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Introduction:

We investigate the properties of the systems of randomly applied

orientation preserving homeomorphisms of the compact interval [0, 1]. Such

a system can be considered as a skew product with a mixed

topological-measure structure. In the base we do not need any topology

(although sometimes we have it), but we assume that we have there an

ergodic measure preserving transformation of a probability space. In the

fiber, which is an interval, we have orientation preserving homeomorphisms,

depending in a measurable way on the point in the base.

We are interested in the existence of almost global attractors which are

graphs of measurable functions from the base to the fiber. When we speak

of an attractor, we mean a set towards which almost all orbits converge,

and the convergence is considered fiberwise (only in the direction of a

fiber). This agrees with the philosophy saying that the phase space is really

only the fiber space (here, the interval).

Those systems and their attractors can be looked upon from various points

of view (random systems, Strange Nonchaotic Attractors, Iterated Function

Systems, nonautonomous systems, etc.).

Our main result is a detailed description of the behavior of a certain

one-parameter family of piecewise linear random homeomorphisms.

However, we precede it with some general results, which can be applied to

very general random systems of interval homeomorphisms.



Boundaries of basins of attraction:

Let us start with a very general situation. Let Ω be some space (later there

will be an invariant measure on it), R : Ω→ Ω a map, I = [0, 1],

G : Ω× I → Ω× I a skew product: G(ϑ, x) = (R(ϑ), gϑ(x)), and let π2 be

the projection from Ω× I to I. We assume that each gϑ is an orientation

preserving homeomorphism of I onto itself.

The question is: if the level 0 set Ω× {0} is an attractor, what can we say

about the boundary of the basin of attraction?

We take the approach of Bonifant and Milnor [BM].

Let ϕn,m(ϑ) be the unique number such that

Gn(ϑ, ϕn,m(ϑ)) =

(
Rn(ϑ),

1

m

)
.

This defines the function ϕn,m : Ω→ I. Then we define a function

ϕ : Ω→ I by

ϕ(ϑ) = lim
m→∞

lim
N→∞

inf
n≥N

ϕn,m(ϑ). (1)

Note that infn≥N ϕn,m(ϑ) is increasing in N and decreasing in m, so the

limits above exist.

Lemma 1. If x < ϕ(ϑ) then

lim
n→∞

π2(Gn(ϑ, x)) = 0. (2)

If x > ϕ(ϑ) then (2) does not hold.

Lemma 2. For a given ϑ ∈ Ω assume that there exists η > 0 and λn

(n = 0, 1, 2, . . . ) such that

gRn(ϑ)(x) ≤ λnx

for all n and x < η, and

lim sup
n→∞

1

n

n−1∑

k=0

log λk < 0.

Then ϕ(ϑ) > 0.

Let us now assume additionally that Ω is equipped with an R-invariant

ergodic probability measure µ, the maps gϑ depend on ϑ in a measurable

way and they are all differentiable at 0. Let Λ be the exponent at level 0,

that is,

Λ =

∫

Ω

g′ϑ(0) dµ(ϑ).

By the Birkhoff Ergodic Theorem, for almost every ϑ we have

lim
n→∞

1

n

n−1∑

k=0

log g′Rk(ϑ)(0) = Λ. (3)



Theorem 3. Assume that Λ < 0 and that at least one of the following

assumptions is satisfied:

(i) the set {gϑ : ϑ ∈ Ω} is finite,

(ii) all functions gϑ are concave,

(iii) all functions gϑ are twice differentiable and there exists a constant C

such that g′′ϑ(x)/g′ϑ(x) ≤ C for all ϑ, x.

Then there exists a measurable function ϕ : Ω→ I, positive almost

everywhere, such that for every ϑ ∈ Ω (2) holds if x < ϕ(ϑ) and does not

hold if x > ϕ(ϑ).

Remark 4. If (2) holds if x < ϕ(ϑ) and does not hold if x > ϕ(ϑ), then it

is easy to see that the graph of ϕ is G-invariant.

Two directions of time:

Let us consider a skew product like above, under an additional assumption

that the map in the base is invertible. Then we can investigate what

happens when the time goes to +∞ and what happens when it goes to

−∞. To be in agreement with the theory of Strange Nonchaotic Attractors,

we will think of the phenomena from the preceding section as occurring as

the time goes to −∞. Thus, we need new notation.

As before Ω is a space with a probability measure µ. Now, S : Ω→ Ω is an

invertible measurable map (with S−1 also measurable), for which µ is

invariant and ergodic. The map F : Ω× I → Ω× I a skew product, given

by F (ϑ, x) = (S(ϑ), fϑ(x)), and each fϑ is an orientation preserving

homeomorphism of I onto itself.

We assume that the maps fϑ are differentiable at 0 and 1, and define

Λ0 =

∫

Ω

f ′ϑ(0) dµ(ϑ), Λ1 =

∫

Ω

f ′ϑ(1) dµ(ϑ).

If both Λ0 and Λ1 are positive, then as the time goes to −∞, the levels 0

and 1 are attracting. In many cases we can use Theorem 3 to conclude that

their basins of attraction are nontrivial. However, there is no guarantee

that the boundaries of those basins coincide. For this we need some kind of

contraction in the fibers as the time goes to +∞. Since the fiber maps are

homeomorphisms, we cannot get contractions on closed intervals [0, 1].

However, sometimes there is a kind of contraction on the open intervals

(0, 1). One example of such a situation is given in the paper [BM]. There all

maps fϑ have positive Schwarzian derivative. Later we will give a

completely different example with two piecewise linear maps. However,

there is no standard method of proving forward contraction for

homeomorphisms. Therefore in our general theorem that follows, we make

it one of the assumptions. In particular, we will use the following

terminology, independently whether S is invertible or not.

Definition 5. The skew product F : Ω× I → Ω× I is essentially

contracting if for almost all ϑ ∈ Ω and all x, y ∈ (0, 1), the distance

|π2(Fn(ϑ, x))− π2(Fn(ϑ, y))|

goes to 0 as n→∞.

If ψ : ω → I is a measurable function, then we define the measure µψ,

concentrated on the graph of ψ, as the lifting of the measure µ, that is,

µψ(A) = µ{ϑ ∈ Ω : (ϑ, ψ(ϑ)) ∈ A}.



Theorem 6. For a skew product F as above, assume that

(I) Λ0,Λ1 > 0,

(II) either the set {fϑ : ϑ ∈ Ω} is finite, or all fϑ are diffeomorphisms of

class C2 with |f ′′ϑ |/(f ′ϑ)2 bounded uniformly in ϑ and x,

(III) F is essentially contracting.

Then there exists a measurable function ϕ : Ω→ (0, 1) with the following

properties:

(a) for almost every ϑ ∈ Ω, if x < ϕ(ϑ) then

lim
n→∞

π2(F−n(ϑ, x)) = 0 (4)

and if x > ϕ(ϑ) then

lim
n→∞

π2(F−n(ϑ, x)) = 1, (5)

(b) the graph of ϕ is F -invariant,

(c) for almost every ϑ ∈ Ω and every x ∈ (0, 1),

lim
n→∞

|π2(Fn(ϑ, x))− ϕ(Sn(ϑ))| = 0,

(d) for almost every ϑ ∈ Ω and for every compact set A ⊂ (0, 1) and ε > 0

there exists N such that for every n ≥ N

π2(Fn({S−n(ϑ)} ×A) ⊂ (ϕ(ϑ)− ε, ϕ(ϑ) + ε). (6)

(e) if Ω is a metric compact space and F is continuous, then for almost

every ϑ ∈ Ω and every x ∈ (0, 1), the measures

1

n

n−1∑

k=0

F k∗ (δ(ϑ,x))

converge (as n→∞) in the weak-∗ topology to the measure µϕ.

The next theorem holds whether S (and therefore, F ) is invertible or not.

We assume in it that there is topology in Ω in which µ is a Borel measure.

Theorem 7. Assume that F is essentially contracting. Then there is at

most one ergodic probability measure invariant for F that projects to µ

under (π1)∗ and such that the measure of Ω× {0, 1} is 0.

Bernoulli shift in the base:

Let us assume now that (S,Ω, µ) is a Bernoulli shift on a finite alphabet.

We can consider a two-sided shift (σ,Σ, µ) or a two-sided one (σ+,Σ+, µ+).

We will write the points of Σ and Σ+ as ω = (ωn)∞n=−∞ or ω = (ωn)∞n=0

respectively. We will also assume that the maps fω depend only on ω0 (so

there are only finitely many of them). The interpretation is that we are

choosing those map randomly and independently each time.

There is a natural projection P : Σ→ Σ+. It is a semiconjugacy and it

sends the measure µ to µ+.

In this context, let us look closer at the definition of the function ϕ.



Lemma 8. If ω = (ωn)∞n=−∞, then ϕ(ω) depends only on ωn with n < 0.

Theorem 9. There exists a probability measure ν on (0, 1) such that

(P × idI)∗(µϕ) = µ+ × ν.

Piecewise linear homeomorphisms:

Now we consider a one-parameter family of random homeomorphisms of an

interval, for which we can prove that the theory presented above applies.

The system in the base will be the Bernoulli shift with probabilities

(1/2, 1/2). The corresponding interval homeomorphisms, f0, f1 : I → I will

be piecewise liner with two pieces. Additionally, their graphs will be

symmetric with respect to (1/2, 1/2), that is, f1(x) = 1− f0(1− x). For

each map the point at which it is not linear can be considered as a critical

point. As always, the situation is simpler if there is only one critical value,

and by the symmetry, this common critical value has to be 1/2. Since our

maps are orientation preserving homeomorphisms, we have

f0(0) = f1(0) = 0 and f0(1) = f1(1) = 1.

These conditions determine a one-parameter family of pairs of maps

f0(x) =




ax if 0 ≤ x ≤ 1− c,
1− b(1− x) if 1− c ≤ x ≤ 1,

f1(x) =




bx if 0 ≤ x ≤ c,
1− a(1− x) if c ≤ x ≤ 1.

where a = 1
2(1−c) , b = 1

2c , and 0 < c < 1/2. Observe that the harmonic

mean of the slopes a and b is 1, and that 0 < a < 1 < b.

0 c 1/2 1-c 1

f

f

0

1



We will apply fj , j = 0, 1, when the 0-th coordinate of ω ∈ Σ (or in Σ+) is

j. That is, we consider skew products F : Σ× I → Σ× I given by

F (ω, x) = (σ(ω), fω0(x)), where ω = (ωn)∞n=−∞, and F+ : Σ+ × I → Σ+ × I
given by F+(ω, x) = (σ+(ω), fω0(x)), where ω = (ωn)∞n=0.

We want to apply Theorem 6. Therefore we need to check that its

assumptions are satisfied by F . Assumption (I) is satisfied because

ab = 1
4c(1−c) > 1. Assumption (II) is satisfied because there are only 2 maps

fϑ. Thus, we have to prove that F is essentially contracting. As we

mentioned earlier, this is a nontrivial thing to do.

The main idea is to find a homeomorphism from (0, 1) to R such that in the

new metric in (0, 1), which we get by transporting back the natural metric

from R, both maps f0 and f1 are contractions. In fact, they will be very

weak contractions (on the most of the space they will be isometries), so we

need more work in order to prove that F is essentially contracting.

Fix ω ∈ Σ. For x0 ∈ [0, 1] we will write xn = π2(Fn(ω, x0)). Set

Γ =

{
ω ∈ Σ : lim

n→∞
1

n
#
{
k ∈ {0, 1, . . . , n− 1} : ωk = 0

}
=

1

2

}
.

By the Birkhoff Ergodic Theorem, µ(Γ) = 1.

Theorem 10. Let ω ∈ Γ and let x0, y0 ∈ (0, 1). Then

limn→∞ |xn − yn| = 0.

Measures:

We continue to investigate F and F+, this time from the point of view of

invariant measures. The relevant invariant measures for F and F+ are those

that project to µ and µ+. There are two trivial ergodic ones: µ× δ0 and

µ× δ1 (in the one-sided case, µ+ × δ0 and µ+ × δ1).

By Theorem 7, there is at most one nontrivial measure of this type. Such

measure for F is µϕ, which appears in Theorem 6 (e). It is clear that the

projection from Σ× I to the first coordinate is an isomorphism of the

systems (Σ× I, F, µϕ) and (Σ, σ, µ). In particular, this shows that µϕ is

ergodic for F .

Now we consider F+. Here the situation is completely different. Denote the

Lebesgue measure on I by λ. The following theorem can be interpreted as

the Lebesgue measure being invariant for our random system of maps. The

proof is straightforward and specific for our family.

Theorem 11. The measure µ+ × λ is invariant for F+.

Theorem 12. For almost every x ∈ I the preimage ϕ−1(x) is dense in Σ.

In particular, the graph of ϕ is dense in Σ× I.



Two-sided vs. one sided case:

By Theorems 6 (c) and 10, the map F has a fiberwise attractor which is a

graph of a measurable invariant function from the base to the fiber space.

We will show that this is not the case if we consider F+, even if we skip the

assumption of invariance.

Theorem 13. There is no measurable function ϕ+ : Σ+ → (0, 1) whose

graph is an attractor for F+ in the sense that for almost every ω ∈ Σ+ and

every x0 ∈ (0, 1) we have

lim
n→∞

|xn − ϕ+(σn+(ω))| = 0.

In such a way we get an excellent illustration of the Mystery of the

Vanishing Attractor. For an invertible system an attractor exists, but it

vanishes when we pass to the noninvertible system. This happens in spite of

the fact that in the definition of an attractor we only look at forward orbits,

and that in the base the future is completely independent of the past.

One can try to explain this paradox by saying that for F+ also there is an

attractor, but it is the whole space. This is true, but normally when

thinking of an attractor one considers subsets much smaller than the whole

space. Another explanation is that when trying to find an attractor for F+,

which is a graph, we try to specify one point in (0, 1) for each ω ∈ Σ+,

without specifying x0. However, when we know the past, we basically know

x0, and with the knowledge of x0 and ω ∈ Σ+ we know xn for all n ≥ 0.

Again, this is a kind of explanation (due to M. Rams), but still the

question why in order to have a nice description of the future we need the

past, if the past and the future are independent, remains a little mysterious.


