New lower bounds of the number of critical periods in reversible centers [ Back ]

Date:
04.11.19   
Times:
15:30
Place:
UAB - Dept. Matemàtiques (C1/-128)
Speaker:
Iván Sánchez
University:
Universitat Autònoma de Barcelona

Abstract

En esta sesión introduciremos la noción de función de período para un sistema de ecuaciones diferenciales en el plano que presenta un centro en el origen, y presentaremos el concepto de período crítico. En analogía con el 16º Problema de Hilbert, consideramos el problema de hallar el máximo número de períodos críticos que bifurcan de un centro isócrono al añadir una perturbación que mantiene la propiedad de centro. Con el trabajo que presentaremos hemos hallado n^2/2+n/2-2 períodos críticos para sistemas de grado n con 2<n<17. Para los casos cúbico y cuártico (n=3,4), usamos una técnica que mejora este resultado y, por lo que nosotros sabemos, obtiene las mejores cotas conocidas hasta la fecha.