A QRT-system of two order-one homographic difference equations : conjugation to rotations, periods of solutions, sensitiveness
to initial conditions

Guy Bastien, Marc Rogalski

M. R. : Laboratoire Paul Painlevé (Université des Sciences et Technologies de Lille et CNRS), Institut Mathématique de Jussieu (Université Pierre et Marie Curie et CNRS)
G. B. : Institut Mathématique de Jussieu (Université Pierre et Marie Curie et CNRS)

I. A geometric definition for an homographic system

The "homographic" system in \mathbb{R}_{*}^{+2} is
$u_{n+1} u_{n}=1+\frac{d}{v_{d}}, \quad v_{n+1} v_{n}=1+\frac{d}{u_{n+1}}$, for $d>0$.
The associated dynamical system is
The associated dynamical system is
(U, F), where $U=\mathbb{R}_{*}^{+2}, F(x, y)=(X, Y)$, where

$$
X x=1+\frac{d}{y}, \quad Y y=1+\frac{d}{X}
$$

so that if $M_{n}:=\left(u_{n}, v_{n}\right)$ then $F\left(M_{n}\right)=M_{n+1}$.
As every QRT-map, there is a geometric construction of F. Let \mathcal{C}_{K} be the family of cubic curves in the plane, $x y(x+y)+(x+y)+d-K x y=0$, with $d>0, K \in \mathbb{R}$. It is of degree 2 in x and in y.

Map $F: U \rightarrow U$ is defined by the geometric method:

The cubic curves \mathcal{C}_{K} are invariant and the quantity defined in U by

$$
G(x, y):=x+y+\frac{1}{x}+\frac{1}{y}+\frac{d}{x y}
$$

is invariant under the action of $F: G \circ F=G$. The curve \mathcal{C}_{K}^{+}is the K-level set of G in U.

II. Critical point of G and fixed point of F

The first result concerns the sequences $\left(u_{n}, v_{n}\right)$.
Theorem 1. The map F has exactly one fixed point $L=(\ell, \ell)$ where ℓ is the positive solution of the equation $t^{3}-t-d=0$.
$G \rightarrow+\infty$ at the infinite point of U, and L is its unique critical point, where G attains its strict minimum K_{m}. The solutions of the homographic system are permanent; if $\left(u_{0}, v_{0}\right) \neq L$, then the solution diverges. The equilibrium L is localy stable. Moreover, for $K>K_{m}$ the positive component \mathcal{C}_{K}^{+} of the cubic \mathcal{C}_{K} is diffeomorphic to the circle \mathbb{T} and surrounds the point L.

III. The dynamical system in terms of the group law on the cubic

We denote $\overline{\mathcal{C}_{K}}$ the extension of \mathcal{C}_{K} in $\mathbb{P}^{2}(\mathbb{R})$, and $\widetilde{\mathcal{C}_{K}}$ its extension in $\mathbb{P}^{2}(\mathbb{C})$. We have natural extensions of F as \bar{F} and \widetilde{F} to these spaces. Now we can extend also the geometric definition of F to \bar{F} and \widetilde{F}, by intersection of the cubics with horizontal and vertical lines in $\mathbb{P}^{2}(\mathbb{R})$ and $\mathbb{P}^{2}(\mathbb{C})$.

The crucial property of $\widetilde{\mathcal{C}_{K}}$ is that it is regular and so elliptic.

Let us recall that on an elliptic cubic curve we have abelian group laws : the tangent-chord group laws. We choose a zero element Z on the cubic and
define $P \underset{Z}{+} M$ as $(P * M) * Z$, where $A * B$ denotes the third point of the cubic on the line $(A B)$.

Now, the cubic $\widetilde{\mathcal{C}_{K}}$ has three points at infinity, H, V and D. One sees that the restriction of the map \widetilde{F} to $\widetilde{\mathcal{C}_{K}}$ is nothing but the map $M \mapsto M+\underset{V}{+} H$.

Proposition 1. If $M_{0}=\left(u_{0}, v_{0}\right) \in \mathcal{C}_{K}^{+} \subset U$, then

$$
\left(u_{n}, v_{n}\right)=M_{n}=F^{n}\left(M_{0}\right)=M_{0}+n H
$$

So $\left(u_{n}, v_{n}\right)$ is k-periodic iff $k H=V$ in the group law, that is iff H has for order a divisor of k.
If a point $M_{0} \in U$ is k-periodic, then all points of the curve \mathcal{C}_{K} containing M_{0} are k-periodic.

Example of calculations with the group law : the "homographic" difference equations have no nonconstant 4-periodic solution, that is $4 H \neq V$.

First it is easy to see the opposite of a point X of $\overline{\mathcal{C}_{K}}$ for the group law + :
$\bar{V}-X=X * B$, where $B=V * V=(0,-d, 1)$.

IV. Conjugation of $F_{\mid \mathcal{C}_{K}^{+}}$to a rotation on the circle via Weierstrass' function \wp

We will transform $\widetilde{\mathcal{C}_{K}}$ in a standard cubic in normal form. We start with the linear projective transformations \mathcal{T}_{1} :
$2 X=x+y, \quad 2 Y=y-x, \quad T=x+y-K t$. Then we make a triple affinity \mathcal{T}_{2} and a translation \mathcal{T}_{3} on x. We obtain a new cubic Γ_{K} in normal form with coefficients depending on K and d

$$
Y^{2} T=4 X^{3}-g_{2} X T^{2}-g_{3} T^{3}
$$

We put $\phi:=\mathcal{T}_{3} \circ \mathcal{T}_{2} \circ \mathcal{T}_{1}$, it is a linear projective real transformation of $\widetilde{\mathcal{C}_{K}}$ onto Γ_{K}.
addition of \widetilde{H} on Γ_{K} for the chord-tangent law $\underset{\widetilde{V}}{\underset{\sim}{~}}$ with zero element \widetilde{V}.

If ω is the infinite point on Γ_{K} at the vertical direction, the standard group chord-tangent law $\underset{\omega}{+}$ on Γ_{K} with ω as zero element is isomorphic to the standard group law on \mathbb{T}^{2}, via the parametrization of Γ_{K} by the Weierstrass' function \wp.

So we will make a supplementary isomorphism on Γ_{K}. We define a group isomorphism ψ of $\left(\Gamma_{K}, \widetilde{V}\right)$ onto $\left(\Gamma_{K}, \omega\right)$ by

$$
\psi: \Gamma_{K} \rightarrow \Gamma_{K}: M \mapsto M \underset{\widetilde{V}}{+} \omega=(M * \omega) * \widetilde{V}
$$

The fact that ψ transforms the addition $\underset{\widetilde{V}}{+}$ in the

We put $\phi(H):=\widetilde{H}$ and $\phi(V):=\widetilde{V}$.
By the linear projective map ϕ, the addition of H on $\widetilde{\mathcal{C}_{K}}$ for the chord-tangent law $\underset{V}{+}$ with zero element $V($ that is the map $\widetilde{F})$ is conjugated to the
addition + is not an obvious fact in general. But in our particular case there is an elementary computerassisted proof (for example with Maple).

Now, the map \widetilde{F} is conjugated by $\psi \circ \phi$ to the addition of $\widetilde{H}=\psi(\widetilde{H})$ on $\left(\Gamma_{K}, \omega\right)$
Γ_{K} is parametrized by $X=\wp_{K}(z), Y=\wp_{K}^{\prime}(z)$ for $z \in \mathbb{C}$ or in $[0,2 \omega(K)] \times\left[0,2 \omega^{\prime}(K)\right]$, because \wp_{K} is doubly periodic with the group of periods

$$
\Lambda=\left\{2 n \omega(K)+2 i m \omega^{\prime}(K) \mid(n, m) \in \mathbb{Z}^{2}\right\}
$$

We know that Γ_{K}^{+}is parametrized for $z \in G^{+}:=$ $[0,2 \omega(K)] \times\{i \omega(K)\}$ and that $\Gamma_{K}^{-}:=\Gamma_{K} \backslash \Gamma_{K}^{+}$is parametrized for $z \in G^{-}:=[0,2 \omega(K)] \times\{0\}$.

IV. The possible periods of periodic solutions of the homographic system

If the rotation number $\theta_{d}(K)$ is rational, equal to $\frac{p}{q}$ irreducible, then the points $M_{0} \in \mathcal{C}_{K}^{+}$are periodic with minimal period q. But if $\theta_{d}(K)$ is irrational, then the points $M_{0} \in \mathcal{C}_{K}^{+}$have a dense orbit in the curve \mathcal{C}_{K}^{+}. The questions are :

* How are distribued these two types of points in U, for a given d ?
* What are the possible periods of periodic solutions $M_{n}=\left(u_{n}, v_{n}\right)$ for a given d ?

So we get the
Theorem 2. For $d>0$ and $K \in] K_{m},+\infty[$ the restriction of the map F to \mathcal{C}_{K}^{+}is conjugated to the rotation on the circle \mathbb{T} with angle $\left.2 \pi \theta_{d}(K) \in\right] 0, \pi[$ given by the following formula:

$$
2 \theta_{d}(K)=\frac{\int_{0}^{\sqrt{\frac{e_{1}-e_{3}}{\nu}}} \frac{\mathrm{~d} u}{\sqrt{\left(1+u^{2}\right)\left(1+\varepsilon u^{2}\right)}}}{\int_{0}^{+\infty} \frac{\mathrm{d} u}{\sqrt{\left(1+u^{2}\right)\left(1+\varepsilon u^{2}\right)}}}
$$

where $X(K)$ is the abscisse of $\widetilde{\widetilde{H}}$ and where one has $\nu:=X(K)-e_{1}>0$ and $\varepsilon:=\frac{e_{1}-e_{2}}{e_{1}-e_{3}}$ (functions of K and d).

Theorem 3. Let d be positive.
(1) It exists a partition of $U \backslash\{L\}$ in two dense sets A_{d} and B_{d}, each of them union of invariant curves \mathcal{C}_{K}^{+}, such that every point in A_{d} is periodic and every point in B_{d} has a dense orbit in the positive part of the cubic which passes through it.
(2) It exists an integer $N(d)$ such that every integer $q \geq N(d)$ is the minimal period of some solution of the homographic system.

Proposition 2. One has $\lim _{K \rightarrow+\infty} \theta_{d}(K)=\frac{3}{7}$, and

$$
\theta_{m}(d):=\lim _{K \rightarrow K_{m}} \theta_{d}(K)=\frac{1}{\pi} \cos ^{-1}\left(\frac{\ell^{2}-1}{2 \ell^{2}}\right)
$$

So we have the inclusion $\operatorname{Im}\left(\theta_{d}\right) \supset<\frac{3}{7}, \theta_{m}(d)>$, where $\langle a, b\rangle:=] \min (a, b), \max (a, b)[$. The function $d \mapsto \theta_{m}(d)$ is continuous on $] 0,+\infty[$ and decreasing from $\frac{1}{2}$ to $\frac{1}{3}, \theta_{m}(d)=3 / 7$ iff $d=d_{0}:=$ $\frac{2 \sin (\pi / 14)}{[1-2 \sin (\pi / 14)]^{3 / 2}} \approx 1.076$. The map $\theta_{d_{0}}$ is non constant and not one-to-one. For each d in some open interval I containing d_{0} the map θ_{d} is not one-to-one and not constant.

Now we make d vary and ask about possible periods for some K and some d.
Theorem 4. Every integer, except 2, 3, 4, 6, 10, is the minimal period of some solution $\left(u_{n}, v_{n}\right)$ for some $d>0$.

The long proof uses three principal ingredients :

* the inclusion $\left.\bigcup_{d>0} \operatorname{Im}\left(\theta_{d}\right) \supset\right\rfloor 1 / 3,1 / 2 \backslash \backslash\{3 / 7\}$,
* the prime number theorem,
* the proof that for $K>K_{m}$ the geometric form of the cubic $\overline{\mathcal{C}_{K}}$ is those of the previous third figure.

The goal is to find prime numbers $p \in] q / 3, q / 2[$ wich do not divide q, for q sufficiently large, then to use a computer for q not too large for seeing if some ratio p / q works, and then to study the particular cases by studying the geometrical equation $q H=V$.

V. Chaotic behaviour of the dynamical system (U, F)

Theorem 5. For every compact set $\mathcal{K} \subset U$ with $L \notin \mathcal{K}$ it exists a number $\delta(\mathcal{K})>0$ such that for every point $M \in \mathcal{K}$ and every neighborhood W of M it exists $M^{\prime} \in W$ such that $\operatorname{dist}\left(F^{n}(M), F^{n}\left(M^{\prime}\right) \geq\right.$ $\delta(\mathcal{K})$ for infinitely many integers n.

This uses the the continuity of the map $K \mapsto$ $\left.\wp_{K}:\right] K_{m},+\infty\left[\rightarrow \mathcal{C}\left(G^{+}, U\right)\right.$ for the uniform norm (with tedious calculations), and the following probably known result.

Proposition 3. Let X be a metric space. Let be also $\theta: X \rightarrow \mathbb{T}=\mathbb{R} / \mathbb{Z}$ a continuous map such that for every non-empty open set U, the set $\theta(U)$ contains a non-empty open set. Define the map $g: X \times \mathbb{T} \rightarrow X \times \mathbb{T}:(x, \alpha) \rightarrow(x, \alpha+\theta(x))$.

Then the dynamical system $(X \times \mathbb{T}, g)$ has δ-sensitiveness to initial conditions for every $\delta \in] 0,1 / 2[$.

References

[1] G. B. and M. R., Global Behaviour of the Solutions of Lyness' Difference Equations, J. of Difference Equations and Appl., 2004.
[2] G. B., V. Mañosa, M. R., On the periodic solutions of 2-periodic Lyness' difference equation, to appear.
[3] G.R.W. Quispel, J. A. G. Roberts and C. J. Thompson, Integrable mappings and soliton equations, Physics Letters A : 126 (1988).
[4] E. C. Zeeman, Geometric unfolding of a difference equation, unpublished paper (1996).

