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Billiard dynamics

A billiard is a mechanical system consisting of a point-particle moving
freely inside a planar region D (billiard table) and being reflected off the
perimeter of the region ∂D according to some reflection law.

Example (Billiards in the world)

Light in mirrors

Acoustics in closed rooms, echoes

Lorentz gas model for electricity (small electron bounces between
large molecules)

games: billiard, pool, snooker, pinballs, flippers
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Examples of billiard tables

s

s’

θ

θ’

Convex Non-convex

Smooth billiards
billiard map Φ: (s, θ) 7→ (s′, θ′)
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Examples of billiard tables

??

Convex Non-convex

Polygonal billiards
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More examples

Triangle Rectangle

Z-shaped
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Examples of reflection laws
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classical
standard
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elastic
λ = 1
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Linear contraction
dissipative
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0 < λ < 1

θ

Slap
λ = 0

8 / 42



Billiard map

Singularities/Discontinuity points

V = {corners and tangencies} ×
(
−π

2
,
π

2

)

S+ = V ∪ Φ−1(V )

Billiard map

Piecewise smooth

Φ: M →M

(s, θ) 7→ (s′, θ′)

Phase space

M = ∂D ×
(
−π

2
,
π

2

)
\ S+
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Polygonal convex billiard table (it has
corners)

θ
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− π/ 2
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s

Phase space M
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Standard reflection law

The billiard map Φ preserves the measure cos θ dθ ds
Conservative system
No attractors

Contractive reflection law

The area is contracted
Dissipative system
There are attractors
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Conservative convex polygonal billiards

θ θ

Specular reflection law
Configuration space
regular triangle

Phase space
(one component)
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Conservative polygons are not chaotic

Zero Lyapunov exponents:

LE(x, α, v) = lim
t→+∞

1

t
log ‖DΦt(x, α) v‖ = 0

where Φt is the billiard flow, M = (D × S1)/ ∼ is the phase space

”Unfolding” the polygonal table along the orbit
Linear divergence of straight lines
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The square

Reduction to a torus flow with direction α ∈ S1

Unfolding the square table
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A billiard is integrable if

1 M =
⋃
αMα (3-dim)

2 Mα = T2

3 Φt(Mα) =Mα

4 Φt|Mα linear flow, i.e. Φt(x, α) = (x+ t(cosα, sinα), α)

Linear flow on a torus is either periodic or quasi-periodic (minimal,
ergodic)
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The only integrable polygons are:
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A billiard is quasi-integrable if

1 M =
⋃
αMα

2 Φt(Mα) =Mα

3 Φt|Mα linear

4 Mα has genus g > 1
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Example

g(Mα) = 2 for the L-shaped polygon

Mα

L-shaped billiard table
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Example

k-regular polygon with α = k−2
k π = m

n π with m and n co-prime,

g(Mα) = 1 +
n

2

(
k − 2− k

n

)
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Rational polygons

A polygon is rational if every internal angle αi ∈ πQ

α1

α2 α3

α4
α5

α6

αi =
mi

ni
π

For a polygon with k-sides, N least common multiplier of ni

g(Mα) = 1 + N
2

(
k − 2−∑k

i=1
1
ni

)

Theorem (Veech)

Rational polygons are either integrable or quasi-integrable

Relation with Teichmuller spaces, quadratic differentials, interval exchange
transformations...
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General polygons

Theorem (Kerchoff-Masur-Smillie)

Polygonal billiards are generically ergodic

Not known if a given irrational polygon is ergodic

Not known if every triangle has a periodic orbit
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Dissipative convex polygonal billiards

Let

Dissipative reflection law θ 7→ λθ, 0 < λ < 1

U = {|θ| < λπ/2} is an invariant set

the full-measure set of points whose orbit remains forever in the
domain is

U+ = {x ∈ U : Φn
λ(x) 6∈ S+, n ≥ 0}

The attractor of Φλ is the invariant set:

Ωλ =
⋂

n≥0
Φn
λ(U+)

It might have several components
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Periodic orbits

For many billiards there are many periodic orbits. E.g.

Square, λ = 0.6.
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Parabolic attractor:

P = {Period 2 orbits} ⊂ {θ = 0}

Basin of attraction:

W s(P) = {(s, θ) ∈M : dist(Φn
λ(s, θ),P)→ 0}

Remark

P 6= ∅ iff there are parallel sides facing each other
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Dominated splitting

Let Σ be a Φλ-invariant set (e.g. periodic orbits, horseshoes, attractors)

Theorem (Markarian-Pujals-Sambarino)

For every polygon, Σ has dominated splitting: there is a non-trivial
continuous invariant splitting TΣ = E ⊕ F , 0 < µ < 1 and c > 0 st on Σ

‖DΦn
λ|E‖

‖DΦn
λ|F ‖

≤ cµn, n ≥ 0

Dominated splitting is weaker than uniform hyperbolicity

‖DΦn
λ|E‖ ≤ cµn ‖DΦ−nλ |F ‖ ≤ cµn
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Uniform hyperbolicity

Theorem

If the polygon has

1 no parallel sides facing each other,

2 OR parallel sides facing each other AND ∃C > 0 st orbits in Σ do
not bounce more than C times between parallel sides,

then Σ is uniformly hyperbolic
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Example

Odd-sided regular polygons do not have parallel sides

Example (periodic orbits)

Period = 2, parabolic P
Period > 2, hyperbolic

Local unstable manifold of periodic points is inside {θ = const}. Global is
cut in local pieces due to singularities.
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Even-sided regular polygons

Let D be a regular polygon with 2N sides (N ≥ 3)

Theorem

If Σ 6= P and λ < 1
2 , then Σ is uniformly hyperbolic
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Rectangles

Proposition

1 If Σ 6= P and h
∑

n≥0 tan
(
λn+1(1− λ)π2

)
> 1, then Σ is uniformly

hyperbolic

2 If θλ ≤ θ∗, then P attracts every orbit (Ωλ = P)

1

θ*

θλ

Configuration space

λ

h

0 1

1

0

Parameter space
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The square billiard h = 1

−π/2

s

0

π/2

θ

s

θ

π

4

Phase space reduction - reduced billiard map
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The square billiard h = 1

Period 4 orbit = fixed point of reduced map
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Wloc

u

Wloc

s

S+

S-

pΛ

λ < λ2

Wloc

u
Wloc

s

S+

S-

pΛ

λ = λ2 ' 0.8736

Invariant manifolds of the fixed point pλ
Transverse homoclinic intersection for 0 < λ < λ2
Existence of horseshoe
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Proposition

For 0 < λ < λ2, Φλ has positive topological entropy
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Hyperbolic attractors

λ = 0.615 λ = 0.75 λ = 0.88

Square billiard: non-trivial attractor

36 / 42



Sinai-Ruelle-Bowen measures

A Φλ-invariant measure µ that has absolutely continuous conditional
measures on unstable manifolds.

Remark

”The relevance of SRB measures lies in the fact that they are the invariant
measures more related to volume for dissipative systems, helping to explain
how local instability on attractors gives coherent statistics for orbits
starting at the basin of attraction.” (Lai-Sang Young)

Equivalently, there is a positive Lebesgue measure set of x ∈M st

lim
n→+∞

1

n

n−1∑

j=0

ϕ(Φj
λ(x)) =

∫

M
ϕdµ, ϕ ∈ C0(M,R)
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Regular triangle

λ = 0.3 λ = 0.7 λ = 1

Reduced regular triangle: non-trivial attractor

Theorem (Arroyo-Markarian-Sanders)

The regular triangle has a transitive attractor with an ergodic SRB
invariant measure for λ < 1/3.
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Strongly dissipative polygons

Theorem

For sufficiently small λ regular polygons with 2N + 1 sides

1 have uniformly hyperbolic attractors with finitely-many SRB measures
and dense hyperbolic periodic orbits

2 are ergodic iff N = 1, 2

Theorem

Generic polygons have uniformly hyperbolic attractors with finitely-many
SRB measures and dense hyperbolic periodic orbits for sufficiently small λ.

Idea of proof: For λ ' 0, Φλ is close to slap map Φ0 (1-dim piecewise
affine expanding map), and satisfies conditions:
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1 uniform hyperbolicity

2 the smallest expansion rate along unstable direction is > p

3 Φλ(W u
loc) is cut by singularities S+ in no more than p pieces

Theorem

Then the attractor has finitely-many SRB measures and dense hyperbolic
periodic orbits

Proof: Version of Pesin result
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Slap maps λ = 0

If there are no parallel sides, the slap map is a piecewise affine expanding
map of the interval. Thus, it has expanding attractors
[Markarian-Pujals-Sambarino]

0 11/ 2

β = − 1/ cos
π

2N + 1

Φ0 (s) = β s − 1
2 mod 1

Slap map of regular polygon with 2N + 1 sides

Proposition

For regular polygons, only the triangle and the pentagon have an ergodic
slap map (with respect to the invariant measure on the attractors)
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Pentagon λ = 0

Heptagon λ = 0
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