
Periodic solution orbits of Hamiltonian systems

via index iteration theory for symplectic paths

—a survey

Yiming Long

Chern Institute of Mathematics

Nankai University

Tianjin, China

at Centre de Recerca Matemática, Bellaterra
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A brief review on ω-index theory of symplectic matrix paths

Consider the Hamiltonian system:{
ẋ(t) = JH ′(t, x(t)), ∀t ∈ R,

x(τ) = x(0),
(HS)

where J =

(
0 −I

I 0

)
, H ∈ C 2(R/(τZ)× R2n,R), x : R/(τZ) → R2n.

The variational structure

f (x) =

∫ τ

0
(−1

2
Jẋ(t) · x(t)− H(t, x(t)))dt,

for x ∈ dom(−J d
dt ) ⊂ L2(R/(τZ),R2n) ≡ L2.

f ′(x) = 0 ⇔ x is a τ -periodic solution of (HS).

Let x = x(t) be a solution of (HS). Then

〈f ′′(x)y , z〉 =

∫ τ

0
(−Jẏ · z − H ′′(t, x(t)))y · zdt, ∀ y , z ∈ dom(−J

d

dt
).

Morse indices: m+(x) = m−(x) = +∞, 0 ≤ m0(x) ≤ 2n.



Consider the linearized Hamiltonian system at x :{
ẏ(t) = JH ′′(t, x(t))y(t) ∀t ∈ R,

y(τ) = y(0).
(LHS)

Its fundamental solution γ(t) = γx(t) is defined by{
γ̇(t) = JH ′′(t, x(t))γ(t) ∀t ≥ 0,

γ(0) = I .
(LHS)

Then γ is a path in Sp(2n) = {M ∈ GL(R2n) |MtJM = J} with γ(0) = I .

(LHS) has a solution y 6≡ 0⇔ 1 ∈ σ(γ(τ))⇔ det(γ(τ)− I ) = 0.

Thus we consider the following degenerate hypersurface in Sp(2n):

Sp(2n)01 = {M ∈ Sp(2n) | det(M − I ) = 0}.



An intuitive model

For each M ∈ Sp(2), we have:

M =

(
r z

z 1+z2

r

)(
cos θ − sin θ

sin θ cos θ

)
↔ (r , θ, z) ∈ R3 \ {z − axis}.

Matrices in Sp(2) are one-to-one correspondent to points in

R3 \ {z − axis} in cylindrical coordinates.

det(M − I ) = 0 ⇔ (r2 + z2 + 1) cos θ = 2r .

Sp(2)01 = {M ∈ Sp(2) | 1 ∈ σ(M)}

= {(r , θ, z) ∈ R3 \ {z − axis} | (r2 + z2 + 1) cos θ = 2r}.

Sp(2)01 forms a singular surface in Sp(2) as shown below in the cylindrical

coordinates of R3.



Figure: Graph of γ and Sp(2)01



Figure: Illustrations on the graphs of γ and Sp(2)01 when z = 0

In Sp(2) let ξ be the segment path connecting

(
2 0

0 1/2

)
to I2.

Let η(t) = γ(τ)e−tεJ with t ∈ [0, τ ] and ε > 0 small.

We define the orientation of Sp(2)01 as shown in the Figure.

Definition For γ ∈ C ([0, τ ],Sp(2)) with γ(0) = I , we define

i1(γ) = [η ∗ γ ∗ ξ : Sp(2)01],

ν1(γ) = dim ker(γ(τ)− I ).



Figure: Graph of Sp(2)0ω when z = 0

For ω ∈ U = {z ∈ C | |z | = 1} and M ∈ Sp(2n), we let

Dω(M) = (−1)n−1ω−n det(M − ωI ),

and define degenerate hypersurfaces

Sp(2n)0ω = {M ∈ Sp(2n) |Dω(M) = 0}.



Definition For γ ∈ C ([0, τ ],Sp(2n)) with γ(0) = I , and every ω ∈ U we

define

iω(γ) = [η ∗ γ ∗ ξ : Sp(2n)0ω],

νω(γ) = dimC kerC(γ(τ)− ωI ).

Then (iω(γ), νω(γ)) ∈ Z× {0, 1, . . . , 2n}, ∀ ω ∈ U.



Figure: Graph of Sp(2)0ω when z = 0

i1(γ) = 1, iω(γ) = i−1(γ) = 2, for ω ∈ U \ {1} in the figure.



For a given solution x = x(t) of (HS):{
ẋ(t) = JH ′(t, x(t)), ∀t ∈ R,

x(τ) = x(0).
(HS)

Viewing x = x(t) as a critical point of the functional

f (x) =

∫ τ

0
(−1

2
Jẋ(t) · x(t)− H(t, x(t)))dt,

defined on L2(R/(τZ),R2n) ≡ L2, by using saddle point

(Lyapunov-Schmidt) reduction to reduce the problem to a space Z with

dim Z = 2d , a functional a and z ∈ Crit(a) corresponding to L2, f and x

respectively, we obtain

m−(a, z) = d + i1(γx),

m0(a, z) = ν1(γx),

m+(a, z) = d − i1(γx)− ν1(γx).



ω-index theory for symplectic paths in Sp(2n):

1984, C. Conley-E. Zehnder: for ω = 1 and any 1-non-degenerate path γ

in Sp(2n) with n ≥ 2, i.e., (i1(γ), ν1(γ)) with ν1(γ) = 0;

1990, Y. Long-E. Zehnder: for ω = 1 and any 1-non-degenerate path γ in

Sp(2), i.e., (i1(γ), ν1(γ)) with ν1(γ) = 0;

1990, Y. Long, C. Viterbo (independently): for ω = 1 and any path γ in

Sp(2n) and γ may be 1-degenerate, i.e., (i1(γ), ν1(γ)) with ν1(γ) ≥ 0;

1999, Y. Long: for any ω =∈ U and any path γ in Sp(2n), i.e.,

(iω(γ), νω(γ)) with νω(γ) ≥ 0.



Index iteration theory for symplectic paths

For γ ∈ Pτ (2n) = {ξ ∈ C ([0, τ ],Sp(2n)) | ξ(0) = I}, define

γm(t) = γ(t − jτ)γ(τ)j , for jτ ≤ t ≤ (j + 1)τ, 0 ≤ j ≤ m − 1.

Basic problem: find precise values of (i1(γ
m), ν1(γ

m)) for all m ∈ N, based

on information of γ(τ) and (i1(γ), ν1(γ)).

1. Bott-type iteration formula (L. 1999) i1(γ
m) =

∑
ωm=1 iω(γ).

2. Precise iteration formula (L. 2000)

i1(γ
m) = m c1(M, i1(γ), ν1(γ)) +

∑q
j=1 E (

mθj

2π ) + c2(M, i1(γ), ν1(γ)),

where E (a) = min{k ∈ Z | k ≥ a} for a ∈ R.

3. Abstract precise iteration formula (L-Zhu, 2002)

4. Various index inequalities and estimates (Liu-L., L.-Zhu, 2000-2002)

5. Common index jump theorem (L.-Zhu, 2002) (On common properties

of finitely many symplectic paths γjs).



Applications of the index iteration theory for symplectic paths

1. Rabinowitz conjecture on prescribed minimal period solution of (HS).

2. Conley’s conjecture on multiplicity of periodic sol. orbits of (HS) on

T n.

3. Multiplicity and stability of closed characteristics on compact convex

hypersurfaces in R2n.

4. Seifert’s conjecture on brick orbits on compact domain diffeo. to the

unit ball in Rn.

5. Multiplicity and stability of closed geodesics on Finsler manifolds.

6. Stability of periodic solutions of the N-body problems.

· · · · · · · · ·

Y. Long, ”Index Theory for Symplectic Paths with Applications”.

Progress in Math. 207, Birkhäuser. Basel. 2002.



Applications to the linear stability of the elliptic Lagrangian solutions of

the 3-body problem

For second order Hamiltonian systems

q̈(t) + V ′(q(t)) = 0, q(τ) = q(0), q̇(τ) = q̇(0), (LS)

the corresponding functional f defined for q ∈ W 1,2(R/(τZ),Rn) is given

by

f (q) =

∫ τ

0

(
1

2
|q̇(t)|2 − V (q(t))

)
dt.

Then we have

m−(f , q) = i1(γ(q,q̇)), m0(f , q) = ν1(γ(q,q̇)).



We consider the classical planar three-body problem in celestial mechanics.

Denote by q1, q2, q3 ∈ R2 the position vectors of three particles with

masses m = (m1,m2,m3) ∈ (R+)3 respectively. By Newton’s second law

and the law of universal gravitation, the system of equations for this

problem is

mi q̈i =
∂U(q)

∂qi
, for i = 1, 2, 3, (1)

where

U(q) = U(q1, q2, q3) =
∑

1≤i<j≤3

mimj

|qi − qj |

is the potential function by using the standard norm | · | of vector in R2.



In 1772, J. Lagrange discovered his τ -periodic elliptic solutions of the

3-BP (ELS for short): q(t) = r(t)R(θ(t))q(0), with q(0) ∈ (R2)3,

r(t) > 0, and R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
for θ ∈ R.

Here, when q(0) is not collinear, q(0) and consequently q(t) always form

an equilateral triangle (central configuration) at every time t, and each

point runs along an ellipse with the same eccentricity e ∈ [0, 1). We

denote these τ -periodic ELS by qm,e(t).



We write the 3-BP system (1) into a Hamiltonian system:

ż = JH ′(z), z(τ) = z(0). (2)

with z = (p, q) = (p1, p2, p3, q1, q2, q3) ∈ (R2)6, p(t) = M̄q̇(t), and

H(z) = H(p, q) =
3∑

i=1

|pi |2

2mi
− U(q), J =

(
0 −I2

I2 0

)
,

with M̄ = diag(m1,m1,m2,m2,m3,m3). The linearized Hamiltonian

system at zm,e(t) = (M̄q̇m,e(t), qm,e(t)) ∈ (R2)6 is given by

ẏ(t) = JH ′′(zm,e(t))y(t), y(τ) = y(0), (3)

whose fundamental solution ψ = ψm,e(t) satisfies ψ(0) = I12 and

ψm,e(t) ∈ Sp(12) = {M ∈ GL(R12) |MT JM = J} for all t ∈ [0, τ ].



Our main concern is the linear stability of these ELS, which is determined

by ψm,e(τ) and its eigenvalues. Let U = {z ∈ C | |z | = 1}.

Let M ∈ Sp(2n). Then possible eigenvalue distributions of M are:

1 is of even multiplicities; −1 is of even multiplicities;

e, e ∈ U \ R; b, b−1 ∈ R \ {0,±1};

a, a−1, a, a−1 ∈ C \ (U ∪ R).

Thus ∃ 3 possible ways for eigenvalues to escape from U.



Earlier studies on the linear stability:

M.Gascheau (1843), E.Routh (1875) for circular orbits, i.e., e = 0.

J.Danby (1964), G.Roberts (2003), K.Meyer-D.Schmidt (2005): for e ≥ 0

sufficiently small, by perturbation method.

R.Mart́ınez, A.Samà and C.Simó (2004-2006): (see below for more details)



Let γβ,e(t) be the fundamental solution of the essential part of the

linearized H.S. at zm,e(t) (by the Meyer-Schmidt result quoted below).

Theorem. (X.Hu and S.Sun, 2010) (I) 2 ≤ i1(z
2
m,e) ≤ 4 holds always;

Suppose γβ,e(2π)2 is non-degenerate, i.e., 1 6∈ σ(γβ,e(2π)2). Then

(II-1) If i1(z
2
β,e) = 4, then γβ,e(2π) ≈ R(θ1)�R(θ2) holds for some θ1 and

θ2 ∈ (π, 2π), and ELS is linearly stable;

(II-2) If i1(z
2
β,e) = 3, then γβ,e(2π) ≈ D(λ)�R(θ) for some −1 6= λ < 0

and θ ∈ (π, 2π), and ELS is linearly unstable;

(II-3) If i1(z
2
β,e) = 2 and ∃k ≥ 3 such that i1(z

k
β,e) > 2(k − 1), then

γβ,e(2π) ≈ R(2π − θ1)�R(θ2) holds with 0 < θ1 < θ2 < π, and ELS is

linearly stable;

(II-4) If i1(z
k
β,e) = 2(k − 1) for all k ∈ N, then γβ,e(2π) and ELS are

hyperbolic or spectrally stable and linearly unstable.

As usual, zk
β,e(t) = zβ,e(kt) is used for all k ∈ N.



K.Meyer and D.Schmidt (2005): Using the central configuration

coordinates, they decomposed the linearized Hamiltonian system at ELS:

ψm,e(τ) = P−1

[(
1 1

0 1

)
�

(
1 1

0 1

)
�

(
1 1

0 1

)
�I2�M(β)

]
P.

(i) the 8 eigenvalue 1 according to first integrals stays always for all

(m, e) ∈ (R+)3 × [0, 1);

(ii) the essential part M(β) determines the linear stability:

B̄(θ) =


1 0 0 1

0 1 −1 0

0 −1 2e cos θ−1−
√

9−β
2(1+e cos θ) 0

1 0 0 2e cos θ−1+
√

9−β
2(1+e cos θ)

 ,

where t ∈ [0, τ ] is transformed to the true anomaly θ ∈ [0, 2π], and

β =
27(m1m2 + m1m3 + m2m3)

(m1 + m2 + m3)2
∈ [0, 9], e ∈ [0, 1).



R.Mart́ınez, A.Samà and C.Simó (2004-2006) Perturbation method for

e ∼ 0 or e ∼ 1 + numerical method:

EE: σ(γβ,e(2π)) = {ω1, ω1, ω2, ω2} with ωi ∈ U \ R for i = 1, 2;

EH: σ(γβ,e(2π)) = {λ, λ−1, ω, ω} for some −1 6= λ < 0 and ω ∈ U \ R;

HH: σ(γβ,e(2π)) = {λ1, λ
−1
1 , λ2, λ

−1
2 } for some λi ∈ R \ {0,±1} with

i = 1, 2;

Complex hyperbolic: σ(γβ,e(2π)) ⊂ C \ (U ∪ R).



Difficulty: due to the substantial dependence of the coefficients on t

when 0 < e < 1:

ẏ(t) = J


1 0 0 1

0 1 −1 0

0 −1 2e cos(t)−1−
√

9−β
2(1+e cos(t)) 0

1 0 0 2e cos(t)−1+
√

9−β
2(1+e cos(t))

 y(t),

y(2π) = y(0).

Denote the fundamental solution of this system by γβ,e(t) ∈ Sp(4),

which satisfies γβ,e(0) = I4. The linear stability of zβ,e ≡ zm,e(t) is

determined by γβ,e(2π) ∈ Sp(4).

Looking for analytical method to be used for this problem.



Main results of Hu-Long-Sun (2012), ARMA(2014):

Main Theorem 1. (X.Hu-Y.Long-S.Sun) The ELS is 1-nondegenerate

when (β, e) ∈ (0, 9]× [0, 1). Specially we have

i1(γβ,e) = 0 and ν1(γβ,e) =

{
3, if β = 0,

0, if β ∈ (0, 9],
e ∈ [0, 1).

Thus no eigenvalues of γβ,e(2π) can escape from U at 1 as β > 0!



Main results of Hu-Long-Sun, 2012-14:

Main Theorem 2. (X.Hu-Y.Long-S.Sun) In the (β, e) rectangle

(0, 9]× [0, 1) there exist three distinct continuous curves from left to right:

two −1-degeneracy curves Γs and Γm going up from (3/4, 0) with

tangents −
√

33/4 and
√

33/4 respectively and converges to (0, 1), and

the Krein collision eigenvalue curve Γk going up from (1, 0) and converges

to (0, 1) as e increases from 0 to 1; each of them intersects every

horizontal segment e = constant ∈ [0, 1) only once.

Moreover the linear stability pattern of γβ,e(2π) as well as that of the

ELS zβ,e changes if and only if (β, e) passes through one of these three

curves Γs , Γm and Γk .



Three separating curves and linear stability subregions



Well-known fact: For periodic solutions with period τ > 0, the system is

the Euler-Lagrange equation of the action functional

Aτ (q) =

∫ τ

0

[
3∑

i=1

mi |q̇i (t)|2

2
+ U(q(t))

]
dt

defined on the loop space W 1,2(R/τZ,X ), where

X ≡

{
q = (q1, q2, q3) ∈ (R2)3

∣∣∣∣∣
3∑

i=1

miqi = 0, qi 6= qj , ∀i 6= j

}
.

Each τ -periodic solution of (1) appears to be a critical point of the action

functional Aτ .

Venturelli (2001), Zhang-Zhou (2001), Viterbo (1989), An-Long (1998),

Hu-Sun (2010) ELS is a global minimizer of the action A(q) on the loops

in the non-trivial homology class of W 1,2(R/τZ,X ). Specially for all

(β, e) ∈ [0, 9]× [0, 1), its indices satisfy

i1(γβ,e) = i1(ELS) = 0, iω(γβ,e) = iω(ELS) ∀ ω ∈ U \ {1}.



New observations and ideas (I) Studies on the three boundary

segments of [0, 9]× [0, 1) (i1(γβ,e) = 0 for all (β, e)):

On {0} × [0, 1): N1(1, 1)I2, ν1(γ0,e) = 3, i−1(γ0,e) = 2, ν−1(γ0,e) = 0,

On (0, 3/4]× {0}: st. elliptic, i−1(γβ,0) = 2, ν±1(γβ,0) = 0,

On (3/4, 0): (−I2)R(
√

3π), ν1(γ3/4,0) = 0, i−1(γ3/4,0) = 0,

ν−1(γ3/4,0) = 2.

On (3/4, 1]× {0}: st. elliptic, ν±1(γβ,0) = i−1(γβ,0) = 0.

On (1, 9]× {0}: CS hyperbolic, ν±1(γβ,0) = i−1(γβ,0) = 0.

On {9} × [0, 1): real hyperbolic, ν±1(γβ,0) = i−1(γβ,0) = 0.



Let N1(1, 1) =

(
1 1

0 1

)
and D(λ) =

(
λ 0

0 1/λ

)
for λ ∈ R. Recall

that we have i1(γβ,e) = 0 for all (β, e) ∈ [0, 9]× [0, 1).

Then for any e ∈ [0, 1), γ0,e(2π) ≈ I2�N1(1, 1)⇒
iω(γ0,e) = i1(γ0,e) + S+

γ0,e(2π)(1)− S−γ0,e(2π)(ω)

= i1(γ0,e) + S+
I2

(1) + S+
N1(1,1)(1)− S−I2�N1(1,1)(ω)

= 0 + 1 + 1− 0

= 2, ∀ ω ∈ U \ {1}.

And for any e ∈ [0, 1), γ9,e(2π) ≈ D(λ1)�D(λ2) for e ∈ [0, 1) and some

λi ∈∈ R+ \ {1}⇒
iω(γ9,e) = i1(γ9,e) + S+

γ9,e(2π)(1)− S−γ9,e(2π)(ω)

= i1(γ9,e) + S+
D(λ1)

(1) + S+
D(λ2)

(1)− S−D(λ1)�D(λ2)
(ω)

= 0 + 0 + 0− 0

= 0, ∀ ω ∈ U \ {1}.



New observations and ideas (II) Reduction to a 2nd order OD operator.

Let

ξβ,e(t) =

(
R(t) 0

0 R(t)

)
γβ,e(t), R(t) =

(
cos t − sin t

sin t cos t

)
,

for all t ∈ [0, 2π]. Then ξβ,e(2π) = γβ,e(2π), ξβ,e ∼ γβ,e , and it is the

fundamental solution of:

ẏ(t) = JBβ,e(t)y(t), y(2π) = y(0),

where Bβ,e(t) =

(
I2 0

0 I2 − R(t)Kβ,e(t)R(t)T

)
,

Kβ,e(t) =

(
3−
√

9−β
2(1+e cos t) 0

0 3+
√

9−β
2(1+e cos t)

)
.

For ω ∈ U, Bβ,e corresponds to a 2nd order self-adjoint linear operator:

A(β, e) = − d2

dt2
I2 − I2 + R(t)Kβ,e(t)R(t)T , defined on

D(ω) = {y ∈ W 2,2([0, 2π],C2) | y(2π) = ωy(0), ẏ(2π) = ωẏ(0)}.



New observations and ideas (III) Index monotonicity.

Fix e ∈ [0, 1) and ω ∈ U. On D(ω) we have:

A(β, e) = − d2

dt2
I2 − I2 + R(t)Kβ,e(t)R(t)T

= − d2

dt2
I2 − I2 +

1

2(1 + e cos t)
(3I2 +

√
9− βS(t))

≡
√

9− β Â(β, e),

where for β ∈ [0, 9),

Â(β, e) =
A(9, e)√

9− β
+

S(t)

2(1 + e cos t)
, S(t) =

(
cos 2t sin 2t

sin 2t − cos 2t

)
,

and A(9, e) > 0.



New observations and ideas (III) Index monotonicity.

Main Lemma 1. For β near β0, the eigenvalues λ(β) near λ(β0) = 0 of

Â(β, e) satisfies
d

dβ
λ(β)|β=β0 > 0.

In fact, we have

λ(β) = λ(β)ξ(β) · ξ(β) = Â(β, e)ξ(β) · ξ(β).

From Â(β, e) = A(9,e)√
9−β

+ S(t)
2(1+e cos t) , differentiating w.r.t. β yields

d

dβ
λ(β)|β=β0 = (

∂

∂β
Â(β, e))ξ(β) · ξ(β)|β=β0

+ 2Â(β, e)ξ(β) · ( d

dβ
ξ(β))|β=β0

=
A(9, e)ξ(β) · ξ(β)

2(9− β)3/2
|β=β0 > 0.



Main Lemma 2. Fix e ∈ [0, 1). For any ω ∈ U, when β increases in

(0, 9], the index iω(γβ,e) is non-increasing, i.e.,
#{negative eigenvalues of A(β, e)} is non-increasing.

Here iω(γβ,e) = iω(A(β, e)) = iω(Â(β, e))

= #{negative eigenvalues of Â(β, e)|D(ω)}.



Main new results

Main Theorem 1 (Hu-Long-Sun, 2012).

i1(γβ,e) = 0, ∀ (β, e) ∈ [0, 9]× [0, 1), (by minimization)

ν1(γβ,e) =

{
3, if β = 0,

0, if β ∈ (0, 9],
e ∈ [0, 1).

That is, the ELS is non-degenerate when β > 0 for all e ∈ [0, 1).

Idea of the proof. By Main Lemma 1,

∃ a ”0” eigenvalue for some β > 0 ⇒ ∃ negative eigenvalue

⇒ i1(γβ,e) > 0, contradiction !



Because 1 6∈ σ(γβ,e(2π)) for β > 0, there are only 2 possible ways for

eigenvalues to escape from U as shown in the Figure, i.e., from −1 or

from Krein collision eigenvalues.



Important observation:

ω-index change implies the existence of some eigenvalue ω

iω(ξ)− iω(γ) 6= 0 ⇒ ω ∈ σ(γβ,e(2π))

for some point (β, e) on the end point curve, where M = γβ,e(2π).



Theorem 2.1 (Hu-Long-Sun). Fix e ∈ [0, 1). the −1 index i−1(γβ,e) is

non-increasing in β, and strictly decreasing precisely on two values of

β = β1(e) and β = β2(e) ∈ (0, 9), at which −1 ∈ σ(γβ,e(2π)) holds. Let

βs(e) = min{β1(e), β2(e)}, βm(e) = max{β1(e), β2(e)},

Γs = {(βs(e), e) | e ∈ [0, 1)}, Γm = {(βm(e), e) | e ∈ [0, 1)}.

They form the two −1-degeneracy curves in [0, 9]× [0, 1).

Idea of the proof. i−1(γ0,e) = 2 and i−1(γ9,e) = 0 + Main Lemma 2.

Operator theory ⇒ smoothness of the two curves.



Theorem 2.2 (Hu-Long-Sun). For every e ∈ [0, 1) we define

βk(e) = inf{β ∈ [0, 9] | σ(γβ,e(2π)) ∩U = ∅},

Γk = {(βk(e), e) ∈ [0, 9]× [0, 1) | e ∈ [0, 1)}.

Then (i) βs(e) ≤ βm(e) ≤ βk(e) < 9 holds for all e ∈ [0, 1);

(ii) Γk is the boundary curve of the hyperbolic region of γβ,e(2π) in the

(β, e) rectangle [0, 9]× [0, 1);

(iii) Γk is continuous in e ∈ [0, 1), starts from (1, 0) and goes up,

lime→1 βk(e) = 0, and Γk is distinct from Γm.



Idea of the proof. (A) γβ1,e(2π) is hyperbolic ⇒ iω(γβ1,e) = 0 ∀ω ∈ U.

Main Lemma 2 ⇒ iω(γβ,e) = 0 ∀ω ∈ U and β ∈ (βk , 9]

Main Lemma 1 ⇒ νω(γβ,e(2π)) = 0 ∀ω ∈ U and β ∈ (βk , 9],

i.e., γβ,e(2π) is hyperbolic,

i.e., the hyperbolic subregion of γβ,e(2π) is connected. Then Γk is

well-defined as a set and contains one point on each {e = const.}.

(B) Other hard parts in the proof: to prove the continuity of Γk , and

βk(e) → 0 as e → 1.



Theorem 3-(I) (Hu-Long-Sun). Let e ∈ [0, 1). We have

(i) i−1(γβ,e) =


2, if 0 ≤ β < βs(e),

1, if βs(e) ≤ β < βm(e),

0, if βm(e) ≤ β ≤ 9,

(ii) γβ,e(2π) ≈ R(θ1)�R(θ2) for some θ1 and θ2 ∈ (π, 2π), and thus is

strongly linearly stable, when 0 < β < βs(e);

(iii) γβ,e(2π) ≈ D(λ)�R(θ)) for some 0 > λ 6= −1 and θ ∈ (π, 2π), and it

is hyperbolic-elliptic and thus linearly unstable, when βs(e) < β < βm(e).



Theorem 3-(II) (Hu-Long-Sun). Let e ∈ [0, 1). We have

(iv) γβ,e(2π) ≈ R(θ1)�R(θ2) for some θ1 ∈ (0, π) and θ2 ∈ (π, 2π) with

2π − θ2 < θ1, and thus is strongly linearly stable, when

βm(e) < β < βk(e).



Theorem 4 (Hu-Long-Sun). Let e ∈ [0, 1).

(i) If βs(e) < βm(e), γβs(e),e(2π) ≈ N1(−1, 1)�R(θ) for some θ ∈ (π, 2π),

and is spectrally stable and linearly unstable;

(ii) If βs(e) = βm(e) < βk(e), γβs(e),e(2π) ≈ −I2�R(θ) for some

θ ∈ (π, 2π), and is inearly stable, but not strongly linearly stable;

(iii) If βs(e) < βm(e) < βk(e), γβm(e),e(2π) ≈ N1(−1,−1)�R(θ) for some

θ ∈ (π, 2π), and is spectrally stable and linearly unstable;

(iv) If βs(e) ≤ βm(e) < βk(e), γβk (e),e(2π) ≈ N2(e
√
−1θ, b) for some

θ ∈ (0, π) and (b2 − b3) sin θ > 0, and is spectrally stable and linearly

unstable;

(v) If βs(e) < βm(e) = βk(e), either γβk (e),e(2π) ≈ N1(−1, 1)�D(λ) for

some −1 6= λ < 0 and is linearly unstable; or γβk (e),e(2π) ≈ N2(−1, c)

with c1, c2 ∈ R and c2 6= 0, and is spectrally stable and linearly unstable;

(vi) If βs(e) = βm(e) = βk(e), either γβk (e),e(2π) ≈ M2(−1, c) with

c1 ∈ R and c2 = 0 which possesses basic normal form

N1(−1, 1)�N1(−1, 1), or γβk (e),e(2π) ≈ N1(−1, 1)�N1(−1, 1); and thus is

spectrally stable and linearly unstable.



New estimate of Yuwei Ou, 2013:

Theorem. (Y. Ou, 2013) γβ,e(2π) is hyperbolic for all (β, e) in rectangle

(8, 9]× [0, 1), i.e.,

σ(γβ,e(2π)) ⊂ C \U, ∀ (β, e) ∈ (8, 9]× [0, 1).



New estimate of X.Hu, Y.Ou and P.Wang, arXiv:1308.4745:

Theorem. There exists a real function f (β, ω) such that γβ,e(2π) is

linearly stable, if

e <
1

1 + f (β,−1)1/2
, for β ∈ [0, 3/4), or

e < min

 1√
f (β,−1)

,
1√

1 + f (β, e i
√

2π)

 , for β ∈ (3/4, 1).

γβ,e(2π) is hyperbolic, if e < (sup{f (β, ω) | ω ∈ U})−1/2,



The function f (β, ω) is defined via the trace function by

f (β, ω) = Tr
[
(K−

β (−J
d

dt
− νJ − Bβ,0)

−1)2
]

= Tr
[
(K+

β (−J
d

dt
− νJ − Bβ,0)

−1)2
]
,

where ω = e2πν , K±
β = cos(t)±| cos(t)|

2 Kβ,

Kβ =


0 0 0 0

0 0 0 0

0 0 3+
√

9−β
2 0

0 0 0 3−
√

9−β
2

 ,

Bβ,0 =

(
I −J

J K̂β,0

)
, K̂β,0 =

(
3+
√

9−β
2 0

0 3−
√

9−β
2

)
,

and −J d
dt − νJ − Bβ,0 is invertible for ν = i/2 and ν = i/

√
2.



Applications to the multiplicity of closed characteristics on

prescribed energy hypersurfaces in R2n

Σ ⊂ R2n— a compact (strictly) convex smooth (C 3) hypersurface.

NΣ(x) — the outward normal vector of Σ at x ∈ Σ such that

〈NΣ(x), v〉 = 0, 〈NΣ(x), x〉 = 1, for all v ∈ TxΣ, x ∈ Σ.

JNΣ(x) — a tangential vector field on Σ.



Look for solution (τ, x) (i.e., closed characteristic, τ -minimal period) of:{
ẋ(t) = JNΣ(x(t)), x(t) ∈ Σ, ∀t ∈ R,

x(τ) = x(0).

Here J =

(
0 −I

I 0

)
is the standard symplectic matrix on R2n.

CC(Σ)–set of all geometrically distinct (x(R) 6= y(R)) closed

characteristics on Σ.



jΣ(x) = λ(x) if x = λ(x)x0 for some x0 ∈ Σ and λ(x) > 0, jΣ(0) = 0.

Fix an α with 1 < α < 2. Define a Hamiltonian function H for Σ:

H(x) = jΣ(x)α, ∀ x ∈ R2n.

⇒ H ∈ C 1(R2n,R) ∩ C 3(R2n \ {0},R), Σ = H−1(1),

H ′(x0) = λ(x0)NΣ(x0) for all x0 ∈ Σ, where λ(x0) is smooth in x0 ∈ Σ.



Periodic motions with prescribed energy of Hamiltonian systems:
ẋ(t) = JH ′(x(t)), ∀t ∈ R,

H(x(t)) = 1, ∀t ∈ R,

x(τ) = x(0),

Looking for (τ, x)– Closed characteristics on Σ ≡ H−1(1) ⊂ R2n.

Two long standing important conjectures in Hamiltonian analysis:

Multiplicity conjecture:
#CC(Σ) ≥ n, for every compact convex hypersurface Σ ⊂ R2n.

Stability conjecture:

∃ ≥ 1 elliptic CC, for every compact convex hypersurface Σ ⊂ R2n.



Example: Weakly non-resonant ellipsoid

For r1, . . . , rn > 0, define Σ = H−1(1), where

H(x) =
1

2

n∑
j=1

x2
j + x2

j+n

r2
j

, for all x = (x1, . . . , x2n) ∈ R2n,

Then ri/rj 6∈ Q for all i 6= j⇒ #CC(Σ) = n.



Known results on local multiplicity problem:

A. Liapunov (1892), J. Horn (1903)

H : R2n → R is analytic, σ(JH ′′(0)) = {±
√
−1ω1, . . . ,

√
−1ωn} are purely

imaginary, and satisfy ωi
ωj
6∈ Z for all i 6= j .⇒ #CC(H−1(ε)) ≥ n, ∀ 0 < ε << 1.

A. Weinstein (1973):

H is C 2 near 0 in R2n, H ′′(0) > 0⇒ #CC(H−1(ε)) ≥ n, ∀ 0 < ε << 1.

J. Moser (1976), T. Bartsch (1997).



Known results on global multiplicity problem:

P. Rabinowitz, A. Weinstein (1978-79),
#CC(Σ) ≥ 1, for Σ ⊂ R2n compact convex (star-shaped) hypersurface.

Results under pinching conditions

I.Ekeland-J.-M.Lasry (1980), A.Ambrosetti-G.Mancini (1981), H.Hofer

(1982), M.Girardi (1984), H.Berestycki-J.M.Lasry-B.Ruf-G.Mancini

(1985), Y.Dong-Y.Long (2004)



Results for free case (without pinching conditions)

I.Ekeland-L.Lassoud (1987), I.Ekeland-H.Hofer (1987), A. Szulkin (1988),
#CC(Σ) ≥ 2, for compact convex hypersurface Σ ⊂ R2n.

H.Hofer-K.Wysocki-E.Zehnder (1998),
#CC(Σ) = 2 or +∞, for compact convex hypersurface Σ ⊂ R4.

Y.Long-C.Zhu (2002) ([a] = max{k ∈ Z | k ≤ a} for all a ∈ R)

(i) #CC(Σ) ≥ [n/2] + 1, for compact convex hypersurface Σ ⊂ R2n.

(ii) #CC(Σ) ≥ n, for compact convex hypersurface Σ ⊂ R2n,

if all CCs are non-degenerate.

C.Liu-Y.Long-C.Zhu (2002)
#CC(Σ) ≥ n, for compact convex hypersurface Σ = −Σ ⊂ R2n.



Results for free case (continued)

Wei Wang–Xijun Hu–Y. Long, (2007)
#CC(Σ) ≥ 3 , ∀ convex compact smooth hypersurface Σ ⊂ R6.

Recent new results for free case (without pinching conditions)

Wei Wang, (2013-14)
#CC(Σ) ≥ 4 , ∀ convex compact smooth hypersurface Σ ⊂ R8.
#CC(Σ) ≥

[
n+1
2

]
, ∀ convex compact smooth hypersurface Σ ⊂ R2n.



Main difficulties toward proofs for multiplicity results

1. 1 CC ↔ ∞ many critical values of f on E .

For every m ∈ N, xm(t) = x(mt) satisfy f (xm) → +∞ !

2. To get #CC(Σ) ≥ 2, one needs a contradiction if #CC(Σ) = 1.

3. To get #CC(Σ) ≥ 3, one needs certain structures.

4. It is not clear whether Hofer-Wysocki-Zehnder method works for R2n

when n ≥ 3.



The Clarke-Ekeland dual action principal:

f (u) =

∫ 1

0

{
〈1
2
Ju,Πu〉+ H∗(−Ju)

}
dt,

∀ u ∈ E =

{
v ∈ L(α−1)/α(R/Z,R2n)

∣∣∣∣ ∫ 1

0
udt = 0

}
,

where H(y) = j(y)α with α ∈ (1, 2), H∗(x) = supy∈R2n{〈x , y〉 − H(y)},
and Πu is defined by

d

dt
Πu = u and

∫ 1

0
Πudt = 0.

Let u ∈ E \ {0} satisfy f ′(u) = 0. Then ∃ξu ∈ R2n s.t.

zu(t) = Πu(t) + ξu is a 1-periodic solution of

ż(t) = JH ′(z(t)), z(1) = z(0).

Let h = H(zu(t)) and 1/m be the minimal period of zu for some m ∈ N.

Then (τ, xu) ∈ CC(Σ), where

τ =
1

m
h(α−2)/α, xu(t) = h−1/αzu(h

(2−aa)/αt).



Using Fadell-Rabinowitz index theory (Lyusternic-Schnirelmann type

argument), [Ekeland-Hofer, 1987]⇒ f possesses a sequence of critical values {ck}k≥1:

−∞ < c1 = min{f (u) | u ∈ E} ≤ c2 ≤ · · · ≤ ck ≤ ck+1 ≤ · · · < 0,

#CC(Σ) = +∞, if ck = ck+1 for some k ∈ N,

and for every k ∈ N, ∃(τ, x) ∈ CC(Σ) and m ∈ N such that

f ′(ux
m) = 0, f (ux

m) = ck ,

i1(x
m) ≤ 2k − 2 + n ≤ i(xm) + ν(xm)− 1,

where ux
m(t) = (mτ)(α−1)/(2−α)ẋ(mτ t).

Suppose q ≡ #CC(Σ) < +∞. Specially we observed

2N− 2 + n ⊆
q⋃

j=1

⋃
m∈N

[i(u
xj
m), i(u

xj
m) + ν(u

xj
m)− 1].



Important property: for a fixed (τ, x) ∈ CC(Σ), for every m ∈ N we have

i(ux
m) ≤ i(ux

m) + ν(ux
m)− 1 < i(ux

m+1) ≤ i(ux
m+1) + ν(ux

m+1)− 1,

i .e.,

[i(ux
m), i(ux

m) + ν(ux
m)− 1] ∩ [i(ux

m+1), i(u
x
m+1) + ν(ux

m+1)− 1] = ∅.

Then we obtain

q ≥ #

(2N− 2 + n)
⋂ q⋂

j=1

[i(u
xj
mj ), i(u

xj
mj ) + ν(u

xj
mj )− 1]

 ≡ p.

Otherwise, p > q ⇒ ∃k ∈ N and j such that ck = f (u
xj
mj ) = ck+1

⇒ #CC(Σ) = +∞, contradiction !



Next observation:

We enlarge the index interval [i(ux
m), i(ux

m) + ν(ux
m)− 1] to

the index jump interval

(i(ux
m−1) + ν(ux

m−1)− 1, i(ux
m+1)).

Then by the same reason of q ≥ p, we obtain

q ≥ #

(2N− 2 + n)
⋂ q⋂

j=1

(
i(u

xj

mj−1) + ν(u
xj

mj−1)− 1, i(u
xj

mj+1)
) .



Common index jump theorem (Long-Zhu, 2002)

Suppose CC(Σ) = {(τj , xj) | 1 ≤ j ≤ q}. Let

κ1 = min1≤j≤q(i1(xj) + 2S+(xj)− ν1(xj)) and κ2 = min1≤j≤q(i1(xj)− 1).

Then there exist N,m1, . . . ,mq ∈ N such that

q ≥ #

(2N− 2 + n)
⋂ q⋂

j=1

(
i1(u

xj

mj−1) + ν1(u
xj

mj−1)− 1, i1(u
xj

mj+1)
)

≥ # ((2N− 2 + n) ∩ [2N − κ1, 2N + κ2])

≥ min

{
[
i1(u

xj

1 ) + S+(xj)− ν1(u
xj

1 )

2
] | 1 ≤ j ≤ q

}
≡ %n(Σ)

≥ [n/2] + 1.



Thank you !


