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I. A geometric definition for an homographic
system

The “homographic” system in R} is

d
UptiUy =1+ —, vpr1v, =1+ ——, ford > 0.
. v . Un+1
The associated dynamical system is
(U, F), where U = R}”, F(z,y) = (X,Y), where

X
so that if M,, := (uy,vy,) then F(M,) = M, 4.
As every QRT-map, there is a geometric construction
of F. Let Cx be the family of cubic curves in the
plane, zy(z + y) + (r +y) + d — Kxy = 0, with
d>0, K eR.

d d
Xe=1+—-, Yy=1+4+ —,
Y

Map F': U — U is defined by the geometric method :

F(M)

u}
The cubic curves Cx are and the quan-
tity defined in U by 11 p
Gx,y) =c+y+—+—-—+—
x Yy xy
is invariant under the action of F': Go F' = (. The

curve C;g is the K-level set of G in U.

II. Critical point of G and fixed point of F'

The first result concerns the sequences (uy,, v, ).

Theorem 1. The map F' has exactly one fixed point
L = ({,0) where ¢ is the positive solution of the
equation t3 —t —d = 0.

G — 400 at the infinite point of U, and L is
its unique critical point, where G attains its strict
minimum K,,. The solutions of the homographic
system are permanent; if (ug,vq) # L, then the
solution diverges. .
Moreover, for K > K,, the positive component C;;
of the cubic Ck is diffeomorphic to the circle Tand
surrounds the point L.




III. The dynamical system in terms of the
group law on the cubic

We denote Cx the extension of Cx in P?(R),
and Cg its extension in P2(C). We have natural
extensions of F as F and F to these spaces. Now we
can extend also the geometric definition of F' to F
and F', by intersection of the cubics with horizontal

and vertical lines in P?(R) and P?(C).

The crucial property of é;vg is that it is regular
and so elliptic.

Let us recall that on an elliptic cubic curve we
have : the tangent-chord group
laws. We choose a zero element Z on the cubic and

define P + M as (P x M) x Z, where A * B denotes
Z
the third point of the cubic on the line (AB).

Now, the cubic é;vg has three points at infinity,

H,V and D. One sees that the restriction of the

map F' to Cg is nothing but the map M — M + H.
1%

Proposition 1. If My = (ug,vg) € C}; C U, then

(un,vn) = Mn = Fn(Mo) = MQ -+ nH.
\%

So (U, vy) is k-periodic iff in the group
law, that is iff H has for order a divisor of k.

If a point My € U is k-periodic, then all points of
the curve Cx containing M, are k-periodic.

Example of calculations with the group law :
the “homographic” difference equations have no non-
constant 4-periodic solution, that is 4H # V.

First it is easy to see the opposite of a point X
of Cx for the group law + :

— X =X=xB, whete B=V %V = (0,—d, 1).
1%




IV. Conjugation of F|c+ to a rotation on the
K
circle via Weierstrass’ function p

We will transform é}v( in a standard cubic in
normal form. We start with the linear projective
transformations 77 :

2X =4y, 2Y=y—2x, T =2x+y— Kt.
Then we make a triple affinity 75 and a translation
73 on x. We obtain a new cubic I'x in normal form
with coefficients depending on K and d

V2T = 4X3 — go XT? — g3T°.

We put ¢ := 7307507y, it is a linear projective
real transformation of Cx onto I'k.

A

=
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w"‘:
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b oty

We put ¢(H) := H and ¢(V) :=V.

By the linear projective map ¢, the addition
of H on Ck for the chord-tangent law + with zero
1%

element V (that is the map F) is to the

addition of H on I'yx for the chord-tangent law +
v

with zero element V.
If w is the infinite point on 'k at the vertical
direction, the standard group chord-tangent law +
w

on 'k with w as zero element is isomorphic to the
standard group law on T2, via the parametrization
of 'k by the Weierstrass’ function .

So ST

We define a group isomorphism 1 of (I'e, V')

onto (I'k,w) by ~

Y:Tg =Tg:M—M+w=(Mx*xw)xV.

%

The fact that ¢ transforms the addition + in the
%

addition + is not an obvious fact in general. But in
our particular case there is an elementary computer-
assisted proof (for example with Maple).

Now, the map F' is conjugated by ¢ o ¢ to the
addition of H = 1(H) on (g, w)

'k is parametrized by X = g, (2), Y = ¢’ (2)
for z € C or in [0,2w(K)] x [0, 2w’ (K)], because g,
is doubly periodic with the group of periods

A = {2nw(K) + 2imw’(K)|(n,m) € Z?}.
We know that I'}. is parametrized for 2 € GT :=

[0,2w(K)] x {iw(K)} and that ['y := g \ Tk is
parametrized for z € G~ := [0, 2w(K)] x {0}.




So we get the

Theorem 2. For d > 0 and K €|K,,,+oo[ the
restriction of the map F' to C;g is conjugated to the
rotation on the circle T with angle 2m04(K) €]0, |
given by the following formula :

—81;83 du
fo V (1+u?)(1+eu?)
f+oo du ’
0 /(1+u2)(1+eu?)

204(K) =

where X (K) is the abscisse of H and where one has
v:=X(K)—e >0andec:= S
K and d).

(functions of
€1 — €3

IV. The possible periods of periodic solutions
of the homographic system

If the rotation number 6,4(K) is rational, equal
to % irreducible, then the points M, € Cj are
periodic with minimal period ¢. But if 64(K) is
irrational, then the points M, € C;g have a dense

orbit in the curve C};. The questions are :
*

Theorem 3. Let d be positive.

(1) It exists a partition of U \ {L} in
Ay and By, each of them union of invariant curves
C;g, such that every point in Ay is periodic and every
point in By has a dense orbit in the positive part of
the cubic which passes through it.
(2) It exists an integer N (d) such that every integer
q > N(d) is the minimal period of some solution of
the homographic system.

3

Proposition 2. One has lim 0,4(K) = -, and
K—+o00 7

) 1 -1
O (d) := Klir?{ 0q(K) = — cos ! ( 572 )




So we have the inclusion ,
where < a,b >:=]min(a,b), max(a,b)[. The func-

tion d — 0,,(d) is continuous on ]0,+oo[ and de-

1 1
creasing from 5 to 3 On(d) = 3/7 iff d = dy =

2 sin(w/14)
[1—2sin(7/14)]3/2
stant and not one-to-one. For each d in some open
interval I containing dy the map 6, is not one-to-one
and not constant.

Now we make d vary and ask about possible
periods for some K and some d.

~ 1.076. The map 04, is non con-

Theorem 4. FEvery integer, except 2, 3, 4, 6, 10,
is the minimal period of some solution (u,v,) for
some d > 0.

The long proof uses three principal ingredients :

Y

* the prime number theorem,

* the proof that

The goal is to find prime numbers p €]q/3, q/2|
wich do not divide g, for ¢ sufficiently large, then to
use a computer for ¢ not too large for seeing if some
ratio p/q works, and then to study the particular
cases by studying the geometrical equation gH = V.

V. Chaotic behaviour of the dynamical system
(U, F)

Theorem 5. For every compact set K C U with
L ¢ K it exists a number §(K) > 0 such that for
every point M € K and every neighborhood W of M
it exists M' € W such that dist(F™ (M), F™(M') >
d(KC) for infinitely many integers n.

This uses the the continuity of the map K —
ox | Km,+oo|— C(GT,U) for the uniform norm
(with tedious calculations), and the following proba-
bly known result.

Proposition 3. Let X be a metric space. Let be
also 0 : X — T = R/Z a continuous map such
that for every non-empty open set U, the set 0(U)
contains a non-empty open set. Define the map
g: XxT - X xT: (z,a) — (z,a 4+ 0(x)).

_.'J oL+ B(X);‘l

¢
i 9
T : > ]

.
\ o
5

X ®
Then the dynamical system (X x T, g) has d-sensiti-
veness to initial conditions for every § €]0,1/2].
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