5.8L1

Fig. 4.14: Sub-region of the algebraic singular slice
h5 ≈ 4.361 in which the topological changes have

appeared.

The remaining sub-regions of the slice h5 ≈
4.361 remain topologically unchanged with respect
to the slice h4 = 5. In addition, we point out that
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the slice h5 ≈ 4.361 does not bring us any new
topological phase portrait.

We now move to the next slice in (10), which
is the generic slice h6 = 4.2 (see Fig. 4.15). As we
can appreciate in Fig. 4.15, the curve 5.8L1 does
not appear in such slice. Consequently, the surface
8S1 do not intersect any other surface in the slice
h6 = 4.2. The remaining sub-regions of the slice
remain topologically unchanged with respect to the
slice h5 ≈ 4.361. In addition, we point out that the
slice h6 = 4.2 does not bring us any new topological
phase portrait.

Remark 4.53. We recall that in Figs. 4.6 and 4.9
we have labeled two apparently different parts as
V9 (resp. 5S7; and 8S1). It is clear that Fig. 4.15
justifies that both parts labeled as V9 (resp. 5S7;
and 8S1) are the same (see Remark 4.33).

V10

V9

V12

5S7

8S1

7S4

5.7L2

5.7L2

Fig. 4.15: Sub-region of the generic slice h6 = 4.2 in
which the topological changes have appeared.

The next slice in list (10) corresponds to the
singular non-algebraic slice h7 = 4.2 − ǫ∗1, where ǫ∗1
is a certain positive value (see Fig. 4.16). We rec-
ommend the reader to consult the notation for slices
that we have introduced in detail in Section 4.1
(page 29).

In order to describe the topological changes
that have occurred in slice h7 = 4.2 − ǫ∗1, we con-
sider the curved ellipse V12 in Fig. 4.15. As we move
down from slice h6 = 4.2 to h7 = 4.2 − ǫ∗1, the pre-
vious ellipse collapses to a single point, say c, in the

slice h7 = 4.2− ǫ∗1, which belongs to curve 5.7L2 as
explained in the following remark:

Remark 4.54. In Fig. 4.6 we have labeled as 5.7L2

two apparently different curves. The existence of
the point c justifies that both previous branches
labeled as 5.7L2 are in fact the same curve (see Re-
mark 4.33), and of course the point c belongs to the
curve 5.7L2. See Fig. 4.16.

V10

V9

7S2

8S1

V8

V8

7S2

5S6

5S6

V11

5.7L2

Fig. 4.16: Sub-region of the non-algebraic singular
slice h7 = 4.2− ǫ∗1 in which the topological changes

have appeared.

The remaining sub-regions of the slice h7 =
4.2 − ǫ∗1 remain topologically unchanged with re-
spect to the slice h6 = 4.2. In addition, we point
out that the slice h7 = 4.2 − ǫ∗1 does not bring us
any new topological phase portrait.

We now move to the next slice in (10), which
corresponds to the generic slice h8 = 4.2 − ǫ1 (see
Fig. 4.17), where ǫ1 is a certain positive value satis-
fying that 0 < ǫ∗1 < ǫ1. As we can appreciate in Fig.
4.17, the curve 5.7L2 does not appear in such slice.
Consequently, the surface 7S2 do not intersect any
other surface in the slice h8 = 4.2−ǫ1. The remain-
ing sub-regions of the slice remain topologically un-
changed with respect to the slice h7 = 4.2 − ǫ∗1. In
addition, we point out that the slice h8 = 4.2 − ǫ1
does not bring us any new topological phase por-
trait.
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V10

V9

8S1

V8

7S2

5S6

V11

3.5L3

5.7L1

3.7L1

7S3

3S9

Fig. 4.17: Sub-region of the generic slice h8 = 4.2− ǫ1
in which the topological changes have appeared.

Remark 4.55. We recall that in Fig. 4.6 we have
labeled two apparently different parts as V8 (resp.
5S6; and 7S2). It is clear that Fig. 4.17 justifies
that both parts labeled as V8 (resp. 5S6; and 7S2)
are the same (see Remark 4.33).

V8

V7

V6

V64

V65

V14

1.4L1

3.4L1

7S21

4S9

3S8

4S2
5S5 7S1

3S10

5S9

4S1

4.5L1

P3

Fig. 4.18: Sub-region of the non-algebraic singular
slice h9 = 4.2− ǫ∗2 in which the topological changes

have appeared.

The next slice in list (10) corresponds to the
singular non-algebraic slice h9 = 4.2 − ǫ∗2, where
0 < ǫ∗1 < ǫ1 < ǫ∗2 (see Fig. 4.18). We now consider
the curved triangle V11 in Fig. 4.17, having 3.5L3,
3.7L1 and 5.7L1 as a vertexes. As we move down
from h8 = 4.2 − ǫ1 to h9 = 4.2 − ǫ∗2, this trian-

gle collapses to a single point called P3 in the slice
h9 = 4.2 − ǫ∗2 (see Fig. 4.18). The rest of slice
h9 = 4.2− ǫ∗2 remains topologically unchanged with
respect to the slice h8 = 4.2− ǫ1. We also point out
that the phase portrait in P3 is equivalent to those
in 5.7L1, and hence the slice h9 = 4.2− ǫ∗2 does not
bring us any new topological phase portrait.

When we go to the next slice in (10), which is
the generic slice h10 = 4.2 − ǫ2 (where 0 < ǫ∗1 <
ǫ1 < ǫ∗2 < ǫ2), we observe that the triple intersec-
tion of surfaces (S7), (S3) and (S5) at point P3 (see
Fig. 4.18) has disappeared in the slice h10 = 4.2−ǫ2,
giving rise to the birth of a new curved triangle de-
noted as V67 (see Fig. 4.19). As we can appreciate
in Fig. 4.19, seven “new” regions have appeared.
However, it is direct to verify that none of them
give us new topological phase portraits (see Ta-
bles 7.1-7.9 in Sect. 7). In addition, the rest of the
slice h10 = 4.2 − ǫ2 remains topological unchanged
w.r.t the slice h9 = 4.2− ǫ∗2, and therefore the slice
h10 = 4.2 − ǫ2 does not bring us any new phase
portrait.

1.4L1

4S9

V64

7S21 V65

5S9

V6
5S5

V7
7S1

V8

3S10

V14

4.5L1

3.4L1

3S8

4S2

V67
7S22

5S24

3S11

5.7L6

3.7L2

3.5L4

Fig. 4.19: Sub-region of the generic slice h10 = 4.2− ǫ2
in which the topological changes have appeared.

The next slice in list (10) corresponds to the
singular non-algebraic slice h11 = 4.2 − ǫ∗3, where
ǫ∗3 satisfies that 0 < ǫ∗1 < ǫ1 < ǫ∗2 < ǫ2 < ǫ∗3 (see
Figure 4.20). We now consider the curved trian-
gles V16 and V17 in Fig. 4.7, which of course still
existing in the slice h10. As we move down from
h10 to h11, both triangles collapse to a single point
called P7 in the slice h11 = 4.2− ǫ∗3 (see Fig. 4.20),
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which of course is a “new” region. The rest of slice
h11 remains topologically unchanged with respect
to the slice h10. We also point out that the phase
portrait in P7 is equivalent to those in 1.7L1, and
hence the slice h11 = 4.2− ǫ∗3 does not bring us any
new topological phase portrait.

V15
10S2

V21

V27

V26

7S9

8S8

7S10

1S7

1S7

V22

V22

8S5

V18

8S3

1.8L2

1S8

V23

8.10L1

10S1

V25

1.10L1

8S7

P7

1.7L11S6

V19

V20

7S7

7S8

Fig. 4.20: Sub-region of the non-algebraic singular
slice h11 = 4.2− ǫ∗3 in which the topological changes

have appeared.

The next slice in list (10) corresponds to the
generic slice h12 = 4.2− ǫ3, where the value ǫ3 sat-
isfies that 0 < ǫ∗1 < ǫ1 < ǫ∗2 < ǫ2 < ǫ∗3 < ǫ3 (see
Figure 4.21). Notice that seven apparently new re-
gions have appeared (the topological triangle V23
and its six bordering regions: 7.8L3, 8S12, 1.8L4,
1S8, 1.7L1, 7S9 and 7.8L3). However, despite all
the previous regions are marked in black and all of
them seem to be new, some of them are not new
(precisely, V23, 1S8, 1.7L1 and 7S9). Indeed, notice
that in Figure 4.21 there are exactly two regions la-
beled as V23 (resp. 1S8, 1.7L1 and 7S9), one of them
marked in red and the other in black, which seem to
correspond to different regions. The fact that they
are the same region will become clear later as we
keep decreasing the value of h. Finally, the appar-
ently new regions 7.8L3, 8S12 and 1.8L4 are truly
new regions, which did not existed in the previous
slices in (10). The rest of slice h12 remains topolog-
ically unchanged with respect to the slice h11. Fi-
nally, the phase portrait in part 1.8L4 (resp. 8S12;
7.8L3) is topologically equivalent to the one in part
1S8 (resp. V23; 7S9). Therefore, the slice h12 does
not bring us any new topological phase portrait.

V15

10S2

V21

V27

V26

7S9

8S8

8S12

7S10 1S7

1S7

V22

V22

8S5

V18

8S3

1.8L2

1S8

V23

8.10L1

10S1 V25
1S10

1.10L1

8S7
1.7L1

1S8

7S9

V23

1S6

7S7V19

7S8

V20

7.8L3

1.8L4
1.7L1

Fig. 4.21: Sub-region of the generic slice h12 = 4.2− ǫ3
in which the topological changes have appeared.

We move now to the next slice in list (10),
which corresponds to the singular algebraic slice
h13 = 3 (see Fig. 4.22).

V56

V54

V55

V4

V50

V51

V2 V57

3S6

1S1
6S4

5S3

1S3

3S5

6S6
5S19

P2

Fig. 4.22: Sub-region of the algebraic singular slice
h13 = 3 in which the topological changes have

appeared.

We note first that the topological changes in
slice h13 = 3 appear in a different region than in
the previous slices, as we can appreciate in Fig.
4.22. We now describe such changes: We consider
the lines 5.5L2, 1.5L1, 1.5L2, 5.6L2 and 3.5L2 (see
Figs. 4.4 and 4.13). As we move down from h12 to
h13 = 3 the five previous lines become closer and
closer until they collapse to a single point in slice
h13 = 3, called P2 (see Fig. 4.22). Consequently,
the regions V3, V5, V52 (see Figs. 4.4 and 4.13) have
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also collapsed to P2 in slice h13 = 3. The question
is: What happen with V53 and 7S19 (see Fig. 4.4)?
Since the surface 7S19 is not algebraic, we need ad-
ditional considerations to know whether 7S19 has
also collapsed to P2, or in case it has not, to know
how it is positioned on the slice h13 = 3. There are
four possible situations:

(a) Parts 5.7L5 and 7S19 have collapsed at point P2

in slice h13 = 3 (this is the situation represented
in Figure 4.22). We observe that, in this case,
parts 5S18 and V53 must collapse at point P2 in
slice h13 = 3.

(b) Parts 5.7L5 and 5S18 have collapsed at point P2

in slice h13 = 3, but part V53 continues existing
(and hence also 7S19) is slice h13 = 3 as a small
bubble attached to P2.

(c) The lines 5.7L5 and 1.5L3 (see Fig. 4.4) become
closer and closer until they collapse in the slice
h13. In this case, in the slice h13 the parts V53
and 7S19 are maintained and 5S19 disappears.

(d) Parts 5S19 and 5S18 continue existing in the slice
h13, and hence also V53 and 7S19.

Numerical analysis allows us to assure that the situ-
ation (c) is not possible because we can easily check
that part 5S19 continues existing in slice h13. On
the other hand, trying to determine in which situa-
tion (a), (b) or (d) we are is very difficult since the
regions considered are so small and hence numeri-
cal analysis becomes a difficult task. Moreover, the
phase portrait in point P2 (see Fig. 4.22) in slice h13
(that is, the point in slice h13 where intersect the
lines 3.5L2 and 1.5L2) is compatible with the situ-
ations (a), (b) and (d), fact that makes even more
difficult to know in which situation we are. How-
ever, very careful numerical analysis suggest that
we are in situation (a), which is represented in Fig-
ure 4.22. Hence, since the final objective is to get a
coherent bifurcation diagram and the situation (a)
is coherent and the one suggested by our numerical
research, we assume it is the real situation. Anyway,
the situations (a), (b) and (d) give us the same topo-
logical phase portraits so the previous uncertainty
is not a big problem in terms of phase portraits.

Finally, we must say that the phase portrait
corresponding to part P2 is new, that is, it has not
been found in any of the previously studied slices.
Therefore, slice h13 gives us a new phase portrait.
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3.5L5
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V59
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1S4 V58

3S7

1S4
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V58

V64

V6

V7

4.5L1

3.4L1
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Fig. 4.23: Sub-region of the generic slice h14 = 3− ǫ4
in which the topological changes have appeared.

We now move to the next slice in list (10),
which corresponds to the generic slice h14 = 3− ǫ4
(see Fig. 4.23), where ǫ1 is a certain positive value.
As we can appreciate in Fig. 4.23, the difference
with the slice h13 (see Fig. 4.22) is that the pointed
part of (S5) has broken through (S1) and (S6) in
the slice h14, thus giving rise to 15 apparently new
regions marked in black in Fig. 4.23. We point out
that despite all the 15 previous regions seem to be
new, eight of them are not (precisely, 1.5L3, 3S7,
V58, 5S26, V59, V60, 6S7 and 1S4). Indeed, notice
that in Figure 4.23 there are exactly two regions
labeled as 1.5L3 (resp. 3S7, V58, 5S26, V59, V60,
6S7 and 1S4), one of them marked in red and the
other in black, which seem to correspond to differ-
ent regions. The fact that they are the same region
will become clear later as we keep decreasing the
value of h. The remaining sub-regions of the slice
h14 remain topologically unchanged with respect to
the slice h13. Moreover, slice h14 brings two new
topological phase portraits: The one correspond-
ing to part 5S20 (which is topologically the same
as the ones in parts 5S27 and 5.6L3) and the one
corresponding to part 1.5L5. See Tables 7.1-7.9 in
Section 7.

The next slice listed in (10) is the non-algebraic
singular slice h15 = 3− ǫ∗5 (see Fig. 4.24), where the
value ǫ∗5 satisfies that 0 < ǫ4 < ǫ∗5. Consider the two
topological ellipses V19 and V20 in Fig. 4.21. As we
move from h12 to h15 these two ellipses collapse to
single point, say d, in the slice h15, which belongs to
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curve 1.7L1. This justifies that the two apparently
distinct parts labeled as 1.7L1 in Fig. 4.21 are the
same part, as we have commented before.
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V27
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8S8
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V22
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V18

8S3
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10S1
V25

1S10

1.10L1

8S7

1.7L1

1S8

1.8L4

7.8L3

7S9

V23

Fig. 4.24: Sub-region of the non-algebraic singular
slice h15 = 3− ǫ∗5 in which the topological changes have

appeared.

The remaining sub-regions of the slice h15 re-
main topologically unchanged with respect to the
slice h14. In addition, the slice h15 does not bring
us any new topological phase portrait.
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8S8
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V22
8S5
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1.8L2

1S8 V23

8.10L1

10S1
V25

1S10

1.10L1

8S7

7.8L3

1.8L4

Fig. 4.25: Sub-region of the generic slice h16 = 3− ǫ5
in which the topological changes have appeared.

We move now to the next slice listed in (10),
which is the generic slice h16 = 3−ǫ5 (see Fig. 4.25),
where the value ǫ5 satisfies that 0 < ǫ4 < ǫ∗5 < ǫ5.
As we can appreciate in Fig. 4.25, the curve 1.7L1

has detached from the surface (S7) (see Fig. 4.24).
This proves that the two apparently different parts
labeled as 7S9, V23 and 1S8 in Fig. 4.21 are indeed
the same part, as mentioned before. The remaining
sub-regions of the slice h16 remain topologically un-
changed with respect to the slice h15. In addition,

we point out that the slice h16 does not bring us
any new topological phase portrait.

In the next slice listed in (10), which is the
algebraic singular slice h17 = 5/

√
3 (see Fig. 4.26),

the surface (S1) coincides with the region with f (3).
Consequently, part 8S7 in Fig. 4.25 disappears and
a new point called P6 appears (see Fig. 4.26). The
remaining sub-regions of the slice h17 remain topo-
logically unchanged with respect to the slice h16.
Moreover, since the phase portrait in P6 is equiv-
alent to the one in 1S8, we conclude that the slice
h17 does not bring us any new topological phase
portrait.

V15
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1S8 V23

P6

7.8L3

Fig. 4.26: Sub-region of the algebraic singular slice
h17 = 5/

√
3 in which the topological changes have

appeared.

In the next slice listed in (10), which is the
generic slice h18 = 2.85 (see Fig. 4.27), the blue
surface (S1) has detached from the region with f (3),
thus making disappear the point P6 in Fig. 4.26 and
also giving rise to 3 apparently new regions marked
in black in Fig. 4.27. However, despite the three
previous regions seem to be new, two of them are
not new (precisely, 8S5 and 1.8L2). Indeed, notice
that in Figure 4.27 there are exactly two regions
labeled as 8S5 (resp. 1.8L2), one of them marked
in red and the other in black, which seem to cor-
respond to different regions. The fact that they
are the same region will become clear later as we
keep decreasing the value of h. Finally, the appar-
ently new curve 8.10L2 is a truly new region, which
did not existed in the previous slices in (10). The
remaining sub-regions of the slice h18 remain topo-
logically unchanged with respect to the slice h17.
In addition, we point out that the slice h18 does
not bring us any new topological phase portrait be-
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cause the phase portrait in part 8.10L2 is equivalent
to the one in part 8S5.
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Fig. 4.27: Sub-region of the generic slice h18 = 2.85 in
which the topological changes have appeared.

In the next slice listed in (10), which is the alge-
braic singular slice h19 = 2

√
2, the changes appear

in two separated regions (see Fig. 4.28). On the
one hand, the topological ellipse V18 in Fig. 4.27
collapses to a single point in slice h19, say e, which
of course belongs to curve 1.8L2 (see Fig. 4.28). The
existence of e proves that the two apparently dis-
tinct parts labeled as 1.8L2 in Fig. 4.27 are indeed
the same curve, as we have commented before.

On the other hand, the three topological el-
lipses V56, V54 and V55 in Fig. 4.23 collapse to a sin-
gle point as we move from h14 to h19, say f , which
of course belongs to the curve 1.5L3 (see Fig. 4.28).
The existence of f proves that the two apparently
distinct parts labeled as 1.5L3 in Fig. 4.23 are in-
deed the same curve, as we have commented before.

Finally, notice that as we move from h14 to h19
the lines 4.5L1 and 3.4L1 in Fig. 4.23 become closer
and closer until they collapse in the slice h19, thus
generating a new point called P8 (see Fig. 4.28),
whose phase portrait is the same as the one in 4.5L1

(see Fig. 4.23). Notice also that regions 4S2 and V6
in Fig. 4.23 collapse in P8 in the slice h19.

The remaining sub-regions of the slice h19 re-
main topologically unchanged with respect to the
slice h18. Moreover, slice h19 does not bring us any
new phase portrait.
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Fig. 4.28: The two disconnected sub-regions of the
singular algebraic slice h19 = 2

√
2 in which the

topological changes have appeared.

The next slice listed in (10) is the generic slice
h20 = 2.8. In this slice, the changes appear in two
separated regions (see Fig. 4.29). On the one hand,
the contact between (S1) and (S8) in Fig. 4.28 has
disappeared in slice h20 (see Fig. 4.29). In partic-
ular, this proves that the two apparently distinct
regions labeled as V22, 1S7 and 8S5 in Fig. 4.27 are
indeed the same region, as commented before (see
also Remark 4.33).

On the other hand, as we can appreciate in
Fig. 4.29, the red surface (S5) has crossed the inter-
section between (S3) and (S4), thus giving rise to 7
apparently new regions marked in black in Fig. 4.29
(the topological triangle V2 and its six bordering
regions). We point out that despite all the 7 pre-
vious regions seem to be new, four of them are not
(precisely, V2, 5S25, 3.5L5 and 3S6). Indeed, notice
that in Figure 4.29 there are exactly two regions
labeled as V2 (resp. 5S25, 3.5L5 and 3S6), one of
them marked in red and the other in black, which
seem to correspond to different regions. However,
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the fact that they are indeed the same region will
become clear later as we keep decreasing the value
of h.

The remaining sub-regions of the slice h20 re-
main topologically unchanged with respect to the
slice h19. Moreover, clearly slice h20 does not bring
us any new phase portrait.
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Fig. 4.29: The two disconnected sub-regions of the
generic slice h20 = 2.8 in which the topological changes

have appeared.

In the next slice listed in (10), which is the alge-
braic singular slice h21 =

√
243/32, the topological

ellipse V4 in Fig. 4.29 collapse to a single point in
h21, say g, which of course belongs to curve 3.5L5

(see Fig. 4.30). The existence of g proves that the
two apparently distinct parts labeled as 3.5L5 in
Fig. 4.29 are indeed the same curve, as we have
commented before. The remaining sub-regions of
the slice h21 remain topologically unchanged with
respect to the slice h20, and slice h21 does not bring
us any new phase portrait.
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V59
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1S4

3S6

3.4L2

4.5L3

4S115S25

Fig. 4.30: Sub-region of the algebraic singular slice
h21 =

√
243/32 in which the topological changes have

appeared.

The next slice listed in (10) is the generic slice
h22 = 2.5. Notice that the contact between (S5)
and (S3) in Fig. 4.30 has disappeared in slice h22
(see Fig. 4.31). In particular, this proves that the
two apparently distinct regions labeled as V2, 3S6
and 5S25 in Fig. 4.29 are indeed the same region,
as commented before. The other sub-regions of the
slice h22 remain topologically unchanged with re-
spect to the slice h21, and clearly slice h22 does not
bring us any new phase portrait.
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V7

V59
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V60
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3.4L2

4.5L3

4S11

5S25

5S20
5S27

1.4L1

Fig. 4.31: Sub-region of the generic slice h22 = 2.5 in
which the topological changes have appeared.

If we now move to the next slice listed in (10),
which is the singular algebraic slice h23 = 2, we ob-
serve that the topological triangle V58 in Fig. 4.31
has collapsed to a single point P9, which of course
is a new region (see Fig. 4.32).



QS with a f (1) and a sn(2) 65
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V60
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Fig. 4.32: Sub-region of the singular algebraic slice
h23 = 2 in which the topological changes have

appeared.

We point out that the phase portrait corre-
sponding to the point P9 is new, that is, it has not
been found in the previously studied slices. The
other sub-regions of the slice h23 remain topologi-
cally unchanged with respect to the slice h22.
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3S11

3.4L2

4S11

V67
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V64

1S5
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4S12 V69

1.4L3

5S28

4.5L4

1.5L6

Fig. 4.33: Sub-region of the generic slice h24 = 1.5 in
which the topological changes have appeared.

The next slice listed in (10) is the generic slice
h24 = 1.5. As we can appreciate in Fig. 4.33, the
difference with Fig. 4.32 is that the red surface (S5)
has crossed the intersection between (S4) and (S1),
thus giving rise to 7 new regions marked in black
in Fig. 4.33 (the topological triangle V69 and its six
bordering regions). Moreover, six out of the seven
previous regions (all of them except V69) give us

new topological phase portraits (see Tables 7.1-7.9
in Section 7). Let us emphasize that the previous
fact is very curious, since all the phase portraits in
the boundary of V69 are new but the phase portrait
in V69 has already appeared.

The topological changes in the four following
slices happen in a distinct regions than in all the
previous slices. The next slice listed in (10) is the
singular algebraic slice h25 = 1.

P10

V69

5S28

4S12

4.5L4

1.4L3

V68

4S8
4S4

V67

1S15

1S7

V22 V15

7S22

V14

5S21

4S10

V63

V75

5S30

5.7L7

7S28

Fig. 4.34: Sub-region of the singular algebraic slice
h25 = 1 in which the topological changes have

appeared.

Consider the lines 4.5L2 and 1.4L2 in Fig. 4.7,
which of course still existing in slice h24. As we
move down from h2 to h25 the lines 4.5L2 and 1.4L2

become closer and closer until they collapse to a
single point called P10 in slice h25 (see Fig. 4.34).
Notice that parts V64, V65, 7S21, 1S5 and 4S3 (see
Fig. 4.7) also “collapse” at P10 in slice h25. More-
over, the phase portrait corresponding to part P10

is new.

The next slice listed in (10) is the generic slice
h26 = 0.3, which is represented in Fig. 4.35. As we
can see in Fig. 4.35, the difference with Fig. 4.34 is
that the red surface (S5) has crossed the intersec-
tion between (S4) and (S1), thus giving rise to 7 new
regions marked in black in Fig. 4.35 (the topological
triangle V70 and its six bordering regions). More-
over, three out of the seven previous regions (which
are 5S29, 1.5L7 and 4.5L5) give us new topological
phase portraits (see Tables 7.1-7.9 in Section 7).
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V75
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Fig. 4.35: Sub-region of the generic slice h26 = 0.3 in
which the topological changes have appeared.

The next slice listed in (10) is the singular non-
algebraic slice h27 = 0.3 − ǫ∗6, where ǫ∗6 is a cer-
tain positive value (see Fig. 4.36). When we move
from h26 to h27, the curves 5.7L7 and 1.5L7 (see
Fig. 4.35) become closer and closer until they col-
lapse at a single point called P16 in slice h27 (see
Fig. 4.36). Of course, P16 is a new region and its
associated topological phase portrait is also new, as
one can check looking at Tables 7.1-7.9 in Sect. 7.
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7S28

4.5L5

1.4L4

P16

Fig. 4.36: Sub-region of the singular non-algebraic
slice h27 = 0.3− ǫ∗6 in which the topological changes

have appeared.

The penultimate slice listed in (10) is the
generic slice h28 = 0.3 − ǫ6 where ǫ6 satisfies that
0 < ǫ∗6 < ǫ6 (see Fig. 4.37). The difference with
the slice h27 (see Fig. 4.36) is that the purple sur-

face (S7) has crossed the intersection of (S5) and
(S1), thus giving rise to seven new regions colored
in black in Fig. 4.37, which are the topological tri-
angle V24 and its six bordering regions. We point
out that the phase portraits corresponding to the
seven previous regions are new, as the reader can
check in Tables 7.1-7.9 in Section 7.
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Fig. 4.37: Sub-region of the generic slice h28 = 0.3− ǫ6
in which the topological changes have appeared.

Since the slice h28 is the penultimate slice listed
in (10), in Fig. 4.38 we have shown the complete
bifurcation diagram in slice h28. This will allow
us to understand better the transition from h28 to
h29 = 0 that we are going to study next.

So let’s perform the study of the slice h29 = 0
and show that the transition from h28 to h29 is co-
herent in terms of continuity. First of all, notice
that in the limit h→ 0, the bifurcation diagram (of
the algebraic surfaces) tends to be the one shown
in Fig. 4.39.

The slice h29 = 0 is an algebraic bifurcation
surface which has, as we will see in a moment, some
particularities.

For completeness, recall that the slice h = 0 is
obtained by considering h = 0 and m = 1 in the
normal form (5), which becomes:

{
ẋ = −y + gx2 − 2y2

ẏ = x+ lx2 + 2xy
(12)

Lemma 4.56. The change (x, y, t) → (−x, y,−t)
transforms a system (12) with parameters (l, g) into
a system (12) with parameters (−l, g). Therefore,
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the bifurcation diagram in the slice h29 = 0 is sym-
metric with respect to the g-axis.

Proof. Direct computation. Left to the reader.

Another crucial fact to take into account is that,
when studying the slice h29 = 0, the surface (S3)
must be redefined, which has been already done in
Remark 4.3. Precisely, in the previous remark we
have concluded that in the slice h = 0 the surface
(S3) must be redefined as the set (l,−1) with l 6= 0.
In the previous set, we have exactly two weak sin-
gularities: the origin, which is a center, and a finite
saddle (see Remark 4.3 for more details).

Notice also that in h29 = 0, surface (S6) does
not make sense as a consequence of Remark 4.5.

Remark 4.57. Despite in the slice h = 0 the surface
(S8) must not be redefined, it is interesting to men-

tion that it has the following expression in the slice
h = 0: l(g+1) = 0 (see Sect. 4.1). Moreover, as we
have explained in Remark 4.2, if the origin is a weak
focus of order greater than one in the slice h = 0
(fact that happens if we are in (S8)), then it must
be of infinite order, that is, a center. Furthermore,
recall that the weak singularities in the surface (S8)
have been studied in detail in Remark 4.6.

Finally, an interesting property of the slice
h = 0 is that, generically, the finite saddle-node
has been transformed into a cusp, as stated in the
following lemma.

Lemma 4.58. Assume that l 6= 0. Then, the sin-
gular point (0,−1/2) of system (12) is a nilpotent
cusp of multiplicity two, denoted as ĉp(2) (see Ap-
pendix A of [Artés et al., 2021a]).
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V24

5S30

5S29

V69

1S15

7S22

V67

1.5L8

P4

V1

V28

5S10

V74

4S5

3S12

7S25

8S14

V29

V30

9.11L1

9.11L1

9.11L2

9.11L1

V71

V35

7S27

V73

P5

1S12

2S2

V38

6S1

V40

3S2

V42

7S15

V43 4S6

7S16

6S3

V45

V44

P5

V10

9.11L2

8S1

V9

V2

V57

7S2

7S1

4S1

V8

V7

2S1

3S6

V21

V22

V15

V23

8S5

1S7

7S9

9.11L1

9.11L1

9.11L1

P4

V14

V63

4S10

3S10

V75

7S28

5S31

1S14

5.7L8

1.7L3

7S29

9.11L1

9.11L1

9.11L1

9.11L1

V37

V32

7S11

7S14 V31

1S13

V39
V41

V46

V47

V50

V51

V48

V49 V59

V60

V68

V61

V62

V27

V26

V70

V72

V33

V34

V36

Fig. 4.38: Complete bifurcation diagram for slice h28 = 0.3− ǫ6 in the disc with labels only in some parts.
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Fig. 4.39: Transition from h ≤ h28 to h29 = 0. The orange arrows show the movement that the surfaces do as
h→ 0.
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Fig. 4.40: Complete bifurcation diagram for slice h29 = 0.

Proof of Lemma 4.58. First, notice that in the slice
h = 0 the singularity (0,−1/2) is nilpotent. Indeed,
if we compute the Jacobian matrix of system (12)
at (0,−1/2) we get (

0 1
0 0

)

Said that, notice that since we are assuming l 6= 0
and in h = 0 surface (S2) is given by l = 0 (see Re-
mark 4.60), we deduce that in h = 0, l 6= 0 we can
have two and only two distinct situations: (1) If we
are outside (S1), then we have two finite singulari-
ties of multiplicity one (one of them is the origin),
and another of multiplicity two, which is (0,−1/2);

(2) If we are in (S1), then we have one finite singu-
larity of multiplicity one (the origin) and one finite
singularity of multiplicity two, which is (0,−1/2).
In both situations, (0,−1/2) is a singularity of mul-
tiplicity two. But recall that (0,−1/2) is nilpotent,
and therefore, since system (12) is quadratic, ac-
cording to Appendix A in [Artés et al., 2021a] we
deduce that (0,−1/2) must be a cusp of multiplic-
ity two, as we wanted to prove.

We now have finished describing the algebraic
curves appearing in the slice h29 = 0. In Fig. 4.40
we present this slice completely and properly la-
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beled. We draw special attention to the fact that
some of the nonalgebraic curves (numerically de-
tected and which existence was proved before) still
remain in this slice and they maintain the same rel-
ative positions with respect to the algebraic curves
in the transition from slice h28 to slice h29 = 0;
numerical tools support this claim.

Parts in Parts in Parts in Parts in
slice h28 slice h29 = 0 slice h28 slice h29 = 0

V1 4.8L2, 4.8L3 V2 4.8L2, 4.8L3

V7 4.8L2 V8 3.8L1, 4.8L2

V9 3.8L1, 4.8L2 V10 9S1
V14 9S2 V15 P5

V21 4.8L5 V22 4.8L5

V23 4.8L5 V24 9S10
V26 4.8L5 V27 4.8L5

V28 9S6 V29 9S7
V30 9S5 V31 9S8
V32 7.9L2 V33 4.8L3

V34 4.8L3 V35 4.8L2, 4.8L3

V36 4.8L3 V37 9S9
V38 4.8L5 V39 4.8L4, 4.8L6

V40 4.8L5 V41 4.8L4, 4.8L6

V42 4.8L5 V43 4.8L5

V44 4.8L5 V45 4.8L5

V46 4.8L4, 4.8L6 V47 4.8L4, 4.8L6

V48 4.8L4, 4.8L6 V49 4.8L4, 4.8L6

V50 4.8L4, 4.8L6 V51 4.8L4, 4.8L6

V57 4.8L2 V59 P14

V60 P14 V61 P13

V62 P13 V63 P5

V67 9S3 V68 P14

V69 9S4 V70 4.8L5

V71 3.8L2 V72 P12

V73 3.8L2 V74 9S12
V75 9S11

Table 4.2: Transition from slice h28 to h29 = 0. Here
we present the correspondence between the volumetric
regions from slice h28 and the respective parts from

slice h29 = 0.

Remark 4.59. As explained in Remark 4.10, addi-
tional notation also will be used in the slice h29 = 0.
Precisely, as in slice h29 = 0 we are in a surface, we
point out that all the “generic” parts in this slice
are labeled as 9Sj and the points as Pj . Regarding
the lines, they are labeled as i.9Lj except in two sit-

uations: the lines g = −1 and l = 0 (see Fig. 4.40).
The one dimensional parts in the line g = −1 of
h29 = 0 are denoted as 3.8Lj . The reason is that, as
we have mentioned before, the line g = −1 belongs
to (S8) in h29 = 0, and moreover we have already
commented that in h29 = 0 the surface (S3) must
be redefined as the set of points of the form (l,−1),
l 6= 0. The one dimensional parts in the line l = 0
of h29 = 0 are denoted as 4.8Lj . The reason is the
following: Notice that when h → 0 many surfaces
“die” at l = 0 (see Fig. 4.39), so in order to denote
the one dimensional parts in l = 0 of h29 = 0 we
have chosen the two surfaces which are most repre-
sentative, that is, surface (S8) (because in l = 0 the
origin is a weak focus of infinite order, i.e. a center.
See Remark 4.57) and surface (S4) (because in l = 0
of h29 = 0 the associated phase portrait has an in-
variant straight line corresponding to a connection
of separatrices).

Remark 4.60. Notice that in the slice h = 0, the
surface (S2) has the following expression: l = 0
(see Sect. 4.1). We point out the previous fact be-
cause in Fig. 4.40 seems as if (S2) does not appear,
but this is not true. What happens is that in order
to denote the lines in the axis l = 0 we have chosen
the notation 4.8Lj , as explained in Remark 4.59.
However, in the line l = 0 a triple finite collision
occurs.

In Table 4.2 we indicate the “death” of all vol-
umetric parts from slice h28 to h29 = 0. Then, we
have established the correspondence between the
phase portraits of the slices h28 and h29 = 0. There-
fore, the convergence from slice h28 to h29 = 0 is
completely coherent.

To finish this section, let us make a couple of
comments on the complete bifurcation diagram pre-
sented in Fig. 4.40.

First of all, consider the line 8.10L2 in Fig. 4.29.
According to Remark 4.6, we know that 8.10L2 is a
region in which the origin is a f (3). Moreover, as we
have studied in detail in Remark 4.6, we know that
the line 8.10L2 has the expression [2h/5 : 4 : 1 : h],
h ∈ R, which of course arrives at slice h = 0 at
[0 : 4 : 1 : 0], that is, (l, g) = (0, 4). The previ-
ous point is placed in part 4.8L5 in Fig. 4.40, and
therefore the origin is a center in (l, g) = (0, 4).

Secondly, notice that in the line l = 0 in
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Fig. 4.40 there is a point colored in black called
P18, whose expression is (l, g) = (0, 1). The phase
portraits of regions 4.8L4, P18 and 4.8L6 is given in
Fig. 4.41.

Fig. 4.41: Phase portraits of regions 4.8L4, P18 and
4.8L6.

Since the transition from h1 = +∞ to h29 = 0
that we have explained in detail is completely co-
herent, no more slices are needed for the complete

coherence of the bifurcation diagram. So, all the
values of h in (10) are sufficient for the coherence of
the bifurcation diagram. Thus, we can affirm that
we have described a complete bifurcation diagram
for class Qwf1sn, modulo islands and some other
phenomena as we describe in detail in Section 5.

In https://mat.uab.cat/∼artes/articles/
qwf1sn/qwf1sn.html the reader can find a folder
called PhasePortraitsP4.zip which contains the
numerical examples (P4 files) that we have used to
study the bifurcation diagram.

Moreover, as we have already commented
throughout the previous sections, in the previous
website you can find all the additional tools that
we have used to perform our study, as for example
all the programs needed to perform the computa-
tions and to obtain the plots, or additional pictures
which are useful to understand better the bifurca-
tion diagram.
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5. Other relevant facts about the bifurca-
tion diagram of Qwf1sn

In the previous section we have studied in full de-
tail the bifurcation diagram for the class Qwf1sn.
The bifurcation diagram we have obtained is com-
pletely coherent, i.e. in family (5), by taking any
two points in the parameter space and joining them
by a continuous curve, along this curve the changes
in phase portraits that occur when crossing the dif-
ferent bifurcation surfaces can be completely ex-
plained. Nevertheless, we cannot be sure that this
bifurcation diagram is the complete bifurcation di-
agram for Qwf1sn due to the possibility of certain
phenomena which we describe below:

5.1. Possible existence of “islands”

The first phenomenon we must take into account is
the possible existence of “islands” inside a certain
region R belonging to the partition of our parame-
ter space given in Sect. 4, i.e. a subset of R which
has escaped from our numerical research and which
has associated a different phase portrait from the
rest of the region R. In case of existence, these
“islands” would not mean any modification of the
nature of the singular points. So, on the border of
these “islands” we could only have bifurcations due
to connections of separatrices or multiple limit cy-
cles, since all the surfaces corresponding to the na-
ture of singular points are algebraic and we already
have them completely located and controlled.

In case of existence of an “island” surrounded
by a non-algebraic bifurcation surface S, we should
still be able to join two representatives of any two
parts of the parameter space with a continuous
curve either without crossing such bifurcation sur-
face, or in case the curve crosses it, it must do so an
even number of times without tangencies, otherwise
one must take into account the multiplicity of the
tangency, so the total number must be even. This
is why we call these potential regions “islands”.

An example of a potential “island” could be a
topological three-dimensional ball B placed inside a
three-dimensional part of our bifurcation diagram,
satisfying that in ∂B appears a double limit cycle
(i.e. ∂B is a part of (S10)) and in Int(B) the double
limit cycle splits in two simple limit cycles.

We recall that in none of the studies of this ty-
pology (see Sect. 1) has been detected an “island”.

We also point out that in case of existence,
these “islands” could be infinitesimally small and
hence they become practically impossible to detect.

5.2. Possible existence of more non-
algebraic singular slices

The second phenomenon we must take into account
is the possible existence of more non-algebraic sin-
gular slices.

In Remarks 4.15, 4.17, 4.20, 4.22, 4.26, 4.29,
4.40 and 4.42 (and also in some other parts in
Sect. 4) we have exposed some theoretical feasible
intersections between surfaces and other potential
situations. Despite a careful numerical analysis sug-
gests that previous situations do not happen, there
exists the theoretical possibility that some of them
happen in small regions that we have not detected
numerically.

It is clear that the potential situations men-
tioned in previous remarks could generate more sin-
gular non-algebraic slices that the ones we have
listed in (10). However, as explained in the pre-
vious section, since the final objective is to get a
complete bifurcation diagram in terms of coherence
and the one we have obtained is, then we can as-
sume that our study is finished, despite we always
have to take into account that we cannot be sure
that we have not left out any non-algebraic singular
slice.

5.3. Possible intersection of a loop branch
of surface (S7) with a weak saddle
branch of surface (S3)

A potential situation of particular interest is the
one described in Remarks 4.15 and 4.29. These re-
marks warn us about the possible existence of inter-
sections between a loop branch of (S7) and a weak
saddle branch of (S3). In what follow we describe
this previous situation in detail: We consider an
elemental saddle (see Sect. 3.1) of a quadratic sys-
tem X, say p. We define the hyperbolicity ratio of
p as the value r = −λ1/λ2, where λ1 < 0 < λ2
are the two eigenvalues of DX(p). In addition, the
elemental saddle p is called strong if λ1 + λ2 6= 0
and weak if λ1+λ2 = 0 (see [Artés et al., 2021a] for
more details). If now we consider a loop associated
to p (which must have a unique singular point in
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its interior, being a focus or a center; see item (vii)
in Appendix B.1), it is well known that if |r| > 1
then the loop is internally attractor and if |r| < 1
the loop is internally repellor (see [Perko, 2000], for
example). If r = 1 (i.e. p is weak), the loop can be
either internally attractor/repellor (if p is a s(i) for
i = 1, 2, 3) or only internally stable (if p is a weak
saddle of infinite order). In our particular case, if
a loop branch of (S7) associated to a finite saddle
crosses a weak saddle branch of (S3) at a certain
point, say A, then in A the loop must be internally
attractor or repellor since it is surrounding the ori-
gin being a f (1) (and hence, the saddle p must be
a s(1). See Thm. 6.2 in [Artés et al., 2021a]). As
a consequence, in one of the two parts of the loop
branch of (S7) delimited by A, a simple limit cy-
cle surrounding the origin must appear bifurcating
from the loop.

8S9

1.8L1

s
(1)

s
(1)

s
(1)

s
(1)

(loop)
(S3)

Fig. 5.1: Possible situation in case that a loop branch
of (S7) intersects a weak saddle branch of (S3) many

times.

8S9

1.8L1

s
(1) s

(1)
s
(1)

s
(1)

(loop)
(S3)

Fig. 5.2: Possible situation in case that a loop branch
of (S7) intersects a weak saddle branch of (S3) many
times and with the limit cycle in (S7) appearing at the

other side of (S3).

A potential intersection between (S7) and (S3)
near 8S9 is described in Fig. 5.4 (see Remark 4.15),
in which a second simple limit cycle must also be
generated. However, it could also happen that (S7)
intersects many times (S3) or that the limit cycle
in the loop branch of (S7) appears in the other side

of (S3). In Figs. 5.1 and 5.2 we have presented the
two previous general situations near 8S9.

Remark 5.1. In Figs. 5.1, 5.2 and 5.4 we have col-
ored the regions with one simple limit cycle with a
softer yellow color than the one used in Sect. 4, in
order to be able to visualize the dashed branches
of surface (S3) contained in the regions with one
simple limit cycle.

The possible intersections regarding loop
branches of surface (S7) and weak saddle branches
of surface (S3) near 8S1 (see Remarks 4.29) can be
described analogously.

Remark 5.2. The phenomenon we have just illus-
trated is a way to generate limit cycles from a
graphic without breaking it, and of course can
be generalized to more complicated graphics (see
[Perko, 2000], for instance).

Finally, we point out that despite the previous
potential situations are theoretical feasible in our
family, after a careful numerical analysis we have
no evidences of their existence, despite they could
exist in some small places which have escaped from
our numerical research.

5.4. A potentially impossible situation of
four limit cycles surrounding the same
focus

In Remarks 4.40 and 4.42 we have warned of the
possible situation in which 10S1 (resp. 10S2)
crosses completely 7S5 (resp. 7S10) in some small
places we have not detected. However, we conjec-
ture that previous situation does not happen since
it will imply the existence of a quadratic system
with four limit cycles surrounding the same focus,
which is firmly believed to be false as explained in
Remark 4.40, despite it is not proved yet.

8S8

V26

(S10)

Fig. 5.3: Situation in case 10S2 crosses 7S10.
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Let us explain how the four limit cycles would be
generated in case that previous intersections occur.
If 10S2 crosses 7S10, then we must have the situa-
tion described in Fig. 5.3. Since the phase portrait
in the red region has three limit cycles surrounding

the origin (which is a f (1)), adding the trace in (5)
we can generate a fourth limit cycle surrounding
the origin by Hopf. The situation regarding 10S1
and 7S5 is analogous.
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1.8L1

8S9

(S3)
s(1)

(loop)

Fig. 5.4: Possible situation in case that a loop branch of (S7) associated to a finite saddle intersects a weak saddle
branch of (S3).
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6. Completion of the proof of the main the-
orem

In a bifurcation diagram we may have topologi-
cally equivalent phase portraits belonging to dis-
tinct regions of the parameter space. As here we
have many parts of the parameter space, to help
us identify or to distinguish phase portraits, we
need to introduce some invariants and we actu-
ally choose integer-valued invariants (see Chapt. 4
of [Artés et al., 2021a] for a general introduction
to invariants in mathematical classification prob-
lems). These integer-valued invariants yield a clas-
sification which is easier to grasp. To complete our
classification we need twelve invariants, which will
be defined in order of their importance in the clas-
sification problem. In the following definitions, S
denote an arbitrary quadratic differential system.

Definition 6.1. If S is not a center, let I1(S) be
the number of real finite singularities of S. If
S is a center, then I1(S) is a symbol Vuli with
i ∈ {1, . . . , 32} depending on the global topologi-
cal phase portrait of the center (remember that, the
global phase portraits of the quadratic systems with
centers are completely studied. See [Vulpe, 1983]).

Definition 6.2. Let I2(S) the sum of the indices
of the isolated real finite singular points.

Definition 6.3. Assume that S has a finite num-
ber of real infinite singularities and let I3(S) denote
the sequence of digits such that each digit describes
the total number of local or global separatrices2

(different from the line of infinity) ending (or start-
ing) at an infinite singular point. The number of
digits in the sequences is 2, 4 or 6 according to the
number of infinite singular points. We start the se-
quence at the infinite singular point which receives
(or sends) the greatest number of separatrices and
take the direction which yields the greatest abso-
lute value, e.g. the values 2110 and 2011 for this
invariant are symmetrical (and, therefore, they are

2Let p a singular point of S ∈ QS. If p has own separa-
trices then they are called local separatrices (e.g. a saddle
has 4 local separatrices and a saddle-node 3). However, if p
has an attractor (resp. repellor) sector, exists the possibil-
ity that p receives (resp. sends) local separatrices of another
singular point p′ of S which are not local separatrices of p.
These separatrices are called global separatrices of p.

the same), so we consider 2110.

Definition 6.4. If the system S has a unique fi-
nite saddle-node then I4(S) denotes the number of
local separatrices of the finite sadddle-node going
to (or coming from) the finite antisaddles (or to the
most external of their limit cycles). We recall that
by an antisaddle we mean either a focus or node.
Moreover, if the system S has a cusp instead of a
saddle-node, then the value of I4(S) is ĉp(2).

Definition 6.5. Let I5(S) denote the number of
global separatrices going to (or comming from) the
finite antisaddles (or to the most external of their
limit cycles).

Definition 6.6. Let I6(S) denote a sequence of
two digits such that the first digit corresponds to
the number of simple limit cycles of S and the sec-
ond digit corresponds to the number of double limit
cycles of S.

Definition 6.7. Assume that S has exactly two fi-
nite antisaddles and let I7(S) denote a letter chosen
from the set {S,D} (S for same and D for different)
according to the stability of the two finite antisad-
dles (or the stability of the most external of their
limit cycles).

Definition 6.8. Assume that S has exactly one fi-
nite antisaddle and one finite saddle-node, and let
I8(S) denote a word chosen from the set {Y es,No}
according to the answer to the following question:
”Has the nodal part of the finite saddle-node the
same stability than the finite antissadle (or the sta-
bility of the most external of their limit cycles)?”

Definition 6.9. Assume that the system S has a
unique finite saddle-node and that S possesses limit
cycles but surrounding only one of its two finite an-
tisaddles. Let I9(S) the number of local separatri-
ces of the finite saddle-node going to (or coming
from) the most external limit cycle.

Definition 6.10. Assume that S has limit cycles
but surrounding only one of its two finite antisad-
dles and that his eye of limit cycles receive a unique
global separatrix called γ. Let I10(S) denote a let-
ter chosen from the set {F, I} (I if γ starts or finish
at infinity and F in any other case).
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Definition 6.11. If S has a graphic, then I11(S)
denotes the type of graphic. We only need to dis-
tinguish between a f−∞ graphic (contains an orbit
connecting a finite and an infinite singular point),
a ∞−∞ graphic (contains an orbit, different from
the line of infinity, that begins and ends at two dif-
ferent infinite singularities) and a loop. If S does
not possess any graphic, then I11(S) is ∅.

Definition 6.12. Assume that S has exactly one
finite saddle-node, and let I12(S) denote a word cho-
sen from the set {Y es,No} according to the answer
to the following question: ”Do the two separatrices
with the same stability of the finite saddle-node end
(or start) at the same point?”

Theorem 6.13. Consider the class Qwf1sn and
all the phase portraits that we have obtained for
this class. The values of the affine invariant
I = (I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12) given
in the diagram from Tables 6.1 to 6.3 yield a parti-
tion of these phase portraits of the class Qwf1sn.
Furthermore for each value of I in this diagram
there corresponds a single phase portrait; i.e. S and
S′ are such that I(S) = I(S′), if and only if S and
S′ are topologically equivalent.

Proof of Theorem 6.13. The above result follows
from the results in the previous sections and a
careful analysis of the bifurcation diagrams given
in Sect. 4, the definition of the invariants Ij and
their explicit values for the corresponding phase
portraits.

We have detected 399 parts in the bifurcation dia-
gram for Qwf1sn which produce 192 topologically
distinct phase portraits as described in Tables 6.1
to 6.3. The remaining 207 parts do not produce any
new phase portrait which was not included in the
192 previous ones. The differences are basically the
presence of a strong focus instead of a node and vice
versa, weak points, invariant lines (which are not
separatrix connections) and symmetries/changes of
time.

The phase portraits having neither limit cycle nor
graphic have been denoted surrounded by paren-
thesis, for example (V1); the phase portraits having
one or two simple limit cycles have been denoted
surrounded by one or two brackets respectively, for

example [V46] or [[V25]]; the phase portraits hav-
ing one graphic have been denoted surrounded by
{∗} and those ones having two or more graphics
have been denoted surrounded by {{∗}}, for ex-
ample {4.8L1} and {{4S7}}. Consequently, phase
portraits having a simple limit cycle and a graphic
have been denoted surrounded by [{∗}], for exam-
ple [{7S10}]. Finally, the phase portraits possessing
a double limit cycle have been denoted surrounded
by [∗]2, for instance [1.10L1]

2.

As we have noted in Remark 4.9, we do not dis-
tinguish between phase portraits whose only differ-
ence is that in one we have a finite node and in the
other a focus. Both phase portraits are topologi-
cally equivalent and they can only be distinguished
within the C∞ class (see [Dumortier et al., 2006]).
Anyway, in case we may want to distinguish be-
tween them, a new invariant may easily be intro-
duced.
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I1 =





1 & I3 =





10 (1.11L3)
2120 (P28)
111110 (1.11L2)
211010 (1.11L1)

2 & I2 =





0 & I3 =





21 (2S1)
3200 (9.11L1)
3211 (2.5L3)
4120 (2.5L2)
111110 (7.11L2)
211101 {7.11L1}
211110 (11S5)
221101 (11S4)

311101 & I6 =

{
00 (2S4)
10 [11S3]

1 & I3 =





11 & I5 =

{
1 (1.4L3)
2 (1.9L1)
3 (1S13)

21 & I5 =

{
1 (1S1)
2 (1S15)

32 (P2)

2111 & I4 =

{
0 (P10)
1 (P9)

2121 (P16)
2211 (1.5L6)
3101 {{1.5L3}}
3111 (1.5L5)

3121 & I4 =

{
0 (1.5L7)
ĉp(2) (P15)

3200 (1.5L2)
3221 (1.5L8)
4120 (1.5L1)
4121 (1.5L4)
111110 (1.4L2)

111111 & I5 =





0 & I6 =

{
00 {1.7L1}
10 [{1.7L2}]

1 (1.7L3)
210110 (1.4L1)
211110 (1S5)

211111 & I4 =





0 & I6 =





00 & I8 =

{
No (1S6)
Y es (1S7)

10 & I8 =

{
No [1S9]
Y es [1S8]

20 [[1S10]]
01 [1.10L1]

2

ĉp(2) (1.9L2)
221111 (1S14)
310110 (1S4)
311101 (1S2)
311111 (1S12)
411010 (1S3)

2 & I3 =





11 & I6 =

{
00 (2S3)
10 [11S12]

2111 {P19}
2121 & I6 =

{
00 (2.5L1)
10 [5.11L1]

3111 {5.11L3}
111110 {7.11L5}
111111 & I6 =

{
00 (2S2)
10 [11S14]

211011 (11S9)
3 and V uli follow on the next pages

Table 6.1: Geometric classification for the family Qwf1sn.
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I1 =






1 and 2 listed on the previous page

3 & I2 =






0 & I3






21 & I4 =






0 & I5 =






0 {7.7L1}
1 & I6 =

{
00 (7S12)
10 [7S24]

1 (7S14)
ĉp(2) (7.9L1)

22 & I4 =






0 & I6 =

{
00 (7S11)
10 [7S23]

1 & I6 =

{
00 (V32)
10 [V72]

31 & I4 =






0 & I5 =






0 {7S13}

1 & I6 =





00 & I8 =






No (V33)

Y es & I12 =

{
No (7S26)
Y es (7S1)

10 [V34]
1 (4S1)
2 (V37)
ĉp(2) (9S3)

32 & I11 =

{
loop {7S2}
∅ (9S1)

33 & I6 =

{
00 (V10)
10 [V9]

41 & I4 =






0 (V1)

1 & I5 =

{
1 (V2)
2 (V7)

42 (V8)

3211 & I4 =

{
0 (5.7L1)
1 (4.5L1)

3212 {5.7L2}
3311 (5S5)

3321 & I6 =

{
00 (5S8)
10 [5S7]

4111 (4.5L2)
4121 (5.7L7)
4131 (5.9L1)
4141 (5S10)
4211 (5S3)
4212 (5S6)
4231 (5S30)
5121 (5S21)

5211 & I4 =

{
0 (5S23)
1 (5S2)

6120 & I4 =

{
0 (5S22)
1 (5S1)

211111 & I6 =

{
00 (7S8)
10 [7S6]

211211 & I6 =

{
00 (V20)
10 [V17]

212110 (7S3)
221201 {7S4}
311011 (4S3)
311110 (4S2)

311111 & I5 =





0 & I6 =

{
00 {7S7}
10 [{7S5}]

1 (7S28)
311211 (9S6)
311311 (V28)
312110 (V6)
312211 (V75)
321021 (V11)

321111 & I6 =

{
00 (V19)
10 [V16]

321201 & I6 =

{
00 (V13)
10 [V12]

411110 (V4)

411111 & I6 =






00 (V15)
10 [V18]
20 [[V25]]
01 [10S1]

2

511101 & I4 =

{
0 (V66)
1 (V3)

2 follows on the next page
V uli follow on the next page

Table 6.2: Geometric classification for the family Qwf1sn (cont.).
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I1 =






1 and 2 listed in the previous pages

3 & I2 =






0 listed in the previous page

2 & I3 =






11 & I4 =






1 {7S17}

2 & I5 =






2 {{4S7}}

3 & I7 =

{
S {V47}
D (4S12)

3 & I5 =





4 & I6 =






00 (V39)

10 & I9 =

{
1 [V46]
2 [V56]

5 (V31)
ĉp(2) (9S4)

1111 & I4 =

{
2 (4.5L4)
3 (5S20)

2111 & I4 =

{
1 (4.5L5)
2 (5S28)

2121 & I7 =

{
D (5.7L8)
S {5.7L4}

3121 & I4 =






0 {5.7L3}

1 & I5 =






2 {5S15}

3 & I7 =

{
D (5S29)
S {5S16}

2 (5S31)
ĉp(2) (5.9L2)

4111 {5.7L5}

4121 & I5 =





2 & I6 =






00 (5S4)

10 & I10 =

{
F [5S14]
I [5S18]

3 (5S11)
5111 {5S19}

110110 & I4 =

{
2 (4S8)
3 (V59)

111110 & I4 =

{
1 (4S4)
2 (V68)

111111 & I5 =





2 & I6 =





00 & I11 =

{
f −∞ {7S16}
∞−∞ {7S9}

10 [{7S10}]
3 (7S29)

211111 & I4 =






0 {7S15}

1 & I5 =






2 {V43}

3 & I6 =






00 & I7 =

{
D (V22)
S (V21)

10 & I7 =

{
D [V23]
S [V26]

20 [[V27]]

01 [10S2]
2

2 (V24)
ĉp(2) (9S5)

311011 {7S19}

311111 & I5 =





2 & I6 =






00 (V5)

10 & I10 =

{
F [V42]
I [V53]

3 (V30)
411011 (V54)

Vul2 {3.8L9}
Vul7 {3.8L1}
Vul13 {P5}
Vul14 {{P23}}
Vul19 {3.8L3}
Vul20 {3.8L7}
Vul22 {{4.8L4}}
Vul23 {{4.8L6}}
Vul24 {{4.8L5}}
Vul29 {{1.8L1}}
Vul31 {4.8L1}

Table 6.3: Geometric classification for the family Qwf1sn (cont.).
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7. Tables of topological equivalences for the
class Qwf1sn

The purpose of this section is simple: We want to
group all the regions that present the same topo-
logical phase portrait. In Tables 7.1 to 7.9 we list
in the first column 192 parts with all the distinct
phase portraits of Figs. 2.1 to 2.6. Correspond-
ing to each part listed in column one we have in
each row all parts whose phase portraits are topo-
logically equivalent to the phase portrait appearing
in column 1 of the same row. The contents of the
other columns are described below:

In the eight column, called Origin’s role has
changed, we set all the parts whose systems yield
topologically equivalent phase portraits to those in
the first column but with the difference described
as follows: Let S2 a system corresponding to the
eight column and let S1 a system corresponding to
the same row as S2 but in the first column. Then,
S1 and S2 have exactly two finite antisaddles, one
of which is the origin in both cases, which is a f (1)

in S1 and also in S2. We denote as f
(1)
1 the ori-

gin of S1 and as p1 the other finite antisaddle of

S1; Analogously, we denote as f
(1)
2 the origin of S2

and as p2 the other finite antisaddle of S2. If we
call h the homeomorphism (the topological equiva-
lence) between the systems S1 and S2, we have that

h(f
(1)
1 ) = p2 and h(p1) = f

(1)
2 . In conclusion, the

global topological role of the origin, which is a f (1)

in both cases, have changed.
For example, the phase portraits corresponding

to regions V46 and V49 are topologically equivalent
(see Fig. 7.1). In V49 the origin (yellow point) is a
f (1) and the green point is a strong focus; in V46 the
origin (yellow point) is a f (1) and the green point
is a strong focus.

Fig. 7.1: Origin’s global topological role has changed.

However, observing the position of the limit cycle
in V46 and in V49 it is clear that the global topo-
logical role of the origin in V49 is the same as that

of the finite antisaddle different from the origin in
V46. Moreover, notice that even they are topologi-
cally equivalent, the difference is very relevant since
they are not geometrically equivalent. That is, by
perturbing the weak focus and producing a limit
cycle, we can get a (2, 0) configuration or a (1, 1).

Another example appears when considering the
phase portraits corresponding to the regions V39
and V50, which are topologically equivalent (see Fig.
7.2). In V39 the origin (yellow point) is a f (1) and
the green point is a node; in V50 the origin (yellow
point) is a f (1) and the green point is a strong focus.

Fig. 7.2: Origin’s global topological role has changed.

However, noticing where the separatrices of the fi-
nite saddle-node come from, it is clear that the
global topological role of the origin in V39 is the
same as that of the finite antisaddle different from
the origin in V50.

In the ninth column, called Origin’s role and
its order have changed, we set all the parts
whose systems yield topologically equivalent phase
portraits to those in the first column but with the
difference described as follows: Let S2 a system cor-
responding to the ninth column and let S1 a system
corresponding to the same row as S2 but in the first
column. Then, S1 and S2 have exactly two finite an-
tisaddles, one of which is the origin in both cases,
which is a f (1) in S1 and a f (2) in S2. We denote as

f
(1)
1 the origin of S1 and as p1 the other finite an-

tisaddle of S1; Analogously, we denote as f
(2)
2 the

origin of S2 and as p2 the other finite antisaddle of
S2. If we call h the homeomorphism (the topologi-
cal equivalence) between the systems S1 and S2, we

have that h(f
(1)
1 ) = p2 and h(p1) = f

(2)
2 . In conclu-

sion, the global topological role of the origin and its
weakness order have changed.

For example, the phase portraits corresponding
to regions V39 and 8S10 are equivalent (see Fig. 7.3).
However, the origin in 8S10 (yellow point) is a f (2)

and has the same global topological role than the
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node in V39 (green point).

Fig. 7.3: Origin’s global topological role and its
weakness order have changed.

In the third column, called Weak focus order
2 or 3, we set all the parts whose systems yield
topologically equivalent phase portraits to those in
the first column, but with the difference that de-
spite the origin has the same global topological role
in both phase portraits, in the system of the third
column is a f (2) or a f (3) instead of a f (1) as in
the first column. In addition, in the Tables 7.1-7.9
we have highlighted in parentheses whether it is a
weak focus of second or third order.

For example, the phase portraits corresponding
to regions V10 and 8S1 are topologically equivalent
(see Fig. 7.4). However, despite clearly the origin
has the same global topological role in both regions,
in V10 is a f (1) and in 8S1 is a f (2).

Fig. 7.4: The weakness order of the origin has
increased.

In the fourth column, called Finite antisad-
dle strong focus, we set all the parts whose sys-
tems yield topologically equivalent phase portraits
to those in the first column, but with the difference
that despite the finite antissadle different from the
origin has the same global topological role in both
columns, it is a node in the system of the first col-
umn and a strong focus in the system of the fourth
column.

For example, the phase portraits corresponding
to regions V5 and V52 are topologically equivalent
(see Fig. 7.5). However, despite the antisaddle dif-
ferent from the origin (green point in both cases)

has the same global topological role in both phase
portraits, it is a node in region V5 and a strong focus
in region V52.

Fig. 7.5: Finite antisaddle different from the origin
changing from node to strong focus.

In the fifth column, called Finite antisaddle
node-focus, we set all the parts of the bifurcation
diagram whose systems yield topologically equiva-
lent phase portraits to those in the first column, but
with the difference that despite the finite antissadle
different from the origin has the same global topo-
logical role in both columns, it is a node-focus (that
is, a node generated due to the fact that we are in
the surface (S6)) in the system of the fifth column.

In the sixth column, called Singularity be-
coming weak, we set all the parts whose sys-
tems yield topologically equivalent phase portraits
to those in the first column, but with the difference
that the system in the first column has a finite non-
weak singularity p 6= 0 which has the same global
topological role than a finite order weak singularity
p̃ 6= 0 in the system in the sixth column. Hence, the
system of the sixth column has two weak singular-
ities (both of first order). One is the origin, which
is a f (1), and the other is p̃, which could be another
f (1) or a s(1) (it is indicated in the Tables 7.1-7.9).

For example, the phase portraits corresponding
to regions V4 and 3S7 are topologically equivalent
(see Fig. 7.6). However, the finite saddle is weak
only in 3S7.

Fig. 7.6: Second weak singularity appears.

In the seventh column, called Possessing in-
variant curve (no separatrix connection), we
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set all the parts contained in (S4) whose systems
yield topologically equivalent phase portraits to
those in the first column but with the possible exis-
tence of an invariant curve not yielding a connection
of separatrices in seventh column’s phase portraits.

In the second column, called Algebro-
geometric features, we set all the parts whose
systems yield topologically equivalent phase por-
traits to those in the first column but cannot be
placed in any of the other columns because they do
not meet the requirements.

Whenever phase portraits appear in a row in a
specific column, the listing is done according to the
decreasing dimension of the parts where they ap-
pear, always placing the lower dimensions on lower
lines.
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Table 7.1: Topological equivalences for the family Qwf1sn.
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Table 7.9: Topological equivalences for the family Qwf1sn (cont.).
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A. Some complements for the study of the
bifurcation diagram

The aim of this appendix is to group some images
which are useful in Section 4.

A.1. Images of the surfaces (Si) in the hy-
perplane m = 1 in R4

In this section we present a picture of the algebraic
surfaces (Si) in the three dimensional affine space
which is the hyperplane m = 1. The surfaces (Si)
have been introduced in Section 4.1. We have not
added the picture of (S2) since it is simply a plane.
Anyway, you can find all the pictures in the Mathe-
matica file surfaces.nb at https://mat.uab.cat/
∼artes/articles/qwf1sn/qwf1sn.html. We rec-
ommend the visit of the page since in a paper we
can only show a static image of the surface while
in the Mathematica file, the reader can play with it
and see it from different perspectives.
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Fig. A.1: Suface (S1) for m = 1.
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Fig. A.2: Suface (S3) for m = 1.
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Fig. A.3: Suface (S4) for m = 1.
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Fig. A.4: Suface (S5) for m = 1.
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Fig. A.5: Suface (S6) for m = 1.
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Fig. A.6: Suface (S8) for m = 1.
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A.2. Sequences of phase portraits

1.8L1

V34 V367S138S9 3S1

Fig. A.7: Sequence of phase portraits in part v34 of slice h = 6 bifurcating from 1.8L1 (the labels according to Fig.
4.2). The double arrow ←→ means that two regions are adjacent.
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1.8L1

V33 V377S12 7S14V32

8S9

7S11 V29 1S13

5S10 1.5L4

Fig. A.8: Sequence of phase portraits in part v29 of slice h = 6 (the labels according to Fig. 4.2). The double
arrow ←→ means that two regions are adjacent.
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1.5L2

3S4 V53 7S19 V54 6S6

3.5L2 5S18 5.7L5 5S19 1.5L3

Fig. A.9: Sequence of phase portraits in part v53 of slice h = 6 (the labels according to Fig. 4.4). The double
arrow ←→ means that two regions are adjacent. Moreover, we have drawn all possible adjacencies in the planar

region v53 including its boundary.
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1.8L1

4S7 V48

6S9

V62

7S18

6.7L1

7S20

4.8L1

V49

6S8

V61

8S10

6.8L1

8S11

Fig. A.10: Sequence of phase portraits in parts v49 and v61 of slice h = 6 (the labels according to Fig. 4.5). The
double arrow ←→ means that two regions are adjacent. Moreover, we have drawn all possible adjacencies in the

planar regions v49 and v61 including its boundaries.
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5S16 6S3

7S16 V44 5.7L4 4.8L1

V43 5S15 V47 4S7

7S15 5.7L3 7S17

1.8L1

V42 5S14 V46

3S2 3.5L1 3S3

Fig. A.11: Sequence of phase portraits in parts v42 and v46 of slice h = 6 (the labels according to Fig. 4.5). The
double arrow ←→ means that two regions are adjacent. Moreover, we have drawn all possible adjacencies in the

planar regions v42 and v46 including its boundaries (except the equator).



QS with a f (1) and a sn(2) 101

V7

V8

V9
3S10

4S1

5S5 5S6
5S7

7S1 7S2

8S1
3.5L3

4.5L1

5.7L1 5.7L2

5.8L1

Fig. A.12: Sequence of phase portraits in parts v9a and v9b of slice h = 6 (the labels according to Fig. 4.6). The
double arrow ←→ means that two regions are adjacent. Moreover, we have drawn all possible adjacencies in the

planar regions v9a and v9b including its boundaries (except the equator).
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V64 V65

1S5

3S8 3S9

4S3

4S9 5S97S21

1.4L1 1.4L2

3.4L1 3.5L33.7L1

4.5L2

Fig. A.13: Sequence of phase portraits in part v64 (the labels according to Figs. 4.6 and 4.7). The double arrow
←→ means that two regions are adjacent. Moreover, we have drawn all possible adjacencies in the planar region v64

including its boundary.
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V11

V12

5S5

5S6

5S7

7S3

7S4

8S2

5.7L1

5.7L2

5.8L1

Fig. A.14: Sequence of phase portraits in part v12 (the labels according to Fig. 4.6). The double arrow ←→
means that two regions are adjacent. Moreover, we have drawn all possible adjacencies in the planar region v12

including the parts of its boundary which are not contained in (S4) nor in (S3).
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B. Some results in qualitative theory rele-
vant for our study

The aim of this Appendix is to group some notions
that we have used during our research.

B.1. Basic properties of quadratic differen-
tial systems

We start listing some basic results on quadratic sys-
tems that will be useful for our study. We have sub-
divided them by topics and we have also indicated
where the reader can find the corresponding proofs.
We follow [Artés et al., 2021a].

Contact points and line’s structure

(i) A straight line either has at most two (finite)
contact points (which may include the singular
points) with a quadratic system, or it is formed by
trajectories of the system. We recall that by defini-
tion a contact point of a straight line L is a point
of L where the vector field has the same direction
as L, or its is zero. See [Yanqian et al., 1986] for a
proof.

(ii) If a straight line passing through two real fi-
nite singular points q1 and q2 of a quadratic system
is not formed by trajectories, then it is divided by
these two singular points in three segments ∞q1,
q1q2 and q2∞ such that the trajectories cross ∞q1
and q2∞ in one direction, and they cross q1q2 in the
opposite direction. See [Yanqian et al., 1986].

(iii) If a finite singular point is situated on the
straight line joining two opposite infinite singular
points on the Poincaré disc (see Appendix B.2) of
a quadratic system, then this line is formed by tra-
jectories, or it is a straight line without (finite) con-
tact points except at that finite singular point. See
[Yanqian et al., 1986].

(iv) If in a quadratic system the separatrix of an
infinite saddle connects with the separatrix of the
diametrically opposite infinite saddle, then this sep-
aratrix is an invariant straight line. You can find
the proof in [Sotomayor & Paterlini, 1983].

Structure of graphics and periodic orbits

(v) The interior of a closed curve is a convex region.
Here a closed curve means either a periodic orbit,
or a finite degenerate/non-degenerate graphic (See
Definitions 2.1 and 2.2) that separates the plane

into two regions (the interior and the exterior lim-
ited by the graphic). See [Coppel, 1966]. Moreover,
a graphic which admits a return map must contain
the line segment joining any two adjacent finite sin-
gularities belonging to the graphic, which must be
an invariant line for the system. It follows straight-
forwardly from (i).

(vi) There exists a unique singular point in the in-
terior region limited by a periodic orbit, and this
point is either a focus or a center. You can find the
proof in [Coppel, 1966].

(vii) Any graphic (see Defs. 2.1, 2.2) in a real pla-
nar polynomial differential system must satisfy at
least one of the following four situations: (1) It sur-
rounds at least a singular point of index greater
or equal than +1; (2) It contains a singular point
having an elliptic sector situated in the region de-
limited by the graphic; (3) It is degenerate; (4) It
contains an infinite number of singular points in its
interior. If the considered system is quadratic, (1)
can be replaced by: “It surrounds a unique singu-
lar point being a strong focus, a f (1), a f (2) or a
center”. The proof of this result can be found in
[Artés et al., 1998].

(viii) Two periodic orbits in a quadratic system are
oppositely oriented if the bounded regions that they
limit have no common points, and they have the
same orientation if the bounded regions that they
limit have a common point. See [Coppel, 1966].

Weak foci and limit cycles

(ix) Any individual quadratic system has a finite
number of limit cycles. See [Bamon, 1986]. More-
over, if a quadratic system has a limit cycle, then
it surrounds a unique singular point, and this point
is a focus. See [Coppel, 1966].

(x) If a quadratic system has a center, then it is
integrable; i.e. there exists a non-constant ana-
lytic first integral defined in the whole real plane
except perhaps in some invariant algebraic curves.
See [Schlomiuk et al., 1990].

(xi) A quadratic system may have at most two foci
and at most two centers. The proof is trivial using
item (ii).

(xii) There are no limit cycles in a quadratic sys-
tem surrounding a weak focus of third order or a
center. See [Li, 1986] for a proof. Moreover, there
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is at most one limit cycle surrounding a weak focus
of second order, and when it exists is hyperbolic.
See [Pinguang, 2002] for a proof.

(xiii) Quadratic systems with a weak focus of
second order can have at most two limit cycles,
and they must occur in configuration (1, 1). See
[Artés et al., 2006, Pinguang, 2001].

(xiv) If a quadratic system has two real invariant
straight lines, then it has no limit cycles, and if it
has one real invariant straight line, then it has at
most one limit cycle and in case of having one must
be hyperbolic. See [Bautin, 1939, Coppel, 1989].

(xv) Any limit cycle of a quadratic system can be
collapsed to its inner focus by means of a rotated
family vector field, producing its death in a Hopf
bifurcation. A proof of the previous result can be
found in [Cherkas, 1982].

For more detailed information about specific prop-
erties of quadratic differential systems we invite the
reader to see [Artés et al., 2021a].

B.2. Compactification on the Poincaré
sphere and Poincaré disc

In Section 2 we have drawn the phase portraits in
the Poincaré disc. The main goal of this section is
to present this technique, which enables us to join
all the local behavior at each finite singular point
with the behavior at infinity of a quadratic differ-
ential system by compactifying the whole plane R2

(in a “special” way), leading us to its global be-
havior (or global phase portrait). I am following
[Dumortier et al., 2006]. In this subsection we will
use (x1, x2) as coordinates on the plane instead of
(x, y). Let us assume that we have a differential
system X defined as:

{
ẋ1 = P (x1, x2)
ẋ2 = Q(x1, x2)

(13)

where P and Q are polynomials in the variables x1
and x2. Poincaré compactification works as follows.
First we consider R2 as the plane in R3 defined by
(y1, y2, y3) = (x1, x2, 1). We consider the sphere
S2 =

{
y ∈ R3 | y21 + y22 + y23 = 1

}
(called Poicaré

Sphere), which is tangent to R2 at the point (0, 0, 1).
Now we divide the Poincaré sphere into H+ ={
y ∈ S2 | y3 > 0

}
and H− =

{
y ∈ S2 | y3 < 0

}

(which are called northern and southern hemi-
spheres respectively) plus S1 =

{
y ∈ S2 | y3 = 0

}

(the equator). Now we consider the projection of
the vector field X from R2 to S2 given by the cen-
tral projections f+ : R2 → S2 and f− : R2 → S2.
Precisely, denoting x = (x1, x2) then f+(x) (resp.
f−(x)) is the intersection of the straight line pass-
ing through the point x and the origin with the
northern (resp. southern) hemisphere of S2. The
precise expressions are:

f+(x) =

(
x1

∆(x)
,
x2

∆(x)
,

1

∆(x)

)

f−(x) =

(
− x1
∆(x)

,− x2
∆(x)

,− 1

∆(x)

)

where ∆(x) =
√
x21 + x22 + 1. In Figure B.1b the

situation is represented graphically. In this way,
we obtain induced vector fields in each hemisphere.
Of course, every induced vector field is analyti-
cally conjugate to X. The induced vector field on
H+ is X(y) = Df+(x)X(x), where y = f+(x),
and the one in H− is X(y) = Df−(x)X(x) where
y = f−(x). We also remark that X is a vector
field on S2 \ S1 that is everywhere tangent to S2.
Now we would like to extend the induced vector
field X from S2 \ S1 to S2. Unfortunately it does
not in general stay bounded as we get close to S1,
obstructing the extension. However, if we multiply
the vector field by the factor ρ(x) = yd−1

3 , where
d = max(deg(P ),deg(Q)), the extension becomes
possible. The extended vector field on S2 is called
the Poincaré compactification of the vector field X
on R2, and it is denoted by ρ(X). On each hemi-
sphere H+ and H− it is no longer Cω−conjugate
to X, but it remains Cω−equivalent. As it is usual
when we are working with surfaces, we will use some
charts to get explicit expressions of ρ(X). This will
allow us to make explicit calculations involving the
singular points at infinity. For S2, we use the six
local charts given by Uk =

{
y ∈ S2 | yk > 0

}
, Vk ={

y ∈ S2 | yk < 0
}
for k = 1, 2, 3. The correspond-

ing local maps φk : Uk → R2 and ψk : Vk → R2

are defined as φk(y) = (ym/yk, yn/yk) for m < n
and m,n 6= k, yk > 0 and ψk(y) = −(ym/yk, yn/yk)
for m < n and m,n 6= k, yk < 0. We denote by
z = (u, v) the value of φk(y) or ψk(y) for any k,
such that (u, v) will play different roles depending
on the local chart we are considering. Geometri-
cally, the coordinates (u, v) can be expressed as in
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Figure B.1a. The points of S1 in any chart have
v = 0.

U3

U2

U1

u

v

u

v

u

v

(a) Local charts (Uk, φk) for k = 1, 2, 3 on the Poincaré
Sphere.

y3

x2

x

y1

y2

x1
S2

f+(x)

f−(x)

(b) Central projections f+ and f− onto the
northern and southern hemispheres respectively.

Fig. B.1: Poincaré Sphere.

Now we can easily compute the expres-
sion for ρ(X) in the previous local charts (see
[Dumortier et al., 2006]). The expression for ρ(X)
in the local chart (U1, φ1) is given by

{
u̇ = vd

[
−uP

(
1
v ,

u
v

)
+Q

(
1
v ,

u
v

)]

v̇ = −vd+1P
(
1
v ,

u
v

) (14)

The expression for (U2, φ2) is
{
u̇ = vd

[
P
(
u
v ,

1
v

)
− uQ

(
u
v ,

1
v

)]

v̇ = −vd+1Q
(
u
v ,

1
v

) (15)

The expression for (U3, φ3) is

{
u̇ = P (u, v)
v̇ = Q(u, v)

(16)

The expression for ρ(X) in the chart (Vk, ψk) is
the same as for (Uk, φk) multiplied by (−1)d−1, for
k = 1, 2, 3. To study X in the complete plane R2,
including its behavior near infinity, it clear suffices
to work on H+ ∪ S1, which we call Poincaré Disk.
All the calculation can be done in the three charts
(Uk, φk) for k = 1, 2, 3 in which case the expressions
are given by the formulas (14), (15) and (16). We
remark that in each local chart the local represen-
tative of ρ(X) is a polynomial vector field.

Definition B.1. We call finite (resp. infinite)
singular points of X or ρ(X) the singular points
of ρ(X) which lie in S2 \ S1 (resp. S1).

We note that if y ∈ S1 is a singular point then
−y ∈ S1 is also a singular point. Since the local
behavior near −y is the local behavior near y mul-
tiplied by (−1)d−1 it follows that the orientation
of the orbits changes when de degree is even. Due
to the fact that infinite singular points appear in
pairs of diametrically opposite points, it is enough
to study half of them, and using the degree of the
vector field, we can determine the other half (and
this explains why it suffices to study only the lo-
cal charts (Uk, φk) for k = 1, 2, 3 previously men-
tioned).

Finally, we observe that the integral curves
of S2 are symmetric with respect to the ori-
gin. In this sense, it is sufficient to repre-
sent the flow of ρ(X) only in the closed north-
ern hemisphere (the so called Poincaré disk).
For practical purposes, in order to draw this
as a disk in the plane, we can project the
points of the closed northern hemisphere onto the
disk

{
(y1, y2, y3) ∈ R3 | y21 + y22 ≤ 1, y3 = 0

}
. This

could be done by projecting each point of the sphere
onto the disk using a straight line parallel to the
y3−axis; however, we can project using a family
of straight lines passing through a point (0, 0, y3)
with y3 < 0. If y3 is a value close to −∞, we
shall get the same result, but if y3 is close to zero,
then we might get a better representation of what
is happening near infinity. In doing this we lose
resolution in the regions close to the origin in the
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(x1, x2)-plane. We recall that this technique is ap-
plied in the numerical program P4 (see Chaps. 9,10
of [Dumortier et al., 2006]) that we have used to
draw the phase portraits presented in Sect. 2.

B.3. Separatrix skeleton

Strictly speaking, in Section 2 we have not listed
the phase portraits since these would be impossible
to draw, containing all oriented phase curves. In-
stead we have listed the completed separatrix skele-
ton, concept which will define below. We will also
see that the completed separatrix skeleton suffices.
I am following [Dumortier et al., 2006].

Definition B.2. We consider a differential equa-
tion x′ = X(x), where X is a C1 function in R2.
Let φ(s, t) the flow defined by the differential equa-
tion. We denote it by (R2, φ). We say that a flow
(R2, φ) is parallel if it is topologically equivalent
to one of the following flows.

(a) The flow defined on R2 by the differential sys-
tem x′ = 1, y′ = 0, which we denote by strip
flow.

(b) The flow defined in R2 \ {0} by the differen-
tial system given in polar coordinates r′ = 0,
θ′ = 1, which we denote by annulus flow.

(c) The flow defined in R2 \ {0} by the differen-
tial system given in polar coordinates r′ = r,
θ′ = 0, which we denote by spiral or nodal
flow.

Given a maximal open region on R2 on which the
flow is parallel, it is interesting to know the or-
bit structure of its boundary. Clearly the following
types of orbits can be present:

(1) A singular point.

(2) A periodic orbit for which there does not exist
a neighborhood entirely consisting of periodic
orbits.

(3) A separatrix, i.e. an orbit γ(p), homeomor-
phic to R for which there does not exist a
neighborhood N of γ(p) such that: (a) For all
q ∈ N α(q) = α(p) and ω(q) = ω(p); (b) The
boundary ∂N of N , that is, ∂N = N \ N ,
is formed by α(p), ω(p) and two orbits γ(q1)

and γ(q2) such that α(p) = α(q1) = α(q2) and
ω(p) = ω(q1) = ω(q2).

The set of orbits satisfying either (1) or (3) is called
the separatrix skeleton. If we also add the orbits
satisfying (2) then we speak about the extended
separatrix skeleton. It is easy to see that the ex-
tended separatrix skeleton S is closed and invariant
under the flow. Let be a (maximal) connected com-
ponent of R2 \ S (we call it a canonical region).
It can be proved that a canonical region is invariant
under the flow and that the flow restricted to every
canonical region must be parallel.

Given a flow (R2, φ), by the completed separa-
trix skeleton we mean the union of the extended
separatrix skeleton of the flow together with one
orbit from each one of the canonical regions. Let
C1 and C2 be the completed separatrix skeletons
of the flows (R2, φ1) and (R2, φ2) respectively. We
say that C1 and C2 are topologically equivalent if
there exist a homeomorphism form R2 to R2 that
maps the orbits of C1 to the orbits of C2 preserving
or reversing (globally) the orientations. The follow-
ing result justify that our reduced phase portraits
draws are enough.

Theorem B.3. (Markus-Neumann-Peixoto)
Assume that (R2, φ1) and (R2, φ2) are two contin-
uous flows with only isolated singular points. Then
these flows are topologically equivalent if and only
if their completed separatrix skeletons are topologi-
cally equivalent.

To conclude, we remark that the completed sep-
aratrix skeleton is an invariant under topological
equivalence relation. However, a complete sepa-
ratrix skeleton could contain many curves, which
very often makes very difficult to decide if they are
homeomorphic or not (fact that has become clear in
Section 6, where we have had to define 12 invariants
to distinguish the completed separatrix skeletons of
our phase portraits).
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