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The restricted three body problem

The restricted planar three body problem (RP3BP)

We consider the motion of three bodies q1, q2 and q, of masses m1,
m2, and 0 under the effects of the Newtonian gravitational force.
Usually one works with the mass ratio µ = m2

m1+m2
, m1 ≥ m2, and one

considers he masses 1− µ, µ (0 ≤ µ ≤ 1/2) and 0.

The bodies with mass (primaries) q1, q2 are not influenced by the
massless one q.

q1 and q2 form a two body problem. Therefore their motion is
governed by Kepler laws.

We will assume the two primaries q1, q2 move on ellipses (elliptic
case): a particular case is when they move in circles (circular case)

Goal: understand the motion of the massless body q under the
influence of the other two.
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The restricted three body problem

The restricted planar three body problem (RP3BP)

The particle q with zero mass moves under the effects of the Newtonian
gravitational force exerted by the two primaries q1 and q2 of masses 1− µ
and µ evolving in elliptic orbits around their center of mass. The circular
case is a particular case of the elliptic one, where the primaries move in
elliptic orbits.
Typical models in the elliptic case with eccentricity e0:

Sun–Jupiter–asteroid or comet: e0 = 0.048

Sun–Earth–Moon systems: e0 = 0.016
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The restricted three body problem

The equations of the RP3BP

The motion of the massless particle q = (q1, q2) ∈ R2 (planar
problem) is described by Newton laws. After normalizing:

d2q

dt2
=

(1− µ)(q1(t)− q)

||q1(t)− q||3
+
µ(q2(t)− q)

||q2(t)− q||3
,

where q1(t), q2(t) are the position of the primaries, which move in an
elliptic orbit of excentricity e0.

This is a 2π-periodic in time Hamiltonian system (2 and 1/2 degrees
of freedom) with Hamiltonian

H(q, p, t;µ, e0) =
p2

2
− (1− µ)

|q − q1(t)|
− µ

|q − q2(t)|
.

p = (p1, p2) = dq
dt , q = (q1, q2).

Parameters: 0 < e0 < 1 the excentricity of the ellipse (q1(t) and
q2(t) depend on e0) and µ ∈ [0, 1/2].

Tere M-Seara Arnold diffusion in the restricted planar three body problemCRM, June 2-6, 2014 4 / 37



The restricted three body problem

The equations of the RP3BP

In the elliptic case e0 > 0, one has:

q1(t) = −µr0(t)q0(t), q2(t) = (1− µ)r0(t)q0(t)

where

r0 = r0(t; e0) =
1− e20

1 + e0 cos f (t)
,

df

dt
=

(1 + e0 cos f )2

(1− e20)3/2
.

and f (t) = f (t; e0) is the true anomaly, and

q0(t) = (cos f (t), sin f (t))

In the circular case e0 = 0, one has: q1(t) = −µq0(t),
q2(t) = (1− µ)q0(t) and q0(t) = (cos t, sin t) correspond to the
circular motion of the primaries.
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The restricted three body problem

Motion of the primaries in the circular case: e0 = 0

In general, the Hamiltonian is 2π-periodic in time, therefore it is NOT
a first integral of the problem.

The RPC3BP has a first integral called Jacobi constant

J (q, p, t;µ) = H(q, p, t;µ, 0)− (q1p2 − q2p1).
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The restricted three body problem

Circular RP3BP in rotating polar coordinates

When e0 = 0, we can make some classical changes of variables to simplify
the Hamiltonian:

Fix the primaries at the x axis taking a reference system which moves
periodically with time (periodic in time change of variables): sinodic
coordinates

q1 = (µ, 0), q2 = (1− µ, 0).

Polar coordinates for the third body: q = (r cosφ, r sinφ).
y symplectic conjugate to r (radial velocity).
G symplectic conjugate to φ (angular momentum).

We get an autonomous Hamiltonian of two degrees of freedom:

H(r , φ, y ,G ;µ) =
y2

2
+

G 2

2r2
− G − U(r , φ;µ),

U(r , φ;µ) is the Newtonian potential, which satisfies U(r , φ;µ) ' 1
r .

H is a first integral (Is the Jacobi constant J ).
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The restricted three body problem

Elliptic RP3BP in rotating polar coordinates

If we perform the same changes of variables in the elliptic case (remember
that there is no an extra first integral in this case):
We get an non-autonomous Hamiltonian:

H(r , φ, y ,G , t;µ, e0) =
y2

2
+

G 2

2r2
− G − U(r , φ, t;µ, e0),

U(r , φ, t;µ, e0) also satisfies U(r , φ, t;µ, e0) ' 1
r .

The system has two and a half degrees of freedom.
We will work in the extended phase space:
((r , φ, y ,G , s) ∈ R× T× R2 × T

H(r , φ, y ,G , s;µ, e0) =
y2

2
+

G 2

2r2
− G − U(r , φ, s;µ, e0),

and ṡ = 1
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The restricted three body problem

Limiting case µ→ 0

For µ = 0 and for any e0:

The massless body q is only influenced by one body q1 (q2 has also
zero mass!).

Its motion is governed by Kepler laws (the central force problem).

It moves on conic sections.
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The restricted three body problem

Limiting case µ→ 0

For µ = 0 and for any e0:

As U(r , φ, s; 0, e0) = 1
r , the Hamiltonian for µ = 0, becomes, both in

the elliptic and circular case:

H(r , φ, y ,G , s; 0, e0) = H0(r , y ,G )− G =
y2

2
+

G 2

2r2
− 1

r
− G ,

h = H0 is the energy.

Possible types of motion:

H± (hyperbolic): motion on hyperbolas: h > 0
P± (parabolic): motion on parabolas: h = 0
B± (bounded): motion on ellipses h < 0

The angular momentum G is preserved.
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The restricted three body problem

Purposes for µ > 0

We want to see:

There is another possible type of motion: Oscillatory motion :

lim sup
t→±∞

‖q‖ = +∞ and lim inf
t→±∞

‖q‖ < +∞

Proved for any 0 < µ ≤ 1/2 (Guardia-Martin-S) and e0 = 0 in:
Oscillatory motions for the restricted planar circular three body
problem
Preprint at
http : //arxiv .org/abs/1207.6531
Future project e0 > 0.

For e0 > 0, the angular momentum G can have changes of O(1) even
if µ is very small: Arnold diffusion
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The restricted three body problem

µ > 0, The elliptic case: Increassing the angular
momentum

Final goal: in the elliptic restricted three body (ERTBP) problem we want
to see that the angular momentum of the third body G (t) can have large
changes
We have partial results when the eccentricity e0 > 0 and µ > 0 are small
enough:
Given any G1,G2 � 1, there exist heteroclinic trajectories of the ERTBP
whose angular momentum satisfies, for some T > 0:

G (0) < G1 G (T ) > G2

Proven for 0 < µ� e0 � 1 and any 1� G1,G2 ≤ 1/e0.
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The restricted three body problem

Previous results for oscillatory motions or diffusion close to
parabolic orbits

Sitnikov 1960 (later Moser) considered the restricted spatial elliptic
three body problem with a specific configuration.

Llibre-Simó 1980 (oscillatory motions in the RPC3BP for 0 < µ� 1)

Moeckel 1984: extended the result of Sitnikov to the case of three
bodies with positive masses, two of them equal, in an isosceles
configuration.

Xia 1992 ( for RPC3BP oscillatory motions for every µ ∈ (0, 1/2]
except a finite number of values)

Galante-Kaloshin 2011( orbits initially bounded and which become
oscillatory: µ = 10−3, realistic for the Jupiter-Sun)

Kaloshin and Gorodetski 2011 (results about the Hausdorff dimension
of oscillatory motions for both the Sitnikov problem and the RPC3BP)

Xia 1993 (local diffusion in the ERTBP)

Mart́ınez-Pinyol 1994 (Massive computations in the ERTBP)
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The restricted three body problem

Previous results: other types of oscillatory motions or
diffusion:

Llibre-Mart́ınez-Simó 1985 (oscillatory motions close to L2 in the
CRTBP)

Bolotin 2006 (close to collision in the ERTBP)

Capiñski-Zgliczyñski 2011 (close to L2 in the ERTBP)

Féjoz-Guàrdia-Kaloshin-Roldán 2012 (close to resonances in the
ERTBP)

Tere M-Seara Arnold diffusion in the restricted planar three body problemCRM, June 2-6, 2014 14 / 37



The restricted three body problem

Limiting case µ→ 0: Infinity

Equations

ṙ = y

ẏ =
G 2

r3
− 1

r2

φ̇ = −1 +
G

r2

Ġ = 0

ṡ = 1

For any value of (φ0,G0, s0), the “infinity”:

(r , y , φ,G , s) = (∞, 0, φ0 − t,G0, s0 + t), t ∈ T

is a periodic solution.

At infinity, H coincides with angular momentum:
H(∞, φ, 0,G0, s; 0, e0) = −G0.
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The restricted three body problem

Limiting case µ→ 0: McGehee coordinates

x2 := 1/r : Gives a better geometrical understanding of the problem

ẋ = −x3

2

∂K0

∂y

ẏ =
x3

2

∂K0

∂x

φ̇ =
∂K0

∂G
− 1

Ġ = 0

ṡ = 1

K0(x , y ,G ) = H0( 1
x2
, y ,G ) =

y2

2
+

G 2x4

2
− x2, is a first intergral.

For any value of (φ0,G0, s0):
Λφ0,G0,s0 = {(x , y , φ,G , s) = (0, 0, φ0 − t,G0, s0 + t), t ∈ T} is a
periodic solution.
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The restricted three body problem

Limiting case µ→ 0: McGehee coordinates

Homoclinic manifold: For any fixed G0, in the (x , y) plane; (0, 0) is a
(parabolic) critical point which has the separatrix loop
γG0 = {K0(x , y ,G0) = 0}.

In the whole extended phase space this will give rise to an homolinic
manifold γφ0,G0,s0 to the periodic orbit Λφ0,G0,s0
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The restricted three body problem

Limiting case µ→ 0: A priori unstable structure, inner
dynamics

Main features we will use:

The 3 dimensional manifold:

Λ∞ = {x = y = 0, (φ,G , s) ∈ T× R+ × T}

is invariant.

Λ∞ =
⋃
φ,G ,s Λφ,G ,s , being Λφ,G ,s periodic orbits.

The inner dynamics on Λ∞ is trivial:

(φ,G , s)→ (φ− t,G , s + t)

Λ∞ has stable and unstable manifolds.
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The restricted three body problem

Limiting case µ→ 0: A priori unstable structure, outer
dynamics

An invariant 4-dimensional homoclinic manifold to Λ∞.

γ = W s
0 (Λ∞) = W u

0 (Λ∞)

= {K0(x , y ,G ) = 0, (φ,G , s) ∈ T× R+ × T}

This makes Λ∞ a normally parabolic invariant manifold
γ can be seen as a union of parabolic homoclinic orbits to Λφ,G ,s .

γ =
⋃

(φ,G ,s)

γφ,G ,s
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The restricted three body problem

Limiting case µ→ 0: A priori unstable structure, outer
dynamcis

We can
parameterize the homoclinic manifold as:

γ = {z := (xG (τ), yG (τ), φG (τ) + φ,G , s), τ ∈ R,G ∈ R+, (φ, s) ∈ T2}
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The restricted three body problem

Limiting case µ→ 0: A priori unstable structure, outer
dynamics

We can define the scattering map (Delshams-Llave-S. 2000) in Λ∞.
Its is associated to the homoclinic manifold γ

S0 : Λ∞ → Λ∞

by z+ = S0(z−) iff ∃z ∈ γ such that

d(ϕ(t; z), ϕ(t; z±))→ 0 as t → ±∞.

The orbit through z is a heteroclinic connection between the orbits
through z± ∈ Λ∞.
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The restricted three body problem

Limiting case µ→ 0: A priori unstable structure, outer
dynamics

Using the point of z ∈ Γ given by:

z = (xG (τ), yG (τ), φG (τ) + φ,G , s)

one can compute S0 in coordinates:

S0(φ,G , s) = (φ,G , s)

As S0 = Id , the unperturbed periodic orbits Λφ,G ,s only have homoclinic
connections.
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The restricted three body problem

Dynamics of infinity for µ > 0

In McGehee variables (x , y , φ,G , s), the Hamiltonian is:

K (x , y , φ,G , s;µ, e0) =
y2

2
+

G 2x4

2
− V (x , φ, s;µ, e0)

with V (x , φ, s;µ, e0) = x2Ṽ (x , φ, s;µ, e0)
Implications:

Λ∞ = {x = y = 0, (φ,G , s) ∈ T× R+ × T} is still invariant.

The periodic orbits Λφ,G ,s persist.

The inner dynamics on Λ∞ is still trivial:

(φ,G , s)→ (φ− t,G , s + t)
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The restricted three body problem

µ > 0: The elliptic case: increasing the angular momentum

Main goal:

For µ > 0 (and e0 > 0) we want to see that we that the stable and
unstable manifolds of Λ∞ intersect transversaly.

For µ > 0 (and e0 > 0) we want to see that we that the unstable
manifold of the periodic orbits Λφ1,G1,s intersect transversaly the
stable manifold of other periodic orbit Λφ2,G2,s with G2 > G1.

Equivalently:
For µ > 0 (and e0 > 0) we want to see that we can define a scattering
map in Λ∞ such that the image of one periodic orbit intersects other
periodic orbits with larger angular momentum G :

Sµ(Λφ1,G1,s) ∩ Λφ2,G2,s 6= ∅

with G2 > G1.
Then we will have heteroclinic connections between periodic orbits.
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The restricted three body problem

µ > 0, The elliptic case: increasing the angular momentum

Remember the Hamiltonian in the elliptic case is NOT autonomous:

H(r , φ, y ,G , s;µ, e0) =
y2

2
+

G 2

2r2
− G − U(r , φ, s;µ, e0),

The phase space is 5 dimensional.
For µ > 0 (and e0 > 0) it is possible to have heteroclinic connections
between periodic orbits with different angular momentum.
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The restricted three body problem

µ > 0, The circular case e0 = 0

In the circular case the Hamiltonian is autonomous:

H(r , φ, y ,G ;µ, 0) =
y2

2
+

G 2

2r2
− G − U(r , φ;µ, 0)

The energy of Λφ,G ,s is H = −G .
As the energy is preserved heteroclinic orbits between periodic orbits with
different angular momentum are not possible!
Arnold diffusion is not possible but the transversal intersection between
the invariant manifolds og Λ∞ will give rise to another important
phenomenum: The existence of oscillatory motions.
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The restricted three body problem

The invariant manifolds of Λ∞ for e0 > 0, µ > 0: Melnikov
approach

For µ > 0, we want to see that the manifolds W s
µ(Λ∞) and W u

µ (Λ∞)
intersect transversally.
This result is based on a Melnikov type computation (see A. de la Rosa’s
talk)
Classical Melnikov potential:

L(φ,G , s; e0) =

∫ ∞
−∞

∆V (xG (t), φG (t) + φ, s + t; e0) dt.

where V (x , φ, s;µ, e0) = x2 + µ∆V (x , φ, s; e0) + O(µ2)
Intersection property: If the function

τ 7→ L(φ,G , s − τ ; e0)

has a non-degenerate critical point τ∗(φ,G , s; e0), then there is a
transversal intersection between W u(Λ̃∞) and W s(Λ̃∞) close to
z̃0 = (xG (τ∗), yG (τ∗), φG (τ∗) + φ,G , s).

Tere M-Seara Arnold diffusion in the restricted planar three body problemCRM, June 2-6, 2014 27 / 37



The restricted three body problem

The invariant manifolds of Λ̃∞ for e0 > 0, µ > 0: the
reduced Poincaré function

For any fixed (φ,G , e0), we just need to find a non-degenerate critical
point s∗(φ,G ; e0) of s 7→ L(φ,G , s; e0), that is, a solution s∗(φ,G ; e0) of
the equation

∂L
∂s

(φ,G , s; e0) = 0,
∂2L
∂s2

(φ,G , s; e0) 6= 0

and we recover τ∗(φ,G , s; e0) = s − s∗(φ,G ; e0)
Once we have τ∗(φ,G , s; e0) we can consider the reduced Poincaré
function

L∗(φ,G ; e0) = L(φ,G , s − τ∗(φ,G , 0; e0); e0) = L(φ,G , s∗(φ,G ; e0); e0)
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The restricted three body problem

The scattering map for e0 > 0, µ > 0

The scattering map S given by the homoclinic intersection associated to
the critical point s∗(φ,G ; e0) is given as:

(φ,G , s) 7→ (φ− µ∂L
∗

∂G
(φ,G ; e0) + O(µ2),G + µ

∂L∗

∂φ
(φ,G ; e0) + O(µ2), s)

S is given, up to first order in µ, as the time −µ Hamiltonian flow of the
autonomous Hamiltonian L∗(φ,G ; e0)!
Then, looking at the level curves of L∗(φ,G ; e0) we get the images under
the scattering map.
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The restricted three body problem

The scattering map for e0 > 0, µ > 0

The inner dynamics in Λ̃∞ is trivial:

(φ,G , s) 7→ (φ,G , s + t)

The classical geometric mechanism to obtain diffusion does not work:
there is no possibility of combining the inner and the outer dynamics to
obtain large changes of G .
The time 2π-Poincaré map P(φ,G , s) = (φ,G , s), therefore S ◦ P = S
Only with one scattering map we cannot get large changes in G .
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The restricted three body problem

Combining two scattering maps for e0 > 0, µ > 0

One can see that the function L(φ,G , s; e0) has two non-degenerate
critical points s∗±(φ,G ; e0) which give rise to two different reduced
Poincaré functions L∗±. The scattering maps S± are given by

(φ,G ) 7→
(
φ− µ

∂L∗±
∂G

(φ,G ; e0) + O(µ2),G + µ
∂L∗±
∂φ

(φ,G ; e0) + O(µ2)

)
.

S± are given, except for O(µ2), as the time µ Hamiltonian flow of the
autonomous Hamiltonians −L∗±(φ,G ).

The iterates under S± follow closely the level curves of L∗±.

One can see that {L∗+,L∗−} only vanishes on φ = 0, π, therefore, we
can choose alternatively S± to get diffusing pseudo-orbits and get
diffusion along 1� G ≤ 1/e0.
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The restricted three body problem
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The restricted three body problem

The foliations of their level curves are transversal.
We can construct heteroclinic chains of periodic orbits with increasing
angular momentum choosing the right scattering map any time
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The restricted three body problem

Computation of the Melnikov potential L for e0G � 1 and
big G

Computation of the Melnikov potential is delicate.
We have rigourous computations and bounds of the errors for e0G ≤ 1.
Main idea:

L is periodic in s and φ.

The k-th Fourier coefficient in the angle s is of order O(e−k
G3

3 ).
This is difficult to prove.

One needs to compute the asymptotic of the first Fourier coefficients
and bound the rest.
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The restricted three body problem

Arnold diffusion: e0 > 0, µ > 0

We have rigourous results for the existence of heteroclinic orbits with

increasing angular momentum if e0G ≤ 1 and µe
G3

3 <� 1

A rigourous λ-lemma is needed to get true orbits.

How can improve the range of the parameters with the same results?

A priori chaotic: In a recent work (Guardia-Martin-S) we have proved
that W u(Λ̃∞) and W s(Λ̃∞) intersect transversally for e0 = 0. Then,
the circular restricted theree body problem becomes a priori chaotic

for any value of µ, and we get results for |e0e
G3

3 | << 1
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The restricted three body problem

Arnold diffusion: e0 > 0, any µ > 0

One can see that this problem is a perturbation of the two body problem
without assuming µ small, nor e0 small.
Take ε small and perform the following changes of variables

r =
1

ε2
r̃ , y = εỹ , α = α̃ and G =

1

ε
G̃

and we rescale time as

t =
1

ε3
s.

The rescaled system is Hamiltonian with respect

H̃(r̃ , ỹ , α, G̃ ,
s

ε3
;µ, e0) =

ỹ2

2
+

G̃ 2

2r̃2
− Ṽ (r̃ , α,

s

ε3
; ε, e0, µ),
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The restricted three body problem

The equations in scaled variables for small ε

where

Ṽ (r̃ , α, s
ε3

; ε, e0, µ) = 1−µ
(r̃2−2(µε2)r̃ cosα+(µε2)2)1/2

+ µ

(r̃2+2((1−µ)ε2)r̃ cosα+((1−µ)ε2)2)1/2
.

where α = φ+ f (t0 + s
ε3

; e0).

Note that, for any µ, and e0, Ṽ = 1
r̃ + O(ε2) and its dependence on time

is through φ = φ+ f (t0 + s
ε3

; e0),
In this way one can see:

The exponentially small splitting comes from the fact that the
restricted three body problem is a small and fast perturbation of the
two body problem for ε small and any e0 and µ.

One can expect the diffusion phenomenon if we are able to deal with
these exponentially small phenomena (done for e0 = 0).

The first step will be the case e0G small without assumptions in µ
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