Introduction
On Rational Difference Equations with Periodic

Coefficients
Definition:

A difference equation is a recurrence relation of the form
Xnt1 = F(Xn, Xn—1,--.).

For this talk, we will consider x,11 = f(xs, Xp—1), Where f is a
rational function.

When nonnegative initial conditions x_; and xp are given in such a
way that the denominator is nonzero, we say that the sequence
{xn}°2_; is a solution to the difference equation, if the sequence
satisfies the given relation.
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Preliminary Preliminary

Theorem 1 (Amleh, Camouzis, Ladas) Theorem 2 (Camouzis, Ladas)

Let | be a set of real numbers and let Let | be a set of real numbers and suppose that

folxi—I Folxi=1

be a function f(z1, zp) which increases in both variables. Then for be a function f(z1,2;) which decreases in zy and increases in z,.

every solution, {xp}° _;, of xpt1 = f(Xn, Xn—1), the subsequences

{XZH}%O:O and {X2n+1}$70:_1 do exactly one of the following: Then for every solution, {Xn}go:_l, oan+1 = f.(Xn,anl), the
subsequences {xon}°° o and {xon41}°> 1 are either

i) Eventually th both tonically i ing. . . . .
(i) Eventually they are both monotonically increasing. R Sy St———

i) E lly th h icall ing. . . .
(ii) Eventually they are both monotonically decreasing (i) both monotonically decreasing,

(iii) One of them is monotonically increasing and the other is

. . (i) or eventually one subsequence is increasing and the other is
monotonically decreasing.

decreasing.
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Autonomous Equation

We consider the second order difference equation of the form:

o + BXpXp—1 + YXn—1

Xpt1 = n=20,1,2,... (1)

A+ Bxpxp—1 + Cxp_1’
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Autonomous Equation

We consider the second order difference equation of the form:

Equation (1)

o+ BXpXp—1 + YXn—1
,h=0,1,2,... 1
A+ Bxpxp—1 + Cxp_1 ( )

This equation was studied extensively in the following:

1. A .M. Amleh, E. Camouzis, G. Ladas, “On The Dynamics of
Rational Difference Equations, Part 1,” International Journal
of Difference Equations, 3(1):1-35, 2008.

2. A.M. Amleh, E. Camouzis, G. Ladas, “On the Dynamics of

Rational Difference Equations, Part 2," International Journal
of Difference Equations, 3(2):195-225, 2008.

Xn+1 —
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o,

The Equation x,1 = T
n-n—

Qp
1+ XnXn—1

Xpi1 = . n=0,1,2,... (2)

m The autonomous case, when a, = «, was studied by Amleh,
Camouzis and Ladas in [1].

m They showed that every solution was bounded for all values of
«a > 0 and for all nonnegative initial conditions.

m They showed that every solution converged to a finite limit for
0 < & < 2 and for all initial nonnegative conditions.

m They conjectured that every solution converges for all values
of a > 0.

Drymonis, Kostrov, Kudlak On Rational Difference Equations with Periodic Coefficients

Every solution of x,.1 = converges

(@]
I+xnxn—1

We have confirmed the conjecture by Amleh, Camouzis, and
Ladas, namely,

«
1+ XpXn-1

Let « > 0. Every solution to the equation X,+1 =

converges to a finite limit.
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Boundedness

Theorem 4

If k >0, and {«,} is a nonnegative sequence of real numbers with

period-k, then every solution to the equation X,+1 = ———— is

bounded.
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Period-2 Convergence

If {an} = {a, 01,0, 1,...}, where ag, vy are distinct,

nonnegative real numbers, then every solution to the equation
« ) . )

Xpt1 = — _ converges to a unique prime period-two

1+ XpXp—1

solution.
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Sketch of Proof

m We begin by defining a new sequence

Zntl = X2nt1X2nt2 (3)
(671051
Zn+1 4
" (1 + X2nX2n—1)(1 + X2n+1X2n) ( )
(674181
Zn+1 o (5)

(1+z))(1+ zp1)

m We then show that every solution, {z,}, to this difference

equation converges.

[67s)
9% _ 1 to transforms

m We use the change of variable z, =

Eq. (5) into
VA (6)
1 + YnYn—1 .

m And thus, the even and odd subsequences of the {x,} solution
converge to distinct limits if ag # a1,
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Yn+1 =

Advantageous Behavior

Definition

A difference equation with coefficients from a periodic
environment, which converges to a periodic limit is said to be
advantageous if the arithmetic mean of the periodic limits is
greater than the limit of the autonomous case, with coefficients
equal to the arithmetic mean of the periodic parameters.
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Advantageous Behavior

Definition

A difference equation with coefficients from a periodic
environment, which converges to a periodic limit is said to be
advantageous if the arithmetic mean of the periodic limits is
greater than the limit of the autonomous case, with coefficients
equal to the arithmetic mean of the periodic parameters.

Theorem 6

If {ap} is @ prime period-two sequence, then the equation

Xpn+1 = ——— is advantageous, in the sense that the
1+ XpXp—1

average of the periodic limits is greater than the limit with the
average of the coefficients.
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The Advantageous Behavior of x,,1 = Trox
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Figure: The first 50 terms, where g = 0.5, a; = 10.7 compared to the
autonomous equation with o = 234107 — 5.6,
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Proof of Advantageous Behavior

m Define a = %

m Consider the autonomous equation
a

1+ ynyn-1’

m In [1], it is shown that this solution converges to y, the unique
positive solution to y3 +y —a = 0.

Ynt1 = n=0,1,...

m Define the equation f(y) = y3>+y — a.
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Proof of Advantageous Behavior

The {z,} sequence has a unique positive equilibrium z which
is the positive root to the equation

23+222+2—a0a1:0

Q0
1+z°
Q1
1+z°

{x2n+1} converges to

{x2n} converges to

aQ a1
| — iz 13z @

2 147z
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Proof of Advantageous Behavior

m We want to show that (L) > 0.

33 a
F(L) = -
D= Gzp iz
a(ao—a1)2
= —_ = = >
41+2z)3 20

m This shows that when the coefficients have period-2, then the
average of their limiting sequence will always be larger than a
constant coefficient sequence with parameter with the same
average.
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The Equation x, 1 = W

We now consider the equation

Qp
Xpi1 = —— p>0 7
ntl (]- +Xn)Xn—1 o ( )

where {a,}22 is a periodic sequence.

Autonomous Case

Amleh, Camouzis, and Ladas showed that the autonomous case of
this equation possesses an invariant, namely,

1 1
Xp—1 + Xp + Xp_1Xn + @ ( + —) = constant,Vn > 0. (8)

Xp—1 Xn

This implies that every solution of this equation is bounded from
above and from below by positive constants.

Drymonis, Kostrov, Kudlak On Rational Difference Equations with Periodic Coefficients

Non-autonomous case

Let {ap}i2 o = {0, 1, 0,0q,...} be a period-two sequence.
Then, Equation (7) possesses an invariant, namely,

Qp Qpi1
+

Xn—1 Xn

Xp—1 + Xn + Xn—1Xp + = constant,¥n > 0.  (9)
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Non-autonomous case

Let {an}i2 o = {0, 1, 0,0q,...} be a period-two sequence.
Then, Equation (7) possesses an invariant, namely,

Qp Qpi1
+

Xn—1 Xn

Xp—1 + Xn + Xn—1Xp + = constant,¥n > 0.  (9)

Corollary 8

When {an} is a period-two sequence, then every solution to
Equation (7) is bounded by positive constants.
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Non-autonomous case

Let {an}2 g = {ap,a1,a0,0q,...} be a period-two sequence.
Then, Equation (7) possesses an invariant, namely,

Op Oyl

Xn

Xp—1 + Xp + Xn—1Xp +

+

= constant,¥n > 0.

(9)

Xp—1

Corollary 8

When {«,} is a period-two sequence, then every solution to
Equation (7) is bounded by positive constants.

This partially answers an open question posed by Amleh,
Camouzis, and Ladas in [1].
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. o pn
The Invariant of x,,1 = —42—
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Figure: Showing the invariant cycles of the first 500 terms, ap = 2.5,
a1 = 151, X_1 = 1.1, X0 = 10.3.
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Are there invariants for higher periods?

Xn—1

Figure: Showing the invariant cycles of the first 1000 terms, ap = 1.1,
o] = 13, Qp = 10, X_1 = 1.1, Xo = 1.0.
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Are there invariants for higher periods?
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Figure: Showing the invariant cycles of the first 1000 terms, ap = 1.1,
a1 = 13, Qp = 10, X_1 = 1.1, Xo = 2.0.
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Are there invariants for higher periods?
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Figure: Showing the invariant cycles of the first 100,000 terms,
Qo = 1]., a1 = 13, Qp = ].0, X_1 = ].]., X0 —= 2.0.

Drymonis, Kostrov, Kudlak On Rational Difference Equations with Periodic Coefficients

Bananl

The Equation x,.1 = T

We now consider the equation

Next Equation

ﬂanXn—l

=0,1,2,... 1
1—|—Xan_]_’ n 07 )< (O)

Xp+1 =

and{f,}5°, is a periodic sequence.

Autonomous Case

Amleh, Camouzis, and Ladas have shown that when G, = (3, then
every solution to Equation (10) converges to a finite limit.
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Non-Autonomous Case

BnXnXn—1

,h=0,1,2, ...
1+ XpXp—1

Xn+1l =

Theorem 9

Every solution to Equation (10) is bounded when the coefficient /3,
is periodic.
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Period-2 case

Consider
ﬁananl

,n=0,1,2,...
1+ann—1

Xp4+1 =

where {3,} is a prime period-two sequence, {0, 51, 5o, f1, - - - }-
Theorem 10

Let B = fy-p1. Then:

(i.) For B < 4, every solution of x,11 = m’ix;: will converge to
0.
(ii.) For B > 4, every solution of xp11 = % will converge to

a period-2 solution.
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Proof of Theorem 10

B Zpi1 = Xop4+1X2n+42

_ Bzpzp—1
B Znt1 = Tz (dtzo0)

. H Bz, n—
m Claim: Every solution to z,;1 = fuzn 1 j converges.

(1+Zn)(1+zn—1

m Let us define a function f(x, y) such that z,11 = f(z,, z1-1)-

{z,}72 _; converges according to the Amleh-Camouzis-Ladas
Theorem.
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Sketch of the proof

Suppose that lim z, = z.
n—o00
m z(1+2)? = Bz?

(B—2)+/B(B—4)
2

mz=0o0rz=

m If B <4 then z =0 is the only equilibrium.

mIf B=4thenz=1.

m If B > 4 then there exist two positive equilibria z; < Z».
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YnXn—1

The Equation x,11 = 5% :
n-n—

We next consider the equation

’Yan—l (11)

Xpi+1 =
" 1+ XnXn—1

Where {7,}52, is a periodic sequence.

Autonomous Case

Amleh, Camouzis, and Ladas showed that when {v,} is a constant
sequence, every positive solution to Equation (11) is bounded.
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YnXn—1

Periodicity Destroys Boundedness of x,. 1 = o

Assume now that {v,}°° ¢ = {70,71,7%0,71,-- -}

When {~n} is a period-two sequence there exist unbounded
solutions to equation (11).

Conditions for Unboundedness

The following conditions for initial conditions x_; and xp and
parameters g and 71 force an unbounded solution to Equation

(11):

x_1 <7 <1<y <X (12)
Y71 =1 (13)
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YnXn—1

An Unbounded Solution of x;,1 = %= —

2.59

0.5

Figure: The first 100 terms of the solution with x_; = 0.5, 79 = 0.95,
Y1 = 0.95717 xo = 1.5.
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Sketch of the proof

B Zpr1 = Xopn4+1X2n42

Y0Y1Zn—1
(1 + Zn)(]- + Zn—l)

B Zy1 =
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Sketch of the proof

B Zpy1 = Xop4+1X2n+2

Y0V1Zn—1
14+ z)(1+ zp-1)

When ~g - 71 < 1, zero is a globally asymptotically stable
equilibrium of {z,}.
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m Consider
Flx.y) = 1001
’ (1+x)(1+y)
m f(x,y) is decreasing in x and increasing in y.

m There are no period-two solutions when g - 71 < 1.

m The Camouzis-Ladas Theorem applies, and it follows that
{z,}72 _; converges to a finite limit.

m Furthermore,
Z(14 2z + 2%) = yom 2z, (14)

m Z = 0 is the unique solution when ~y; < 1.
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Sketch of the proof

m Let x_1, X, Yo and 71 satisfying the following:
X1 <wm<l<ym<xo and Yo-71 =1
m Then

0X-1
X1 =

= — X_1 < Xx—
1+ xox_1 YoX-1 1

m Thus, {x2,4+1} is decreasing, and must converge to zero.

m Since z, = x, - Xp—1 — 0, there exists some N > 0 such that
foralln> N, x - xp-1 <71 — L.

Drymonis, Kostrov, Kudlak On Rational Difference Equations with Periodic Coefficients

Sketch of the proof

m We have:
xonty1xony < oy —1 (15)
1 > 14+ xont+1Xon (16)

71
—_ > 1. 17
1+ xon41Xon (17)
m Thus
XoN+2 = nren = ( n ) XoN > €+ XoN
+ 1+ XoN+1X2N 1+ X2ON+1X2N

m Where ¢ > 1 is a constant.

m {xp,} is increasing without bound.

Drymonis, Kostrov, Kudlak On Rational Difference Equations with Periodic Coefficients

When does Equation (11) converge with Period-2
coefficients?

YnXn—1

Xn+l = 7=
* 1+ XnXn—1

If ¥0,71 € [0,1) then every positive solution of equation (11)
converges to zero.
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. Qp+Xp—
The Equation xp.1 — 2525

Consider the equation

Op + Xp—1
1+ Ban)anl ’

n>0 (18)

Xn+1 — (

Autonomous Case

When {a,} and {B,} are constant sequences, Amleh, Camouzis,
and Ladas have shown that every solution to the equation is
bounded.
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Periodicity Destroys Boundedness of x,.1 = (1;1;#

Theorem 14

There exist unbounded solutions to

Xn+1 — (1 + Ban)X,-,_17 ji

when {a,} and {B,} are sequences with period-three.
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An Unbounded Solution of x,,1 = uﬁgﬁ

60
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Xn
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204

0 10 20 30 40 50 60 70 80 90
n

Figure: a0:0,a1:1,a2:2, B()I]_, 81:2, 82:1
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Sketch of the proof

Assume Qg = 0,0&1 = 1,0[2 =2 and Bo = ].,Bl = 2, Bg =1.
Consider the 3 sub-sequences defined by:

1
X3n+1 — 1+ X3
n
X 14+ x3p
3tz (14 2x3p41)x3n
2+ X3p41
X3n+3

(14 X3n42)X3n+1

It suffices to show that lim,_ o X3,43 = 00.

X3n+2 = 7(1 + x30)°
n (3 + X3,,)X3n
A (1 + 9x3, + 2(X3n)2> %
1+ 5x3, +2(x3,)2 ) "
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