ICDEA 2012 Barcelona

A QRT-system of two order-one homographic difference equations: conjugation to rotations, periods of solutions, sensitiveness to initial conditions

Guy Bastien, Marc Rogalski

- M. R.: Laboratoire Paul Painlevé (Université des Sciences et Technologies de Lille et CNRS), Institut Mathématique de Jussieu (Université Pierre et Marie Curie et CNRS)
- G. B.: Institut Mathématique de Jussieu (Université Pierre et Marie Curie et CNRS)

I. A geometric definition for an homographic system

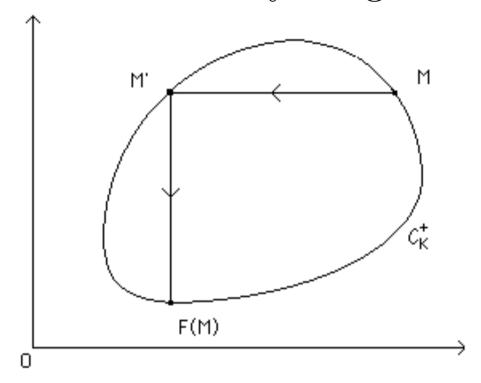
The "homographic" system in \mathbb{R}^{+2}_{*} is

$$u_{n+1}u_n = 1 + \frac{d}{v_n}$$
, $v_{n+1}v_n = 1 + \frac{d}{u_{n+1}}$, for $d > 0$.
The associated dynamical system is (U, F) , where $U = \mathbb{R}^{+2}_*$, $F(x, y) = (X, Y)$, where $Xx = 1 + \frac{d}{y}$, $Yy = 1 + \frac{d}{X}$,

so that if $M_n := (u_n, v_n)$ then $F(M_n) = M_{n+1}$.

As every QRT-map, there is a geometric construction of F. Let \mathcal{C}_K be the family of cubic curves in the plane, xy(x+y) + (x+y) + d - Kxy = 0, with d > 0, $K \in \mathbb{R}$. It is of degree 2 in x and in y.

Map $F: U \to U$ is defined by the geometric method:



The cubic curves \mathcal{C}_K are invariant and the quantity defined in U by

$$G(x,y) := x + y + \frac{1}{x} + \frac{1}{y} + \frac{d}{xy}$$

is invariant under the action of $F: G \circ F = G$. The curve \mathcal{C}_K^+ is the K-level set of G in U.

II. Critical point of G and fixed point of F

The first result concerns the sequences (u_n, v_n) .

Theorem 1. The map F has exactly one fixed point $L = (\ell, \ell)$ where ℓ is the positive solution of the equation $t^3 - t - d = 0$.

 $G \to +\infty$ at the infinite point of U, and L is its unique critical point, where G attains its strict minimum K_m . The solutions of the homographic system are permanent; if $(u_0, v_0) \neq L$, then the solution diverges. The equilibrium L is locally stable. Moreover, for $K > K_m$ the positive component C_K^+ of the cubic C_K is diffeomorphic to the circle \mathbb{T} and surrounds the point L.

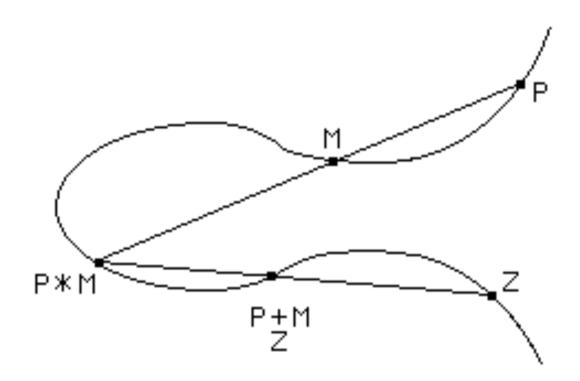
III. The dynamical system in terms of the group law on the cubic

We denote $\overline{\mathcal{C}_K}$ the extension of \mathcal{C}_K in $\mathbb{P}^2(\mathbb{R})$, and $\widetilde{\mathcal{C}_K}$ its extension in $\mathbb{P}^2(\mathbb{C})$. We have natural extensions of F as \overline{F} and \widetilde{F} to these spaces. Now we can extend also the geometric definition of F to \overline{F} and \widetilde{F} , by intersection of the cubics with horizontal and vertical lines in $\mathbb{P}^2(\mathbb{R})$ and $\mathbb{P}^2(\mathbb{C})$.

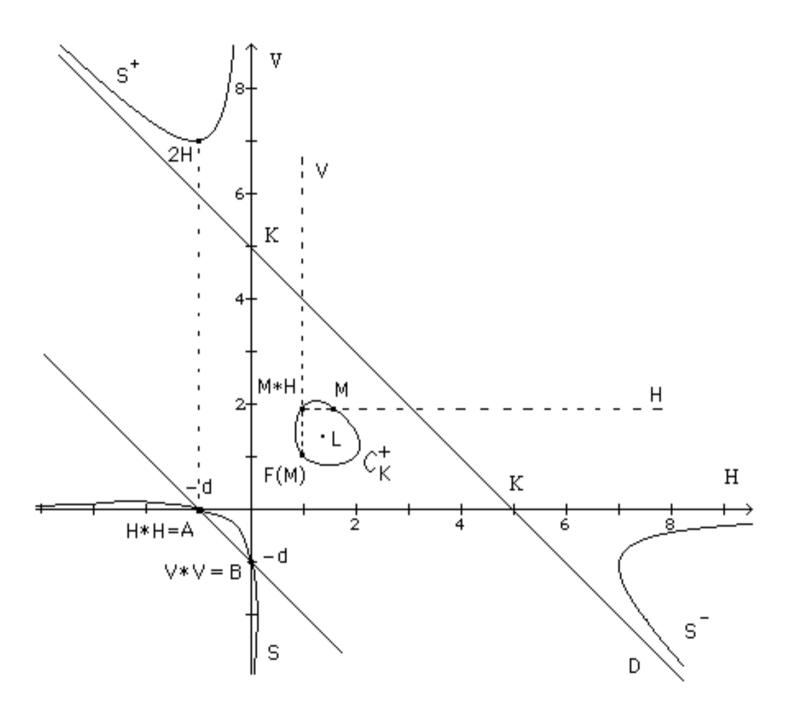
The crucial property of \mathcal{C}_K is that it is regular and so elliptic.

Let us recall that on an elliptic cubic curve we have abelian group laws: the tangent-chord group laws. We choose a zero element Z on the cubic and

define P + M as (P * M) * Z, where A * B denotes the third point of the cubic on the line (AB).



Now, the cubic $\widetilde{\mathcal{C}_K}$ has three points at infinity, H, V and D. One sees that the restriction of the map \widetilde{F} to $\widetilde{\mathcal{C}_K}$ is nothing but the map $M \mapsto M + H$.



Case d=1, K=5

Proposition 1. If $M_0 = (u_0, v_0) \in \mathcal{C}_K^+ \subset U$, then

$$(u_n, v_n) = M_n = F^n(M_0) = M_0 + nH.$$

So (u_n, v_n) is k-periodic iff kH = V in the group law, that is iff H has for order a divisor of k.

If a point $M_0 \in U$ is k-periodic, then all points of the curve C_K containing M_0 are k-periodic.

Example of calculations with the group law: the "homographic" difference equations have no non-constant 4-periodic solution, that is $4H \neq V$.

First it is easy to see the opposite of a point X of $\overline{\mathcal{C}_K}$ for the group law +:

$$-X = X * B$$
, where $B = V * V = (0, -d, 1)$.

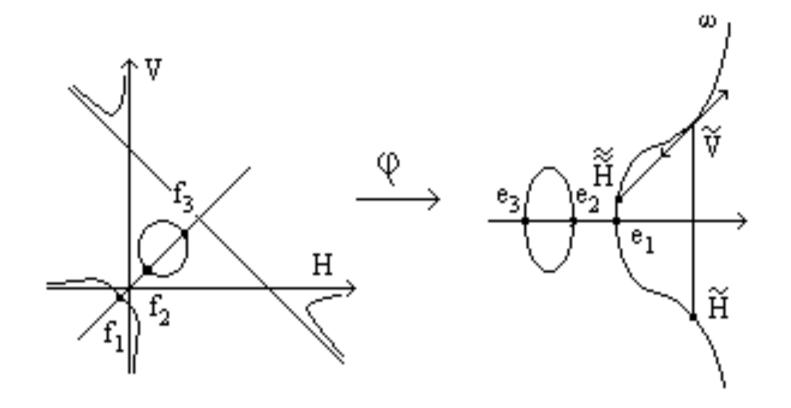
IV. Conjugation of $F_{|\mathcal{C}_K^+|}$ to a rotation on the circle via Weierstrass' function \wp

We will transform C_K in a standard cubic in normal form. We start with the linear projective transformations \mathcal{T}_1 :

2X = x + y, 2Y = y - x, T = x + y - Kt. Then we make a triple affinity \mathcal{T}_2 and a translation \mathcal{T}_3 on x. We obtain a new cubic Γ_K in normal form with coefficients depending on K and d

$$Y^2T = 4X^3 - g_2XT^2 - g_3T^3.$$

We put $\phi := \mathcal{T}_3 \circ \mathcal{T}_2 \circ \mathcal{T}_1$, it is a linear projective real transformation of $\widetilde{\mathcal{C}_K}$ onto Γ_K .



We put $\phi(H) := \widetilde{H}$ and $\phi(V) := \widetilde{V}$.

By the linear projective map ϕ , the addition of H on $\widetilde{\mathcal{C}_K}$ for the chord-tangent law + with zero element V (that is the map \widetilde{F}) is conjugated to the

addition of \widetilde{H} on Γ_K for the chord-tangent law + with zero element \widetilde{V} .

If ω is the infinite point on Γ_K at the vertical direction, the standard group chord-tangent law + on Γ_K with ω as zero element is isomorphic to the standard group law on \mathbb{T}^2 , via the parametrization of Γ_K by the Weierstrass' function \wp .

So we will make a supplementary isomorphism on Γ_K . We define a group isomorphism ψ of $(\Gamma_K, \widetilde{V})$ onto (Γ_K, ω) by

 $\psi: \widetilde{\Gamma}_K \to \widetilde{\Gamma}_K : M \mapsto M + \omega = (M * \omega) * \widetilde{V}.$

The fact that ψ transforms the addition + in the

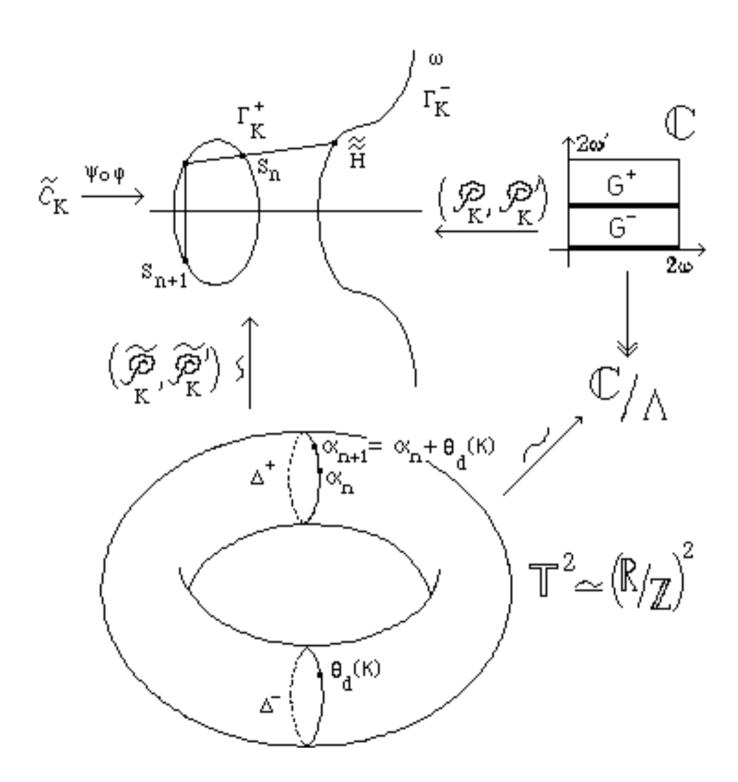
addition + is not an obvious fact in general. But in our particular case there is an elementary computerassisted proof (for example with Maple).

Now, the map F is conjugated by $\psi \circ \phi$ to the addition of $\widetilde{\widetilde{H}} = \psi(\widetilde{H})$ on (Γ_K, ω)

 Γ_K is parametrized by $X = \wp_K(z)$, $Y = \wp_K'(z)$ for $z \in \mathbb{C}$ or in $[0, 2\omega(K)] \times [0, 2\omega'(K)]$, because \wp_K is doubly periodic with the group of periods

$$\Lambda = \{2n\omega(K) + 2im\omega'(K) | (n, m) \in \mathbb{Z}^2\}.$$

We know that Γ_K^+ is parametrized for $z \in G^+ := [0, 2\omega(K)] \times \{i\omega(K)\}$ and that $\Gamma_K^- := \Gamma_K \setminus \Gamma_K^+$ is parametrized for $z \in G^- := [0, 2\omega(K)] \times \{0\}$.



So we get the

Theorem 2. For d > 0 and $K \in]K_m, +\infty[$ the restriction of the map F to \mathcal{C}_K^+ is conjugated to the rotation on the circle \mathbb{T} with angle $2\pi\theta_d(K) \in]0, \pi[$ given by the following formula:

$$2\theta_d(K) = \frac{\int_0^{\sqrt{\frac{e_1 - e_3}{\nu}}} \frac{du}{\sqrt{(1 + u^2)(1 + \varepsilon u^2)}}}{\int_0^{+\infty} \frac{du}{\sqrt{(1 + u^2)(1 + \varepsilon u^2)}}},$$

where X(K) is the abscisse of \widetilde{H} and where one has $\nu := X(K) - e_1 > 0$ and $\varepsilon := \frac{e_1 - e_2}{e_1 - e_3}$ (functions of K and d).

IV. The possible periods of periodic solutions of the homographic system

If the rotation number $\theta_d(K)$ is rational, equal to $\frac{p}{q}$ irreducible, then the points $M_0 \in \mathcal{C}_K^+$ are periodic with minimal period q. But if $\theta_d(K)$ is irrational, then the points $M_0 \in \mathcal{C}_K^+$ have a dense orbit in the curve \mathcal{C}_K^+ . The questions are:

- * How are distributed these two types of points in U, for a given d?
- * What are the possible periods of periodic solutions $M_n = (u_n, v_n)$ for a given d?

Theorem 3. Let d be positive.

- (1) It exists a partition of $U \setminus \{L\}$ in two dense sets A_d and B_d , each of them union of invariant curves C_K^+ , such that every point in A_d is periodic and every point in B_d has a dense orbit in the positive part of the cubic which passes through it.
- (2) It exists an integer N(d) such that every integer $q \ge N(d)$ is the minimal period of some solution of the homographic system.

Proposition 2. One has $\lim_{K\to+\infty}\theta_d(K)=\frac{3}{7}$, and

$$\theta_m(d) := \lim_{K \to K_m} \theta_d(K) = \frac{1}{\pi} \cos^{-1} \left(\frac{\ell^2 - 1}{2\ell^2} \right).$$

So we have the inclusion $\operatorname{Im}(\theta_d) \supset < \frac{3}{7}, \theta_m(d) >$, where $\langle a, b \rangle := |\min(a, b), \max(a, b)|$. The function $d \mapsto \theta_m(d)$ is continuous on $]0,+\infty[$ and decreasing from $\frac{1}{2}$ to $\frac{1}{3}$, $\theta_m(d) = 3/7$ iff $d = d_0 :=$ $\frac{2\sin(\pi/14)}{[1-2\sin(\pi/14)]^{3/2}} \approx 1.076$. The map θ_{d_0} is non constant and not one-to-one. For each d in some open interval I containing d_0 the map θ_d is not one-to-one and not constant.

Now we make d vary and ask about possible periods for some K and some d.

Theorem 4. Every integer, except 2, 3, 4, 6, 10, is the minimal period of some solution (u_n, v_n) for some d > 0.

The long proof uses three principal ingredients:

* the inclusion
$$\bigcup_{d>0} \operatorname{Im}(\theta_d) \supset]1/3, 1/2[\setminus \{3/7\},$$

- * the prime number theorem,
- * the proof that for $K > K_m$ the geometric form of the cubic $\overline{\mathcal{C}_K}$ is those of the previous third figure.

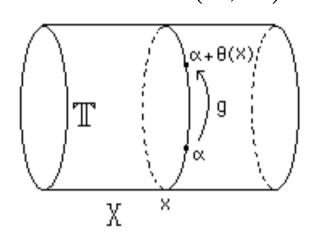
The goal is to find prime numbers $p \in]q/3, q/2[$ wich do not divide q, for q sufficiently large, then to use a computer for q not too large for seeing if some ratio p/q works, and then to study the particular cases by studying the geometrical equation qH = V.

V. Chaotic behaviour of the dynamical system (U, F)

Theorem 5. For every compact set $\mathcal{K} \subset U$ with $L \notin \mathcal{K}$ it exists a number $\delta(\mathcal{K}) > 0$ such that for every point $M \in \mathcal{K}$ and every neighborhood W of M it exists $M' \in W$ such that $\operatorname{dist}(F^n(M), F^n(M') \geq \delta(\mathcal{K})$ for infinitely many integers n.

This uses the the continuity of the map $K \mapsto \wp_K :]K_m, +\infty[\to \mathcal{C}(G^+, U)]$ for the uniform norm (with tedious calculations), and the following probably known result.

Proposition 3. Let X be a metric space. Let be also $\theta: X \to \mathbb{T} = \mathbb{R}/\mathbb{Z}$ a continuous map such that for every non-empty open set U, the set $\theta(U)$ contains a non-empty open set. Define the map $g: X \times \mathbb{T} \to X \times \mathbb{T}: (x,\alpha) \to (x,\alpha+\theta(x)).$



Then the dynamical system $(X \times \mathbb{T}, g)$ has δ -sensitiveness to initial conditions for every $\delta \in]0, 1/2[$.

References

- [1] G. B. and M. R., Global Behaviour of the Solutions of Lyness' Difference Equations, J. of Difference Equations and Appl., 2004.
- [2] G. B., V. Mañosa, M. R., On the periodic solutions of 2-periodic Lyness' difference equation, to appear.
- [3] G.R.W. Quispel, J. A. G. Roberts and C. J. Thompson, *Integrable mappings and soliton equations*, Physics Letters A: 126 (1988).
- [4] E. C. Zeeman, Geometric unfolding of a difference equation, unpublished paper (1996).