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Our goal is to make a global study of the class QsnSN11 of all real quadratic polynomial dif-
ferential systems which have a finite semi–elemental saddle–node and an infinite saddle–node
formed by the coalescence of a finite and an infinite singularities. This class can be divided into
two different families, being (A) possessing the finite saddle–node as the only finite singularity
and (B) possessing the finite saddle–node and also a finite simple elemental singularity. In this
paper we provide the complete study of the geometry of family (A). The family (A) modulo
the action of the affine group and time homotheties is four–dimensional and we give the bifur-
cation diagram of its closure with respect to a specific normal form, in the four–dimensional
real projective space RP

4. As far as we know, this is the first time that a complete family
is studied in the four–dimensional real projective space. The respective bifurcation diagram
yields 36 topologically distinct phase portraits for systems in the closure QsnSN11(A) within
the representatives of QsnSN11(A) given by a specific normal form.
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1. Introduction, brief review of the litera-
ture and statement of the results

Here we call quadratic differential systems, or sim-
ply quadratic systems, differential systems of the
form

ẋ = p(x, y),
ẏ = q(x, y),

(1)

where p and q are polynomials over R in x and y
such that the max{deg(p), deg(q)} = 2. To such
a system one can always associate the quadratic
vector field

ξ = p
∂

∂x
+ q

∂

∂y
, (2)

as well as the differential equation

q dx− p dy = 0. (3)

Along this paper we will use indistinctly the expres-
sions quadratic systems and quadratic vector fields
to refer to either (1), or (2), or (3).

The class of all quadratic differential systems
will be denoted by QS.

We can also write system (1) as

ẋ = p0 + p1(x, y) + p2(x, y) ≡ p(x, y),
ẏ = q0 + q1(x, y) + q2(x, y) ≡ q(x, y),

(4)

where pi and qi are homogeneous polynomials of de-
gree i in the variables x and y with real coefficients
and p22 + q22 6= 0.

Even after hundreds of studies on the topology
of real planar quadratic vector fields, it is kind of
impossible to outline a complete characterization
of their phase portraits, and attempting to topo-
logically classify them, which occur rather often in
applications, is quite a complex task. This family
of systems depends on twelve parameters, but due
to the action of the group Aff(2,R) of real affine
transformations and time homotheties, the class ul-
timately depends on five parameters, but this is still
a large number.

The main goal of this work is to present the
study of the class of all quadratic systems possess-
ing a finite saddle–node sn(2) located at the origin
of the plane and an infinite saddle–node of type(
1
1

)
SN . We denote this class by QsnSN11. We

recall that a finite saddle–node is a semi–elemental
singular point whose neighborhood is formed by the
union of two hyperbolic sectors and one parabolic
sector. By a semi–elemental singular point we mean

a point with zero determinant of its Jacobian ma-
trix with only one eigenvalue equal to zero. These
points are known in classical literature as semi–
elementary, but we use the term semi–elemental in-
troduced in [Artés et al., 2013a] as part of a set of
new definitions more deeply related to singularities,
their multiplicities and, especially, their Jacobian
matrices. In addition, an infinite saddle–node of

type
(
1
1

)
SN is obtained by the coalescence of a fi-

nite antisaddle (respectively, finite saddle) with an
infinite saddle (respectively, infinite node).

Whenever one wants to study a specific family
of differential systems sharing a common property,
one needs to select one (or several) normal form
which contains all the phase portraits sharing the
desired property. However, except in some trivial
cases, it is impossible that the normal form does not
contain other phase portraits, normally more de-
generate than the cases under study. These other
phase portraits are very important to understand
the bifurcations that take place inside the chosen
normal form. This is why we always study not just
the family of systems that have the desired prop-
erty, but the closure of the normal form which con-
tains that family. That is, we study all the param-
eter space of the selected normal form, whether if
it leads to the desired property or not. However, it
is possible that a different normal form could have
been chosen and in that case, the generic elements
of the family under study should be the same, but
the elements in the border might not be. That is,
some phase portraits in the border of one normal
form could be common or not, with elements in the
order of the second normal form.

Inside the class QsnSN11 where generically
the origin is a saddle–node sn(2) and we have an

infinite singularity of type
(
1
1

)
SN , we may have

or not another simple finite elemental singularity.
Then, we split this class into two different families:
QsnSN11(A) of phase portraits possessing the fi-
nite saddle–node as the only finite singularity and
QsnSN11(B) of phase portraits possessing the fi-
nite saddle–node and also a simple finite elemental
singularity. In this paper we provide the analysis of
the closure of the family QsnSN11(A).

We observe that there is another type of infinite

saddle–node denoted by
(
0
2

)
SN which is given by

the coalescence of an infinite saddle with an infinite
node and which will appear in some of the phase
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portraits obtained in the class QsnSN11(B). We
point out that the family of quadratic differential
systems possessing a finite saddle–node sn(2) and

an infinite singularity
(
0
2

)
SN was completely studied

in [Artés et al., 2015].

For this analysis we follow the pattern set out
in [Artés et al., 2015] and, in order to avoid repeat-
ing technical sections which are the same for both
papers, we refer to the paper mentioned for more
complete information.

We recall that all the phase portraits are drawn
in the Poincaré disc (for its definition we refer to
[Dumortier et al., 2006, Artés et al., 2015]) and in
what follows we present the notion of graphics.

A (nondegenerate) graphic as defined in
[Dumortier et al., 1994] is formed by a finite se-
quence of singular points r1, r2, . . . , rn (with pos-
sible repetitions) and nontrivial connecting orbits
γi for i = 1, . . . , n such that γi has ri as α–limit
set and ri+1 as ω–limit set for i < n and γn has
rn as α–limit set and r1 as ω–limit set. Also nor-
mal orientations nj of the nontrivial orbits must be
coherent in the sense that if γj−1 has left–hand ori-
entation then so does γj . A polycycle is a graphic
which has a Poincaré return map.

A degenerate graphic is formed by a finite se-
quence of singular points r1, r2, . . . , rn (with pos-
sible repetitions) and nontrivial connecting orbits
and/or segments of curves of singular points γi for
i = 1, . . . , n such that γi has ri as α–limit set and
ri+1 as ω–limit set for i < n and γn has rn as α–
limit set and r1 as ω–limit set. Also normal ori-
entations nj of the nontrivial orbits must be co-
herent in the sense that if γj−1 has left–hand ori-
entation then so does γj . For more details, see
[Dumortier et al., 1994].

In [Artés et al., 1998] the authors proved the
existence of 44 topologically different phase por-
traits for the structurally stable quadratic pla-
nar systems modulo limit cycles, also known as
the codimension–zero quadratic systems. Roughly
speaking, these systems are characterized by hav-
ing all singularities, finite and infinite, simple, no
separatrix connection, and where any nest of limit
cycles is considered as a single point with the sta-
bility of the outer limit cycle.

In the book of [Artés et al., 2018] the authors
classified the structurally unstable quadratic sys-
tems of codimension–one which have one and only

one of the simplest structurally unstable objects:
a saddle–node of multiplicity two (finite or infi-
nite), a separatrix from one saddle point to an-
other, and a separatrix forming a loop for a saddle
point with its divergence nonzero. All the phase
portraits of codimension–one are split into four
groups according to the possession of a structurally
unstable element: (A) possessing a finite semi–
elemental saddle–node, (B) possessing an infinite

semi–elemental saddle–node
(
0
2

)
SN , (C) possessing

an infinite semi–elemental saddle–node
(
1
1

)
SN , and

(D) possessing a separatrix connection. The study
of the codimension–one systems was done in ap-
proximately 20 years and finally it was obtained
at least 204 (and at most 211) topologically dis-
tinct phase portraits of codimension–one modulo
limit cycles. However, some recent studies (already
at preprint level) have shown two mistakes in that
book and have reduced (and confirmed) the number
of cases to 202 (and a most 209).

The next step is to study the structurally un-
stable quadratic systems of codimension two, mod-
ulo limit cycles. The approach is the same as
used in the previous two works [Artés et al., 1998,
Artés et al., 2018]. One must start by looking for
all the topologically possible phase portraits of codi-
mension two, and then try to realize all of them or
show that some of them are impossible. So, it is also
very convenient to have studied the bifurcation dia-
gram that contains all the required phase portraits
in order to prove the realization of them. In many
works of this last type where families of phase por-
traits have been studied, it is quite common that
the authors have missed one or several phase por-
traits, as we discuss in Sec. 2. This may happen
either because they have not interpreted correctly
some of the bifurcation parts, or they have missed
the existence of some nonalgebraic bifurcation, or
there may exist some small “island” as they are de-
scribed in Sec. 7. However when one does the study
of all the topological phase portraits and produces a
list in a systematic way which is free of errors, then
there is no possibility of missing a realizable case. It
is just a problem of finding examples of realization
or producing irrefutable proofs of the impossibility
of realization of phase portraits.

The study of the codimension–two systems is
already in progress. In [Artés et al., 2019] the au-
thors have considered the group (AA) obtained by
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the existence of a cusp point, or two saddle–nodes or
the coalescence of three finite singular points form-
ing a semi–elemental singularity, yielding either a
triple saddle, or a triple node. They obtained all the
possible topological phase portraits of group (AA)
and proved their realization. In their study, they
got 34 topologically distinct phase portraits in the
Poincaré disc modulo limit cycles.

Moreover, as we have already said, the bifur-
cation diagram for the class of the quadratic sys-
tems possessing a finite saddle–node sn(2) and an

infinite saddle–node
(
0
2

)
SN has been studied in

[Artés et al., 2014, Artés et al., 2015], in which all
the phase portraits obtained belong to the closure
of the group (AB).

The present study in this paper is part of
this attempt of classifying all the codimension–two
quadratic systems. All the phase portraits obtained
in the study of the classQsnSN11(A) belong to the
closure of the group (AC).

For the normal form (6) from page 8, the class
QsnSN11(A) is partitioned into 75 parts: 11 four–
dimensional ones, 21 three–dimensional ones, 24
two–dimensional ones, 14 one–dimensional ones and
5 points. This partition is obtained by considering
all the bifurcation manifolds of singularities, one re-
lated to the presence of invariant straight lines and
one related to connections of separatrices, modulo
“islands” (see Sec. 7). Due to some values of the
parameters, from these 75 parts, four of them corre-
spond to linear systems, being two one–dimensional
and two points (see page 22). The corresponding
four phase portraits form two classes, as indicated
in Fig. 1.

4.5.8L3 P1

Fig. 1. Phase portraits corresponding to linear systems
obtained from canonical form (6)

Theorem 1.1. There are 36 topologically distinct
phase portraits for the closure of the family of
quadratic vector fields having a finite saddle–node

sn(2) as the only finite singularity and an infinite

saddle–node of type
(
1
1

)
SN , and given by the normal

form (6) (class QsnSN11(A)). The bifurcation di-
agram for this class is given in the parameter space
which is the projective four–dimensional space RP

4.
All these phase portraits are shown in Figs. 1 and
2. Moreover, the following statements hold:

(a) There are 12 topologically distinct phase por-
traits in QsnSN11(A). More precisely, we
have H2, H3, H4, H5, H6, H10 plus the systems
with the separatrix connection 4V1, 4V2, 7V1.
Moreover, phase portraits 5V5, 5V6 and 5V7 also
belong to this family since the coalescence of
two infinite singular points does not affect one
of the double point at infinity. There is one
generic region in the closure of QsnSN11(A),
namely H1, whose phase portrait does not be-
long to QsnSN11(A), since H1 has two double
complex singularities at infinity.

(b) There are five phase portraits with more than
one nondegenerate graphic, and they are in the
parts 5V5, 5V6, 5V7, 2.5S2, 4.5S3.

(c) There are eight phase portraits with degenerate
graphic, and they are in the parts 8V1, 2.8S2,
5.8S1, 5.8S2, 8.9S1, 2.8.9L1, 8.9.9L1, P4.

(d) From the 36 phase portraits, two of them (lo-
cated in the border of QsnSN11(A)) corre-
spond to linear systems. The corresponding
phase portraits are given in Fig. 1.

Corollary 1.2. For the class QsnSN11(A), Ta-
ble 1.1 compares the number of phase portraits pos-
sessing some geometrical features between the fam-
ily QsnSN11(A) and its border.

Table 1.1. Comparison between the family
QsnSN11(A) and its border

QsnSN11(A)
border of

QsnSN11(A)

Distinct phase portraits 12 24

Phase portraits with more than
3 2

one nondegenerate graphic

Phase portraits with
0 8

degenerate graphics
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H1 H2 H3 H4 H5

H6 H10 2V1 2V2 2V3

4V1 4V2 5V1 5V2 5V3

5V5 5V6 5V7 7V1 8V1

2.5S1 2.5S2 2.8S2 4.5S1 4.5S3

5.7S1 5.8S1 5.8S2 8.9S1 2.5.8L1

2.8.9L1 4.5.8L1 8.9.9L1 P4

Fig. 2. Phase portraits for quadratic vector fields from class QsnSN11(A)
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From the 12 topologically distinct phase por-
traits of the family QsnSN11(A), 6 occur in four–
dimensional parts and 6 in three–dimensional parts.

From the remaining 24 phase portraits, which
are on the border of QsnSN11(A), one oc-
curs in a four–dimensional part, seven occur in
the three–dimensional parts, nine occur in the
two–dimensional parts, five occur in the one–
dimensional parts and two occur in the zero–
dimensional parts.

In Figs. 1 and 2 we have illustrated all the sin-
gular points with a small disc. In case of degenerate
systems we have also illustrated the infinite singular
point belonging to the degenerate set with a small
disc only if this point is an infinite singularity of
the reduced system. We have drawn with thicker
curves the separatrices and also the lines filled up
with singularities which is double. We have added
some thinner orbits to avoid confusion in some re-
quired cases. Moreover, we label the phase por-
traits according to the parts of the bifurcation dia-
gram where they appear. Here we call hypervolumes
(H) the four–dimensional parts of the bifurcation
diagram, volumes (V ) the three–dimensional ones,
surfaces (S) the two–dimensional ones, curves (L)
the one–dimensional ones, and points (P ) the zero–
dimensional ones.

As in [Artés et al., 2006, Artés et al., 2015], we
use the same pattern in order to indicate the ele-
ments (V ), (S), (L) and (P ) in the bifurcation dia-
gram. In this paper we indicate each one of the hy-
pervolumes (H) surrounded by a circle, as in Fig. 6.

This paper is organized as follows. In Sec. 2
we present some incompatibilities found in previous
classifications of phase portraits possessing specific
properties on its singularities.

In Sec. 3 we describe some basic features re-
garding normal form (6) and we explain the struc-
ture of the bifurcation diagram.

In Sec. 4, using algebraic invariants and T–
comitants as used by the Sibirskii School, we define
the algebraic manifolds that describe the bifurca-
tion diagram for the class QsnSN11(A).

In Secs. 5 and 6 we explain all the three–
dimensional slices (and also the bifurcation planes
on them) in the affine part and in the infinite of
RP

4, respectively.

In Sec. 7 we discuss about the possible exis-
tence of “islands” in the bifurcation diagram.

In Sec. 8 we introduce a global invariant de-
noted by I, which classifies completely, up to topo-
logical equivalence, the phase portraits that we have
obtained for the systems in the class QsnSN11(A).
Theorem 8.7 shows clearly that they are uniquely
determined (up to topological equivalence) by the
values of the invariant I.

The bifurcation diagram described in Secs. 5
and 6, plus Table 8.1 (from Sec. 8) of the geometri-
cal invariants distinguishing the 34 phase portraits
corresponding to quadratic systems, plus Table 8.2
giving the equivalences with the remaining phase
portraits lead to the proof of the main statement of
Theorem 1.1.

2. Some incompatibilities in previous clas-
sifications

It is quite common that by performing the study of
a bifurcation diagram that produces some specific
types of phase portraits, the authors lose one or
several phase portraits. This may happen either
because they do not interpret correctly some of the
bifurcation parts or they miss the existence of some
nonalgebraic bifurcations.

In this paper we have decided to start compar-
ing our classification of phase portraits with exist-
ing classifications. We plan to do this section in
every future work related to classification of phase
portraits using normal forms. The aim of this study
is to detect some incompatibilities in previous pa-
pers and also to help us look carefully our bifur-
cation diagram in order to not lose any phase por-
trait. Such incompatibilities are obtained after we
compare all of the phase portraits obtained in our
bifurcation diagram with phase portraits from some
previous papers which possess the same topological
configuration of singularities, according to Def. 1
from [Artés et al., 2020b].

This study also allows the corresponding au-
thors to detect possible mistakes on their works.
There exist some previous papers which are not
based on normal forms, but which seek all topo-
logical realizable phase portraits of a certain codi-
mension (see [Artés et al., 1998, Artés et al., 2018,
Artés et al., 2019]). We have also crossed results
from all the consulted papers with them and no
discrepancy has been found.

In this present paper we are dealing with phase
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portraits possessing only one finite double real sin-
gularity. Regarding the already existing classifi-
cations related to this paper, we know that in
[Coll et al., 1988a] one can find a classification of
phase portraits of quadratic vector fields with only
one finite singularity and in [Jager, 1990] the au-
thor presents a classification of phase portraits pos-
sessing a nilpotent cusp singularity of multiplic-
ity two (ĉp(2)). In some cases this is the only fi-
nite singularity, and thus, it may be present in our
work (in the border of QsnSN11(A)). Then we
have to verify if all of our nondegenerate phase
portraits appear in one (or in both) papers. We
also compare our phase portraits with those ones
appearing in [Artés et al., 2014, Artés et al., 2015]
when they must be present there. And also with
[Artés et al., 2006] as far as topological equivalence
can be done.

By doing this comparison, we have de-
tected some incompatibilities in some of the
mentioned works. These incompatibilities are
basically due to the presence of some phase
portraits in our bifurcation diagram that
does not appear in [Coll et al., 1988a] or in
[Jager, 1990]. We have also detected some minor
misprints in [Artés et al., 2006, Artés et al., 2014,
Artés et al., 2015] but no missing phase portrait.
Of course, we have not found any phase portraits
in any of these papers which should be in our
paper and was missing. Otherwise we would have
already repaired that. This absence of phase
portraits in [Coll et al., 1988a, Jager, 1990] leads
us to conclude that for some reason the authors
have missed some cases and, consequently, the
respective phase portraits.

In what follows we pass to describe a list of
our phase portraits that allows us to identify such
missing cases (or even some small mistakes) in the
mentioned papers:

• Phase portraits H10 and 7V1 do not appear in
[Coll et al., 1988a]. In this case the authors
missed the nonalgebraic bifurcation 7V1 and
consequently the region beyond it.

• Phase portrait 2.5S1 does not appear
in [Jager, 1990]. But we have detected
that 2.5S1 corresponds to h18 from
[Coll et al., 1988a]. In this case Jager
misses in Fig. 15 the possibility of λ2 being

zero, which leads to our phase portrait 2.5S1.

• We have also detected that phase portrait 5V6

corresponds to E5 from [Coll et al., 1988a],
but E5 has some drawing mistakes and it
should be drawn exactly as our 5V6. In fact,
there cannot exist an invariant straight line
as drawn in [Coll et al., 1988a] since the sep-
aratrix from the infinite saddle–node goes to
the nodal part of the finite saddle–node in a
different direction of the two separatrices of
the finite singularity related to the nonzero
eigenvalue.

The remaining phase portraits from Fig. 2 of
this present paper corresponding to nondegenerate
quadratic vector fields can be related to a phase
portrait from [Coll et al., 1988a] and those ones
with a cusp in [Jager, 1990]. We highlight that both
papers were done very close in time but none of
the authors knew about the existence of the other
work at that time and then they have not shared
or even “crossed” their results. Another important
fact that can support this claim is that phase por-
trait h15 from [Coll et al., 1988a] does not appear in
[Jager, 1990], and in fact it should appear in Fig. 6
of such a paper.

We have also analyzed the following four
papers [Coll et al., 1988a], [Artés et al., 2006],
[Artés et al., 2014], and [Artés et al., 2015]. As a
result of this study we have detected that:

• Phase portrait V1 from [Artés et al., 2014]
does not appear in [Coll et al., 1988a]. In
fact, phase portrait V1 fits inside the class
(I.s.12) of [Coll et al., 1988a] but this class is
not considered when they study cases with a
semi–elemental finite singularity and two in-
finite singularities.

• Phase portrait 2.8L1 from [Artés et al., 2015]
corresponds to E9 from [Coll et al., 1988a],
but E9 also has some drawing mistakes and
it should be drawn exactly as the mentioned
2.8L1. Indeed, the finite saddle is drawn as
nilpotent when it must be elemental; as nilpo-
tent [Coll et al., 1988a] already has h14.

• In Fig. 2 of [Artés et al., 2006] there are
two phase portraits called 2S1. According
to the corresponding bifurcation diagram, we
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observe that the second phase portrait which
appears with this label should be called 2S11.

3. Quadratic vector fields with a finite
saddle–node sn(2) and an infinite saddle–

node of type
(
1
1

)
SN

As we mentioned before, for the class QsnSN11(B)
(which will be presented in an independent paper),
we will consider quadratic systems possessing a fi-
nite saddle–node sn(2), a finite elemental singularity

and an infinite saddle–node of type
(
1
1

)
SN .

In this paper, for the class QsnSN11(A) we
are considering that the mentioned finite elemen-
tal singularity has gone to infinity, i.e. we aim
to study quadratic systems having only one finite
saddle–node sn(2) (which are located at the origin of

the plane), an infinite saddle–node of type
(
1
1

)
SN

and other infinite singularities, one of them of at
least multiplicity two. Therefore, in this section we
are considering quadratic systems of codimension
at least three.

Using the T–comitants and invariants for
quadratic systems as used by the Sibirskii school,
in [Artés et al., 2008] the authors have obtained
two canonical forms for quadratic systems pos-
sessing one double real finite singularity and no
more finite singularities; see Lemmas 3.24 and 3.25
from [Artés et al., 2008]. In Table 6.1 from
[Artés et al., 2020a] these canonical forms are de-
noted by 16a and 16b, respectively. Family 16a is
given by

ẋ = dy + gx2 + 2dxy,

ẏ = fy + lx2 + 2fxy,
(5)

where d, f , g, l are real parameters and fg−dl 6= 0.
On the other hand, family 16b is described by the
differential equations

ẋ = cx+ dy,

ẏ = lx2 + 2mxy + ny2,
(6)

where c, d, l, m, n are real parameters and ld2 −
2cdm+ nc2 6= 0.

For both normal forms we have only one dou-
ble finite singularity and the two other finite sin-
gularities have escaped to infinity. The geometric
difference between them is that in normal form (5)

both singularities coalesce with the same infinite
singular point whereas in (6) they coalesce with
different singular points. These facts are confirmed
by Diagram 9.2 from [Artés et al., 2020a], where we
can observe that family 16a cannot produce an in-

finite singularity of type
(
1
1

)
SN whereas on fam-

ily 16b one may obtain such a kind of infinite sin-
gularity in some of the branches of the diagram.
Then, as our main goal is to make a global study of
the class QsnSN11 of all real quadratic polynomial
differential systems possessing a finite saddle–node

sn(2) and an infinite saddle–node of type
(
1
1

)
SN ,

in this paper we provide the study of the canonical
form (6).

We observe that canonical form (6) depends
on five real parameters, namely, c, d, l, m and n.
Then, its bifurcation diagram is actually the five–
dimensional Euclidean space R

5. Since the case
c = d = l = m = n = 0 corresponds to the
null systems and does not belong to our family, we
can work with the real projective space RP

4. We
point out that this is the first time that a five–
dimensional bifurcation diagram is studied using
all the ideas and theory described, for instance, in
[Artés et al., 2006, Artés et al., 2015]. In what fol-
lows we describe how we do this work.

Systems (6) depend on the parameter λ =
(c, l,m, d, n) ∈ R

5. We consider systems (6) which
are nonzero, i.e. λ = (c, l,m, d, n) 6= 0. In this
case, systems (6) can be rescaled with the affine
transformation (x, y, t)→ (x, y, αt), α 6= 0. In fact,
applying this transformation we obtain

ẋ = α′cx+ α′dy,

ẏ = α′lx2 + 2α′mxy + α′ny2,

for α′ = 1/α, α 6= 0. Then, this transforma-
tion takes the systems with parameters (c, l,m, d, n)
to systems with parameters (α′c, α′l, α′m,α′d, α′n),
with α′ = 1/α. Hence, instead of taking R

5 as pa-
rameter space, we may consider the real projective
space RP

4. The four–dimensional projective space
RP

4 can be viewed as the quotient space S4 /∼ of S4

by the equivalence relation: (c, l,m, d, n) is equiv-
alent to itself or to (−c,−l,−m,−d,−n). So, our
parameter is [λ] = [c : l : m : d : n] ∈ RP

4 = S
4 /∼.

Since for α′ = −1 the signs of all the parame-
ters change, we may consider d ≥ 0 in [c : l :
m : d : n]. Since c2 + l2 + m2 + d2 + n2 = 1,
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then d =
√
1− (c2 + l2 +m2 + n2), where 0 ≤

c2 + l2 +m2 + n2 ≤ 1.

We can therefore view the parameter space as
a ball: B = {(c, l,m, n) ∈ R

4; c2+ l2+m2+n2 ≤ 1}
where on the border of this ball, two opposite
points are identified. So, we are working with a
four–dimensional space. The studies done up to
now like [Artés et al., 2006, Artés et al., 2015] were
done in a three–dimensional space. The parameter
space was divided in specific two–dimensional
slices which were of interest for the bifurcation. In
our case we must divide the parameter space into
three–dimensional slices which later must also be
divided into two–dimensional planes in order to be
drawn on a paper. We will see that the number
of three–dimensional slices (and also the number
of planes) is very small. Anyway, as we have
mentioned before, this is the first time that this
study is done and it is of great interest to have clear
ideas when working at this level of dimensions.
The different three–dimensional slices that we will
detect share one common “top” which can be
considered as an RP

2. We have already chosen the
parameter d as the parameter to distinguish from
the affine space and the infinity. We will chose
parameter n to foliate RP

4 into three–dimensional
spaces. And we will chose parameter m to split
each three–dimensional space into two–dimensional
spaces. The complete and general set can be seen
as in Fig. 3, where the different k, k0, k1, kα can be
a single number or several different numbers if more
slices are needed. If more slices were needed, the
different cases would correspond alternatively to
generic and singular slices. Since systems (6) show
different types of symmetries, whenever we change
the sign of any of the parameters, each parameter
equal to zero will correspond to a singular slice.
We will use the parameters c and l as Cartesian
coordinates to draw the bifurcation diagram in
two dimensions. So, the most simple bifurcation
diagram will have at least eight slices of different
dimensions. In fact, this will be our case. These
slices correspond to the different cases (d,m, n) ∈
{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1),
(1, 1, 0), (1, 1, 1)}. In Fig. 3 we present a general
scenario of the partition of the bifurcation diagram.

For d 6= 0, we get the affine chart:

RP
4 \ {d = 0} ↔ R

4

[c : l : m : d : n]→

(
c

d
,
l

d
,
m

d
,
n

d

)
= (c, l,m, n)

[c : l : m : 1 : n]← (c, l,m, n)

The subspace d = 0 in RP
4, which is an RP

3,
corresponds to the equation c2 + l2 +m2 + n2 = 1
(that is, the full sphere S

3 with identification of
symmetrical points on the border).

When two parameters are zero, for example,
d = n = 0, we identify the point [c : l : m : 0 :
0] ∈ RP

4 with [c : l : m] ∈ RP
2. So, this subset

{d = n = 0} ⊂ B can be identified with RP
2, which

can be viewed as a disc with two opposite points on
the circumference (the equator) identified.

Now, when three parameters are zero, for ex-
ample, the plane m = d = n = 0 in RP

4 cor-
responds to the equation c2 + l2 = 1 which is
an RP

1 space, that is a circle with the opposite
points identified. The concept of equator which
was used in bifurcations in RP

3 (as for instance
in [Artés et al., 2006, Artés et al., 2015]) now needs
to be enlarged to “equators” of dimension two.
More precisely, a one–dimensional equator is when
all parameters, except two, are zero. A two–
dimensional equator is when all, except three pa-
rameters, are zero.

Proposition 3.1. By a rescaling in the variables,
we may assume d = 0 or d = 1 in the normal
form (6).

Proof. If d 6= 0, by the reparametrization theorem
we get that systems (6) are equivalent to

ẋ = Cx+ y,
ẏ = Lx2 + 2Mxy +Ny2,

where C = c/d, L = l/d, M = m/d and N = n/d.
By renaming the coefficients C → c, L→ l,M → m
and N → n, we obtain systems (6) with d = 1.
Moreover, we must also consider the case when d =
0.
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ccc
lll

mmm

Infinity (d = n = 0)

GenericGenericGeneric

Generic Singular

SingularSingularSingular

Singular

Affine

Equatorm = 1

m = 0m = 0m = 0

m = 0

...
...

...

d = 1d = 1 d = 0· · ·· · ·

n = 1n = 0 n = k

m = k0 m = k1 m = kα

Fig. 3. Scheme of the partition of the bifurcation diagram. The parameter d = 1 (respectively d = 0) represents the
affine (respectively infinite) part of RP4, the three–dimensional slices are given by the parameter n and from each
three–dimensional slice the parameter m indicates the planes that must be studied
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4. The bifurcation diagram of the systems
in QsnSN11(A)

In order to construct the bifurcation diagram for
systems (6), in this paper we consider the concepts
of algebraic invariants and T–comitants as formu-
lated by the Sibirskii school for differential equa-
tions. For a quick summary see for instance Sec. 7
of [Artés et al., 2006].

4.1. Algebraic manifolds in RP
4

According to Diagram 9.2 from
[Artés et al., 2020a], here we define the alge-
braic manifolds that are needed for the study of
the bifurcation diagram of canonical form (6).
These manifolds are given by the invariants and
comitants listed in such a diagram.

Bifurcation manifold in RP
4 due to degener-

acy of systems

(V8) Since for systems (6) we have a double real
finite singularity and two finite singularities have
coalesced with different singularities at infinity, ac-
cording to Diagram 9.2 from [Artés et al., 2020a]
one must have µ0 = µ1 = κ = 0 and µ2 6= 0. Addi-
tionally, calculations show that µ3 = µ4 = 0 and

µ2 = (ld2 − 2cdm+ nc2)(lx2 + 2mxy + ny2).

So we define (V8) as a manifold whose equation is
equivalent to µ2 = 0, i.e.

(V8) : ld
2 − 2cdm+ nc2 = 0,

and therefore on this manifold we have µi = 0,
i = 0, 1, 2, 3, 4, i.e. systems (6) are degenerate.
We point out that our aim is to construct a coherent
and continuous bifurcation diagram. Although the
phase portraits possessing a double finite saddle–

node sn(2) and an infinite saddle–node
(
1
1

)
SN , be-

long to open sets in this bifurcation diagram, in
order to have these properties for this diagram, we
also need to consider the borders of such sets. In
particular, manifold (V8) borders open sets in this
bifurcation diagram.

Remark 4.1. According to Diagram 9.2 from
[Artés et al., 2020a] the comitant

L̃ = 8n(lx2 + 2mxy + ny2),

multiplied by µ2, allows us to distinguish be-
tween different configurations of infinite singular-
ities. More precisely, we have

µ2L̃ = 8n(ld2 − 2cdm+ nc2)(lx2 + 2mxy + ny2)2,

and if µ2L̃ < 0 we have the configuration of singu-

larities
(
1
1

)
SN ,

(
1
1

)
SN , N and if µ2L̃ > 0 we have

the configuration of singularities
(
1
1

)
SN ,

(
1
1

)
NS, N .

Remark 4.2. In some of the following manifolds the
factor ld2 − 2cdm + nc2 is also present. This con-
firms that the systems on manifold (V8) are in-
deed degenerate (possessing curves of singularities)
because many geometrical features happen at the
same time when ld2 − 2cdm + nc2 = 0. However,
we are interested in the other geometrical features
that the following manifolds can provide. In this
way, we assume, without loss of generality, that
ld2 − 2cdm+ nc2 6= 0.

Bifurcation manifold in RP
4 due to the

change of topological type of the origin

(V2) This is the bifurcation manifold due to the
change of topological type of the origin. On this
manifold the origin becomes a cusp–type singular-
ity. This phenomenon occurs when two separatrices
of a saddle–node coalesce. A necessary condition for
this phenomenon to happen is that the trace of the
Jacobian of the finite singularity is zero and it is
described by the invariant

T4 = 4c2n(d2l − 2cdm+ c2n)(−m2 + ln).

Taking into consideration Remark 4.2, we define
manifold (V2) by

(V2) : c
2n(−m2 + ln) = 0.

Remark 4.3. We observe that for n = 0, we
have (V2) ≡ 0. According to Diagram 9.2 from
[Artés et al., 2020a] we must consider the comitant

M̃
∣∣∣
n=0

= −32m2x2,

which vanishes if and only if m = 0. Such a men-
tioned diagram tells us that when n = 0 and m 6= 0
we can consider the invariant

B1

∣∣∣
n=0

= −2c2dm(−dl + 2cm),
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and when n = m = 0 we can consider the comitant

B4

∣∣∣
n=m=0

= 6clx2(cx+ dy).

Due to Remark 4.2 and the diagram under discus-
sion, for n = 0 we can define

(V2) : c
2m = 0 if m 6= 0, (7)

and
(V2) : c = 0 if m = 0. (8)

Bifurcation manifold in RP
4 due to the pres-

ence of invariant straight lines

(V4) This manifold in RP
4 will contain the points of

the parameter space where invariant straight lines
appear. These straight lines may contain connec-
tions of separatrices from different singularities or
not. So, in some cases, it may imply a topological
bifurcation or not. According to Corollary 4.6 from
[Schlomiuk & Vulpe, 2004] we have necessary con-
ditions for the existence of invariant straight lines,
which are given in terms of the zeroes of the comi-
tants B1, B2, and B3. More precisely, such a result
tells us that for the existence of an invariant straight
line in one (respectively two or three distinct) direc-
tions in the affine plane it is necessary that B1 = 0
(respectively B2 = 0 or B3 = 0). Calculations yield

B1 = 0,

B2 = −648l
2(ld2 − 2cdm+ nc2)2x4,

B3 = −6(d
2l − 2cdm+ c2n)x2y(lx+my).

Taking into consideration Remark 4.2, we conclude
that B1 is identically zero, B2 is equivalent to
l = 0 and B3 is nonzero. In the case when B1

is not identically zero, we can simply rely on the
bifurcation B1 = 0 to look for the possible exis-
tence of invariant straight lines (as for instance in
[Artés et al., 2015]). However, in this case when
B1 ≡ 0, we have an invariant line which coalesced
with the infinite line Z = 0 (i.e. this line is a dou-
ble one), and we may have invariant straight lines in
other directions. Any single affine straight line can
be considered “parallel” to the infinity line. Then
the invariant B2 ≡ 0 may not cover all the possi-
bilities of existence of a second line. So, we must
do the detailed study of whether there can exist
or not straight lines. Doing this study it is easy
to determine that any invariant straight line must

cross the origin and they will exist if l = 0 or if
ld2 − 2cdm + nc2 = 0 (see Lemma 4.4). These are
exactly the components of B2 plus the component
d = 0. We define manifold (V4) by the equation

(V4) : dl(ld
2 − 2cdm+ nc2) = 0.

Lemma 4.4. Systems (6) possess the following in-
variant straight lines under specific conditions:

(i) {y = 0}, if l = 0;

(ii) {x = 0}, if d = 0;

(iii) {ax + by = 0}, if d = cb/a and n = (2mab −
lb2)/a2, for a 6= 0. Moreover, these values of d
and n satisfy the equation ld2− 2cdm+nc2 =
0, i.e. we have degenerate systems.

Proof. We consider the algebraic curves

f1(x, y) ≡ y = 0,

f2(x, y) ≡ x = 0,

f3(x, y) ≡ ax+ by = 0,

and we show that the polynomials

K1(x, y) = 2mx+ ny,

K2(x, y) = c,

K3(x, y) = c+
lb

a
x+

b(2ma− lb)

a2
y,

are the cofactors of f1 = 0, f2 = 0, and f3 = 0,
respectively, after restricting systems (6) to the re-
spective conditions.

In this work we shall detect another bifurca-
tion manifold that is not necessarily algebraic and
on which the systems have connection of separa-
trices different from that ones given by (V4). The
equations of this bifurcation manifold can only be
determined approximately by means of numerical
tools and its existence is proved by using arguments
of continuity in the bifurcation diagram. We shall
name this manifold (V7).

Bifurcation manifold in RP
4 due to multiplic-

ities of infinite singularities

(V5) This is the bifurcation manifold due to the co-
alescence of infinite singularities. This phenomenon
is detected by the invariant η which is given by

η = −4n2(−m2 + ln) = 0.
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We define manifold (V5) by the equation

(V5) : n
2(−m2 + ln) = 0.

Remark 4.5. Again we observe that for n = 0, we
have (V5) ≡ 0. According to Diagram 9.2 from
[Artés et al., 2020a] we must consider the comitant

M̃
∣∣∣
n=0

= −32m2x2,

which vanishes if and only if m = 0. Such a men-
tioned diagram tells us that when n = 0 we can
define

(V5) : m = 0 if n = 0. (9)

We will see that on the slice n = 0 we will always
have a coalescence of infinite singularities.

As we said before, we work at the chart of RP4

corresponding to d 6= 0, and we take d = 1. In
order to perform the analysis, we shall use pictures
which are drawn on planes of RP4, having coordi-
nates [c : l : m0 : 1 : n0], with n0 and m0 con-
stants, plus the open half sphere d = 0 and we shall
give pictures of the resulting bifurcation diagram
on these planar sections on a disc or in an affine
chart of R

2. In these planes the coordinates are
(c, l) where the horizontal line is the c–axis.

As in [Artés et al., 2006, Artés et al., 2015], in
this paper we use colors to refer to the bifurcation
manifolds:

(a) manifold (V2) is drawn in green (the origin be-
comes a cusp–type singularity);

(b) the nondegenerate part of manifold (V4) is
drawn in purple (presence of at least one invari-
ant straight line). We draw it as a continuous
curve if it implies a topological change or as a
dashed curve otherwise;

(c) manifold (V5) is drawn in red (two infinite sin-
gular points coalesce);

(d) manifold (V7) is also drawn in purple (connec-
tions of separatrices); and

(e) manifold (V8) is drawn in cyan (the systems are
degenerate).

We use the same color for (V4) and (V7) since
both manifolds deal with connections of separatri-
ces.

4.2. Geometric features of the algebraic

manifolds in RP
4

Before we pass to the study of the geometric fea-
tures of manifolds (V2), (V4), (V5), and (V8), first we
remember the definition of a singularity of a several
variables smooth map.

Definition 4.6. Let f : U ⊂ R
m → R

n be a
smooth map. A point p ∈ U is a singular point
of f if the rank of the Jacobian matrix Df(p)
is strictly less than min(m,n). More precisely,
given f = (f1, . . . , fn) : U ⊂ R

m → R
n with

fi = fi(x1, . . . , xm), i = 1, . . . , n, we say that p ∈ U
is a singular point for f if the matrix




∂f1
∂x1

· · · ∂f1
∂xm

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xm


 (p)

has rank r < min(m,n).

We have defined the following manifolds

(V8) : n(ld
2 − 2cdm+ nc2) = 0,

(V2) : c
2n(−m2 + ln) = 0,

(V4) : l = 0,

(V5) : n
2(−m2 + ln) = 0.

Here we are interested in studying the geomet-
rical behavior of all of these manifolds, that is, their
singularities (according to Def. 4.6), their inter-
section points and their “tangencies” (in the affine
space) with three–dimensional slices of the type
d = 1 and constant n. Since this study requires a
lot of computations which would take a very large
number of pages to present all the details, in or-
der to be more succinct we have developed an algo-
rithm in software Mathematica and we have created
a notebook with all the computations on it. This al-
gorithm will be available for free download through
the link http://mat.uab.cat/~artes/articles/

qvfsn2SN11A/sn2SN11A.nb (some previous knowl-
edge of Mathematica is recommended for using this
algorithm).

In what follows, we describe the main idea of
what we have done in this subsection and we present
the results. For more details we recommend the
mentioned Mathematica algorithm.
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Remark 4.7. In R
5 we will create a list of k–

dimensional objects, 1 ≤ k ≤ 4, in the following
way. We denote by {Okxi(k)}{1≤k≤4, i(k)∈N} a list
of k–dimensional objects, where each Okxi(k) is a
list of objects of dimension k ∈ {1, . . . , 4}. For in-
stance, O4x1 stands for the first element of the list
of four–dimensional objects. By “dimension” of an
object we mean the number of parameters used for
defining it.

In order to proceed with the study of all ge-
ometric features (of the manifolds) described be-
fore, it is interesting to work with the components
of each manifold (this idea was used explicitly in
[Artés et al., 2006, Artés et al., 2015]). Then we
generate a list of four–dimensional components,
which are denoted according to Remark 4.7:

• O4x1 : c = 0 which corresponds to the set
{0, l,m, d, n};

• O4x2 : l = 0 which corresponds to the set
{c, 0,m, d, n};

• O4x3 : n = 0 which corresponds to the set
{c, l,m, d, 0};

• O4x4 : m
2 − ln = 0 which corresponds to the

set {c, l,m, d,m2/l};

• O4x5 : ld
2−2cdm+c2n = 0 which corresponds

to the set {c, (2cdm− nc2)/d2,m, d, n};

Now we proceed with the study of the singular-
ities of the four–dimensional components (i.e. the
objects O4xi, i = 1, . . . , 5) and their respective in-
tersections. We will also study the “tangencies” of
these objects in the affine space with slices of the
type d = 1 and constant n. This study generates
a set of three–dimensional or lower objects. Con-
cretely, we have the new objects:

• O3x1 = {0, 0,m, d, n};

• O3x2 = {0, l,m, 0, n};

• O3x3 = {0, l,m, d, 0};

• O3x4 = {0, l,m, d,m2/l};

• O3x5 = {0, l,m, d, dm2/l};

• O3x6 = {c, 0, 0, d, n};

• O3x7 = {c, 0,m, d, 0};

• O3x8 = {c, 0,m, d, 2dm/c};

• O3x9 = {c, 0, cdn/2, d, n};

• O3x10 = {c, l, 0, d, 0};

• O3x11 = {c, l, dl/2c, d, 0};

• O3x12 = {c, l,m, 0, 0};

• O3x13 = {c, cm/d,m, d, dm/c};

• O3x14 = {c, c
2dn, cdn, d, n};

• O2x1 = {0, 0, 0, d, n};

• O2x2 = {0, 0,m, d, 0};

• O2x3 = {0, l,m, 0,m2/l};

• O2x4 = {c, 0, 0, d, 0};

• O2x5 = {c, l, 0, 0, 0};

• O1x1 = {0, 0, 0, 0, n}.

Now we take the list of three–dimensional ob-
jects O3xi and we study their singularities and their
respective intersections. We will also study the
possibility that any of these objects may be ex-
pressed by means of square roots which could pro-
duce the change from real solutions to complex ones
under some conditions. This generates a set of two–
dimensional or lower objects which enlarge the set
previously found. Concretely, we have added the
new objects:

• O2x6 = {0, 0,m, 0, n};

• O2x7 = {0, l, 0, d, 0};

• O2x8 = {0, l,m, 0, 0};

• O2x9 = {c, 0, 0, 0, n};

• O2x10 = {c, 0,m, 0, 0};

• O1x2 = {0, 0, 0, d, 0};

• O1x3 = {0, 0,m, 0, 0};

• O1x4 = {0, l, 0, 0, 0};

• O1x5 = {c, 0, 0, 0, 0}.
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Now we take the list of two–dimensional objects
O2xi and we study their singularities and their re-
spective intersections. Again we consider the possi-
bility of the presence of square roots, which im-
ply real or complex solutions under some condi-
tions. This generates a set of one–dimensional ob-
jects which enlarge the set previously found. But
we do not have any new element, since we detect
that the elements obtained at this stage have al-
ready been found previously.

Now, these five one–dimensional objects, which
are in R

5 correspond to points in the projective
space, which will determine the singular slices that
we must take into consideration. As we have said,
the bifurcation diagram is very simple and it is de-
scribed by the next lemma.

Lemma 4.8. The parameter space of systems (6),
which is an RP

4, bifurcates into three spaces RP
3

which are [c : l : m : 1 : 1] (generic), [c : l : m :
1 : 0] and [c : l : m : 0 : 1] (both singular). Then,
inside each one of these three–dimensional slices we
must only consider two cases: m = 1 (generic) and
m = 0 (singular). Finally, the space RP2 is given by
[c : l : m : 0 : 0] which is border of [c : l : m : 0 : 1].

Even although we have found the existence of a
nonalgebraic bifurcation, we have not detected that
more slices are needed because of it, i.e. there is
complete coherence of continuity of the phase por-
traits with the slices already provided.

We now begin the analysis of the two–
dimensional bifurcation diagrams by studying com-
pletely each one of the elements described in
Lemma 4.8.

We describe first the labels used for each part
of the bifurcation space. As we have mentioned be-
fore, the subsets of dimensions 4, 3, 2, 1 and 0, of
the partition of the parameter space will be denoted
respectively by H, V , S, L and P for Hypervolume,
Volume, Surface, Line and Point, respectively. The
volumes are named using a number which corre-
sponds to each bifurcation volume which is placed
on the left side of the letter V and in order to de-
scribe the portion of the volume we place an in-
dex. The surfaces that are intersection of volumes
are named by using their corresponding numbers on
the left side of the letter S, separated by a point.
The surfaces which are singularities of volumes are

named by using the number of the surface twice on
the left side of the letter S. To describe the piece of
the surface we place an index. The curves that ap-
pear can come from different sources: they could be
intersection of surfaces, intersection among several
volumes, singularities of volumes, and, in general,
any object of this classification of dimension one.
The curves are named by using their corresponding
numbers (of the volumes containing them) on the
left side of the letter L, separated by a point. In
case we have more than three volumes intersecting
on the same curve, we place the three numbers of
the surfaces that we consider more relevant. To de-
scribe the segment of the curve we place an index.
Hypervolumes and Points are simply indexed.

We consider an example: variety (V2) splits into
3 different three–dimensional parts labeled as 2V1,
2V2 and 2V3, plus some two–dimensional parts la-
beled as 2.iSj (where i denotes the other volume
intersected by (V2) and j is a number), plus some
one–dimensional parts labeled as 2.i.kLj (where i
and k denote the other volumes intersected by (V2)
and j is a number), and also some zero–dimensional
parts. In order to simplify the labels in all figures
we see H1 which stands for the TEX notation H1.
Analogously, 2V1 (respectively, 2.5S1) stands for
2V1 (respectively, 2.5S1). And the same happens
with many other pictures.

5. Bifurcation diagram in the affine part
of RP4

Here we assume that d = 1 and we have to consider
the three–dimensional slices n = 1 and n = 0, which
indicate, respectively, a generic and a singular slice
for d = 1.

In Fig. 4 we represent the generic plane m = 1
of the parameter space for the generic slice n = 1,
showing only the algebraic surfaces. We will use
lower–case letters provisionally to describe the sets
found algebraically in order to not interfere with
the final partition described with capital letters.
Moreover, we obtain the global phase portraits
with the numerical program P4 [Artés et al., 2005,
Dumortier et al., 2006]. In this slice we have a par-
tition in two–dimensional parts bordered by curved
polygons, some of them bounded, others bordered
by infinity. For each two–dimensional part we ob-
tain a phase portrait which is coherent with those
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of all their borders. Except for the part h9 (the
rectangle bordered by green, purple, red and infin-
ity). The study of this part is very important for
the coherence of the bifurcation diagram. That is
why we have decided to present only this part (and
its borders) in Fig. 4.

c

l
h11

5v4

4.5s1

h9

2v2

h4

4.8s2

h8

4v3

Fig. 4. Plane m = 1 on the slice n = 1 (only algebraic
manifolds)

We start the analysis of part h9. The phase
portrait in h9 near 2v2 possesses a finite basin pass-
ing through the finite saddle–node, i.e. two sepa-
ratrices of the finite saddle–node start at the same
infinite saddle–node, whereas the phase portrait in
h9 away from 2v2 does not possess the finite basin.
Then, there must exist at least one element 7V1

of manifold (V7) dividing part h9 into two “new”
parts, H9 and H10, which represents a bifurcation
due to the connection of a separatrix of a finite
saddle–node and a separatrix of an infinite saddle–
node (see Fig. 5 for a sequence of phase portraits
in these parts). As the segment 5v4 corresponds
to changes in the infinite singular points, the finite
part of the phase portraits remains unchanged and
this element of nonalgebraic manifold (V7) must in-
tersect 5v4 having this intersection point as one of
its endpoints, since in h11 we do not have the suf-
ficient number of infinite singularities in order to
make this nonalgebraic bifurcation to happen. In

Lemma 5.1 we prove that 7V1 is bounded and it
has 4.8s2 and 5.7S1 as endpoints. The complete bi-
furcation diagram for the generic plane m = 1 on
the slice n = 1 is presented in Fig. 6.

H9 7V1 H10

Fig. 5. Sequence of phase portraits in part h9 of n =
m = 1

Lemma 5.1. The element 7V1 of variety (V7) is
bounded and it has 4.8s2 and 5.7s1 as endpoints.

Proof. Numerical tools show that this result is true.
We have mentioned earlier that in H11 we do not
have the sufficient number of infinite singularities in
order to make the nonalgebraic bifurcation given by
7V1 to happen. However, 7V1 must intersect 5v4 in
some point, since some two different phase portraits
5V3 and 5V4 are detected on this part. Then such
a manifold has an endpoint at 5.7S1. On the other
hand, we observe that 4V3 represents the existence
of an invariant straight line which indicates a topo-
logical change between H8 and H9. If some point of
4V3 were an endpoint of 7V1, then the invariant line
would necessarily be broken in order to make this
nonalgebraic bifurcation to happen. Then the sec-
ond endpoint of 7V1 cannot be on 4V3. Moreover,
it also cannot be on 2V2 since on such a manifold
the finite saddle–node has become a cusp–type sin-
gularity. Therefore, the second endpoint of 7V1 is
4.8S2. See Fig. 6 for the mentioned regions in this
proof.

For the slice n = 1, the only singular plane is
m = 0, in which we observe that the volume regions
4V and 5V coalesce, making the hypervolume re-
gions H2, H3, H4, H9, and H10 to disappear, see
Fig. 7.

We now pass to the singular slice n = 0. Ac-
cording to the study of the geometrical features of
the manifolds, we must consider the planes m = 1
and m = 0, which are, respectively, generic and
singular planes for this slice.
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H1

H2H3H4

H5

H6H7H8

H10H9

H11

2V1

2V2

2V3

4V14V24V3

5V15V25V35V4

7V1

8V4 8V3

8V2 8V1

5.8S15.7S1
2.5S1

4.8S14.8S2 c

l

Fig. 6. Plane m = 1 on the slice n = 1

H6H7 H5H8

H1H11 2V1

2V3

8V2 8V1

4.5S14.5S2 4.5.8L1

c

l

Fig. 7. Plane m = 0 on the slice n = 1 (see Fig. 6)

We start studying the generic plane m = 1.
According to Remark 4.5, for this generic plane we
have that (V5) ≡ 0, i.e, there are two infinite sin-
gularities that always coalesce. Moreover, in this
case we have that (V8) is reduced to the line l = 2c.
In fact, almost all phase portraits from this value
of the parameters d, n,m can be obtained from the
previous ones via a specific coalescence of infinite

singularities. We only have five exceptions, which
are the parts which were gone to the infinity dur-
ing the transition between the generic slice m = 1
and the singular one: H1, H2, H5, H9, and H11. In
Fig. 8 we have drawn this generic plane.

5V5 5V6

5V75V8

5V9

5V10 2.5S2

2.5S3

5.8S2

5.8S3

4.5S34.5S4

4.5.8L2

c

l

Fig. 8. Plane m = 1 on the slice n = 0 (see Fig. 7)

Now we discuss the singular plane m = 0. In
this case, variety (V8) is reduced to the line l = 0
and this movement makes the volume regions 5V6

and 5V9 disappear. The new corresponding regions
are 4.5.8L1, 4.5.8L2 and P1 (see the representation
of the plane m = 0 in Fig. 9). Moreover, since we
are considering n = 0, according to Remark 4.5, for
this singular plane we already have that (V5) ≡ 0.

In addition, equation (9) tells us that M̃ is also
0. Therefore, the phase portraits for the remaining
regions of the plane m = 0 can be obtained from
the corresponding phase portraits from the plane
m = 1 by performing a convenient coalescence of
infinite singularities. In Fig. 9 we have drawn this
singular plane.

6. Bifurcation diagram in the infinite part
of RP4

Here we assume that d = 0 and again we have to
consider the three–dimensional slices n = 1 and n =
0, which now indicate, respectively, the affine and
the infinite part of the infinity of RP4.

First we consider slice n = 1. In this slice we
must perform the study of the planes m = 1 and
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5.5S1

5.5S25.5S3

5.5S4

4.5.8L34.5.8L4

2.5.5L1

2.5.5L2

P1
c

l

Fig. 9. Plane m = 0 on the slice n = 0 (see Fig. 8)

m = 0, which indicate, respectively, the generic and
the singular planes.

For the values of the parameters d and n under
consideration, we have that (V8) is reduced to the
double line c2 = 0. Therefore, for m = 1, this is
the only topological change in the bifurcation dia-
gram when we compare this plane with the plane
described in Fig. 6 (see Fig. 10).

H1

H2

H5

H11

H9

H8

4V14V3

5V15V4

2.8S1

2.8S2

2.8S3

2.4.8L1

2.5.8L1

c

l

Fig. 10. Plane m = 1 on the affine part of the infinity
of RP4 (see Fig. 9)

Using the same arguments as before, we con-
clude that in the plane m = 0 we have only one

topological change on the bifurcation diagram when
we compare this plane with the plane described in
Fig. 7 (see Fig. 11).

H1

H5
H8

H11

2.8S1

2.8S3

4.5S14.5S2

P2

c

l

Fig. 11. Plane m = 0 on the affine part of the infinity
of RP4 (see Fig. 10)

Remark 6.1. The phase portrait corresponding to
region 2.8S1 in Fig. 10 possesses a pair of com-
plex straight lines filled up with singularities. Such
straight lines are described by equations

y = (−1± i)x,

respectively. We point out that this phase portrait
is topologically equivalent to 2V1 from Fig. 2. This
is a very curious topological coincidence of phase
portraits coming from very different quadratic sys-
tems. There is even one more quadratic sys-
tem topologically equivalent to them but geomet-
rically different, which is the one that has the in-
tricate point hh(4). This fact has already been de-
tected in different papers as [Artés & Libre, 1994]
or [Artés et al., 2020b].

Now, finally we present the study of the infinity
of the infinite part of RP4. Here we already have
d = n = 0, i.e. we are in the half–sphere c2 +
l2 + m2 = 1. Then we proceed as we did in the
previous section, that is, here we have to study m =
1 (the affine part) and m = 0 (the equator). For
these values of d and n we have that (V5) ≡ 0 and
(V8) ≡ 0, then all the phase portraits that will be
obtained here are degenerate. Moreover, equation
(8) tells us that the vertical axis is still a bifurcation
curve because on it the degeneration is of degree
two. But we verify that the horizontal axis still
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produces an invariant straight line but now does
not imply any topological change on the bifurcation
diagram, this is the reason why we have drawn this
axis as a dashed line in Fig. 12. In such a figure, all
the “generic” parts are labeled as 8.9Sj , the lines
are labeled as k.8.9Lj , where k corresponds to the
curve on this compactified plane, and the points are
labeled as points. We use the orange color for the
equator of S2, i.e. d = n = m = 0.

8.9S1

8.9S2

8.9S4

8.9S3

8.9.9L1

8.9.9L28.9.9L1

8.9.9L2

4.8.9L14.8.9L2

2.8.9L1

2.8.9L2

P5P5

P4

P4

P3

Fig. 12. Compactified plane corresponding to the in-
finite part of the infinity of RP

4. The affine part is
given by n = 0,m = 1 and the equator is described
by n = m = 0 (see Fig. 11)

Since the complete bifurcation diagram is quite
simple, the best way to see the continuity between
different phase portraits, and the way that they bi-
furcate ones from the others, is to set all the planes
in a single page in a reduced size as we do in Fig. 13.

Because there is coherence among all the slices
that we have presented, we conclude that no more
slices are needed for the complete coherence of the
bifurcation diagram and therefore we can affirm
that we have described a complete bifurcation di-
agram for family QsnSN11(A) modulo islands, as
discussed in Sec. 7.



20 J.C. Artés et al

8.9S1

8.9S2

8.9S4

8.9S3

8.9.9L1

8.9.9L28.9.9L1

8.9.9L2

4.8.9L14.8.9L2

2.8.9L1

2.8.9L2

P5P5

P4

P4

P3

H1

H2H3H4

H5

H6H7H8

H10H9

H11

2V1

2V2

2V3

4V14V24V3

5V15V25V35V4

7V1

8V4 8V3

8V2 8V1

5.8S15.7S1
2.5S1

4.8S14.8S2

5V5 5V6

5V75V8

5V9

5V10 2.5S2

2.5S3

5.8S2

5.8S3

4.5S34.5S4

4.5.8L2

H6H7 H5H8

H1H11 2V1

2V3

8V2 8V1

4.5S14.5S2 4.5.8L1

5.5S1

5.5S2
5.5S3

5.5S4

4.5.8L34.5.8L4

2.5.5L1

2.5.5L2

P1

H1

H2

H5

H11

H9

H8

4V14V3

5V15V4

2.8S1

2.8S2

2.8S3

2.4.8L1

2.5.8L1

H1

H5
H8

H11

2.8S1

2.8S3

4.5S14.5S2

P2
c

c

c c

c c

l

l

l
l

l

l

d = 0, n = 0,m = 1 (affine)
d = 0, n = 0,m = 0 (equator)

d = 1, n = 0,m = 1

d = 1, n = 0,m = 0

d = 1, n = 1,m = 1

d = 1, n = 1,m = 0

d = 0, n = 1,m = 1

d = 0, n = 1,m = 0

Fig. 13. All cl–planes of the bifurcation diagram and the corresponding values of the parameters d,m and n
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7. Other relevant facts about the bifurca-
tion diagram

The bifurcation diagram that we have obtained for
the class QsnSN11(A) is completely coherent, i.e.
in each plane, by taking any two points in the pa-
rameter space and joining them by a continuous
curve, along this curve the changes in phase por-
traits that occur when crossing the different bifur-
cation surfaces we mention can be completely ex-
plained.

Nevertheless, we cannot be sure that these bi-
furcation diagram is the complete bifurcation di-
agram for QsnSN11(A) due to the possibility of
“islands” inside the parts bordered by unmentioned
bifurcation manifolds. In case they exist, these “is-
lands” would not mean any modification of the na-
ture of the singular points.

In case there were more bifurcation manifolds,
we should still be able to join two representatives of
any two parts of the 75 parts ofQsnSN11(A) found
until now with a continuous curve either without
crossing such a bifurcation manifold or, in case the
curve crosses it, it must do it an even number of
times without tangencies, otherwise one must take
into account the multiplicity of the tangency, so the
total number must be even. This is why along this
text we call these potential bifurcation manifolds
“islands”. In order to be more precise, we have to
answer the following question: What such a phase
portrait could be in such an island? If we con-
sider the phase portraits from [Artés et al., 2018]
and from those ones of family (A) of codimension–
one (which possess a finite saddle–node sn(2), see
page 3) and forcing the coalescence of two finite
singular points with two different infinite singular
points to produce a phase portrait ofQsnSN11(A),
we can detect up to eight different phase portraits,
in such a way that two of them do not appear here.
Under some conditions these phase portraits could
live in such an island inside the bifurcation diagram.
However, using other arguments, it can be proved
that they are not realizable. We delay the proof
of this fact since this will be the main matter on a
future paper on the topological classification of all
the phase portraits of the class QsnSN11.

8. Completion of the proof of the main the-
orem

In the bifurcation diagram we may have topolog-
ically equivalent phase portraits belonging to dis-
tinct parts of the parameter space. As here we
have 75 distinct parts of the parameter space, to
help us identify or distinguish phase portraits, we
need to introduce some invariants and we actually
choose integer valued, character and symbol invari-
ants. Some of them were already used for instance
in [Artés et al., 2015], but we recall them and in-
troduce some needed ones. These invariants yield a
classification which is easier to grasp.

First of all we would like to emphasize that due
to some values of the parameters, among the 75
phase portraits obtained in the study of the bifur-
cation diagram, four of them correspond to linear
systems (see page 22). These four phase portraits
can be clearly divided into two classes as in Fig. 1
(we can distinguish them by considering, for in-
stance, the number of infinite singularities, which
is a numeric invariant).

Now we define six invariants Ij , 1 ≤ j ≤ 6, that
allows us to make the classification of the remain-
ing 71 phase portraits corresponding to quadratic
differential systems.

Definition 8.1. We denote by I1(S) the number
of the real finite singular points. We note that this
number can also be infinity, which is represented by
∞.

Definition 8.2. We denote by I2(S) the number
of the real infinite singular points.

Definition 8.3. For a given infinite singularity s of
a system S, let ℓs be the number of global or local
separatrices beginning or ending at s and which do
not lie on the line at infinity. Then 0 ≤ ℓs ≤ 4. We
denote by I3(S) the sequence of all such ℓs when s
moves in the set of infinite singular points of system
S. We start the sequence at the infinite singular
point which receives (or sends) the greatest number
of separatrices and take the direction which yields
the greatest absolute value, e.g. the values 2110
and 2011 for this invariant are symmetrical (and,
therefore, they are the same), so we consider 2110.

Definition 8.4. We denote by I4(S) the total
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number of local or global separatrices of the finite
multiple singular point linking it to the infinite mul-
tiple singular points.

Definition 8.5. We denote by I5(S) a character
from the set {n,y} describing the nonexistence
(“n”) or the existence (“y”) of elliptic sectors.

Definition 8.6. We denote by I6(S) a symbol
from the set {[|] , [|2] , [×]} which indicates the fol-
lowing configuration of curves filled up with singu-
larities, respectively: a real straight line, a double
real straight line, and two real straight lines inter-
secting at a finite point. This invariant only makes
sense to distinguish the degenerate phase portraits.

Theorem 8.7. Consider the class QsnSN11(A)
and all the phase portraits that we have obtained
for this family. The values of the affine invariant
I = (I1, I2, I3, I4, I5, I6) given in Table 8.1 yield
a partition of these phase portraits of the class
QsnSN11(A).

Furthermore, for each value of I in this dia-
gram there corresponds a single phase portrait; i.e.
S and S′ are such that I(S) = I(S′), if and only if
S and S′ are topologically equivalent.

The bifurcation diagram for QsnSN11(A) has
four parts corresponding to two topologically dis-
tinct classes of linear systems and also 71 parts
corresponding to quadratic ones. As we have said
before, the phase portraits corresponding to lin-
ear systems can be easily divided into two different
classes, as in Fig. 1. Now we have to work in the
classification of the remaining 71 parts. These ones
produce 34 topologically different phase portraits as
described in Table 8.2 and the remaining 37 parts
do not produce any new phase portrait.

The phase portraits that does not possess
graphic have been denoted surrounded by paren-
thesis, for example (5V2); the phase portraits hav-
ing two or more graphics have been denoted sur-
rounded by {{∗}}, for example {{P4}}. Normally we
use a single {∗} when there is just one graphic but
this does not happen in the present study.

Proof of Theorem 8.7. The above result follows
from the results in the previous sections and a care-
ful analysis of the bifurcation planes given in Sec. 4,
in Figs. 4 to 12, the definition of the invariants Ij

and their explicit values for the corresponding phase
portraits.

Regarding the phase portraits corresponding to
quadratic systems, in Table 8.2 we list in the first
column 34 parts with all the distinct phase portraits
of Fig. 2. Corresponding to each part listed in the
first column we have in each row all parts whose
phase portraits are topologically equivalent to the
phase portrait appearing in the first column of the
same row.

In the second column we set all the parts whose
systems yield topologically equivalent phase por-
traits to those in the first column, but which are
identical under perturbations.

In the third column we list all parts whose
phase portraits possess an invariant curve not yield-
ing a connection of separatrices.

In the fourth column we add the phase por-
traits, topologically equivalent to those ones from
the first column, which corresponds to symmetric
parts of the bifurcation diagram.

The last column refers to other reasons associ-
ated to different geometrical aspects and they are
described as follows:

(1) the phase portrait possesses a singularity of

type
(̂
2
3

)
PP − PP at infinity;

(2) the coincidence described in Remark 6.1.

Whenever phase portraits appear in a row in a
specific column, the listing is done according to the
decreasing dimension of the parts where they ap-
pear, always placing the lower dimensions on lower
rows.

Regarding the linear differential systems ob-
tained in this study which correspond to the parts
4.5.8L3, 4.5.8L4, P1, P5 of the bifurcation diagram
(see Figs. 9 and 11), as we have mentioned be-
fore, we can split them into two different classes
as in Fig. 1. By considering, for instance, the
number of infinite singularities we obtain that
4.5.8L3, 4.5.8L4, P5 have two distinct infinite sin-
gularities whereas P1 has only one infinite singu-
larity. Therefore we conclude the classification of
all phase portraits obtained by the study of the
class QsnSN11(A) with respect to the canonical
form (6).
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Table 8.1. Geometric classification for the family QsnSN11(A)

I1=





1 & I2=





1 & I3=

{
11 (2V1),
21 (H1),

2 & I3=





1110 & I4=

{
2 (4.5S1),
3 {{4.5S3}} ,

2100 (5.7S1),

2101 & I4=





1 (5V1),
2 {{2.5S2}} ,
3 {{5V6}} ,

2200 (2.5S1),
2210 {{5V7}} ,
3101 {{5V5}} ,

3200 & I4=

{
1 (5V2),
2 (5V3),

3 & I3=





111010 (4V1),
111110 (H5),
210110 (4V2),
211010 (7V1),

211110 & I4=

{
1 (H2),
2 (H3),

220110 (2V3),
311010 (2V2),
320110 (H6),
321010 (H10),
411010 (H4),

∞ & I2=





1 & I5=

{
n {{P4}} ,
y {{8.9.9L1}} ,

2 & I3=





0000 & I5=





n & I6=





[|] (4.5.8L1),
[|2] (2.5.8L1),
[×] {{2.8.9L1}} ,

y {{5.8S2}} ,
1000 {{8.9S1}} ,
1010 {{5.8S1}} ,

3 & I3=

{
000000 {{2.8S2}} ,
100000 {{8V1}} .
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Table 8.2. Topological equivalences for the family QsnSN11(A)

Presented Identical Possessing
phase under invariant curve Symmetry Other reasons
portrait perturbations (no separatrix)

H1 H11

5.5S1
(1), 5.5S2

(1),

5.5S3
(1), 5.5S4

(1)

H2 H9

H3

H4

H5 H8

H6 H7

H10

2V1 2.8S1
(2)

2.5.5L1
(1), 2.5.5L2

(1)

2V2

2V3

4V1 4V3

4V2

5V1 5V4

5V2

5V3

5V5 5V8

5V6 5V9

5V7 5V10

7V1

8V1 8V2, 8V3, 8V4

4.8S1, 4.8S2

2.5S1

2.5S2 2.5S3

2.8S2 2.8S3

2.4.8L1

4.5S1 4.5S2

4.5S3 4.5S4

5.7S1

5.8S1

5.8S2 5.8S3

4.5.8L2

8.9S1 8.9S2, 8.9S3, 8.9S4

4.8.9L1, 4.8.9L2

2.5.8L1 P2

2.8.9L1 2.8.9L2

P3

4.5.8L1

8.9.9L1 8.9.9L2

P4
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